aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>2009-06-14 17:58:45 -0400
committerTheodore Ts'o <tytso@mit.edu>2009-06-14 17:58:45 -0400
commit43ce1d23b43330634507a049b55c36e91d27282e (patch)
treed7532d7c0bea60b7bfe29dad51b4b92122acdd5a
parentc364b22c9580a885e0f8c0d0f9710d67dc448958 (diff)
ext4: Fix mmap/truncate race when blocksize < pagesize && !nodellaoc
This patch fixes the mmap/truncate race that was fixed for delayed allocation by merging ext4_{journalled,normal,da}_writepage() into ext4_writepage(). Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
-rw-r--r--fs/ext4/inode.c234
-rw-r--r--include/trace/events/ext4.h45
2 files changed, 58 insertions, 221 deletions
diff --git a/fs/ext4/inode.c b/fs/ext4/inode.c
index 1275f34589c..97c48b5b057 100644
--- a/fs/ext4/inode.c
+++ b/fs/ext4/inode.c
@@ -47,6 +47,10 @@
#define MPAGE_DA_EXTENT_TAIL 0x01
+static int __ext4_journalled_writepage(struct page *page,
+ struct writeback_control *wbc,
+ unsigned int len);
+
static inline int ext4_begin_ordered_truncate(struct inode *inode,
loff_t new_size)
{
@@ -2392,7 +2396,7 @@ static int __mpage_da_writepage(struct page *page,
* We need to try to allocate
* unmapped blocks in the same page.
* Otherwise we won't make progress
- * with the page in ext4_da_writepage
+ * with the page in ext4_writepage
*/
if (ext4_bh_delay_or_unwritten(NULL, bh)) {
mpage_add_bh_to_extent(mpd, logical,
@@ -2519,13 +2523,47 @@ static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
}
/*
+ * Note that we don't need to start a transaction unless we're journaling data
+ * because we should have holes filled from ext4_page_mkwrite(). We even don't
+ * need to file the inode to the transaction's list in ordered mode because if
+ * we are writing back data added by write(), the inode is already there and if
+ * we are writing back data modified via mmap(), noone guarantees in which
+ * transaction the data will hit the disk. In case we are journaling data, we
+ * cannot start transaction directly because transaction start ranks above page
+ * lock so we have to do some magic.
+ *
* This function can get called via...
* - ext4_da_writepages after taking page lock (have journal handle)
* - journal_submit_inode_data_buffers (no journal handle)
* - shrink_page_list via pdflush (no journal handle)
* - grab_page_cache when doing write_begin (have journal handle)
+ *
+ * We don't do any block allocation in this function. If we have page with
+ * multiple blocks we need to write those buffer_heads that are mapped. This
+ * is important for mmaped based write. So if we do with blocksize 1K
+ * truncate(f, 1024);
+ * a = mmap(f, 0, 4096);
+ * a[0] = 'a';
+ * truncate(f, 4096);
+ * we have in the page first buffer_head mapped via page_mkwrite call back
+ * but other bufer_heads would be unmapped but dirty(dirty done via the
+ * do_wp_page). So writepage should write the first block. If we modify
+ * the mmap area beyond 1024 we will again get a page_fault and the
+ * page_mkwrite callback will do the block allocation and mark the
+ * buffer_heads mapped.
+ *
+ * We redirty the page if we have any buffer_heads that is either delay or
+ * unwritten in the page.
+ *
+ * We can get recursively called as show below.
+ *
+ * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
+ * ext4_writepage()
+ *
+ * But since we don't do any block allocation we should not deadlock.
+ * Page also have the dirty flag cleared so we don't get recurive page_lock.
*/
-static int ext4_da_writepage(struct page *page,
+static int ext4_writepage(struct page *page,
struct writeback_control *wbc)
{
int ret = 0;
@@ -2534,7 +2572,7 @@ static int ext4_da_writepage(struct page *page,
struct buffer_head *page_bufs;
struct inode *inode = page->mapping->host;
- trace_ext4_da_writepage(inode, page);
+ trace_ext4_writepage(inode, page);
size = i_size_read(inode);
if (page->index == size >> PAGE_CACHE_SHIFT)
len = size & ~PAGE_CACHE_MASK;
@@ -2596,6 +2634,15 @@ static int ext4_da_writepage(struct page *page,
block_commit_write(page, 0, len);
}
+ if (PageChecked(page) && ext4_should_journal_data(inode)) {
+ /*
+ * It's mmapped pagecache. Add buffers and journal it. There
+ * doesn't seem much point in redirtying the page here.
+ */
+ ClearPageChecked(page);
+ return __ext4_journalled_writepage(page, wbc, len);
+ }
+
if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
ret = nobh_writepage(page, noalloc_get_block_write, wbc);
else
@@ -3135,112 +3182,10 @@ static int bput_one(handle_t *handle, struct buffer_head *bh)
return 0;
}
-/*
- * Note that we don't need to start a transaction unless we're journaling data
- * because we should have holes filled from ext4_page_mkwrite(). We even don't
- * need to file the inode to the transaction's list in ordered mode because if
- * we are writing back data added by write(), the inode is already there and if
- * we are writing back data modified via mmap(), noone guarantees in which
- * transaction the data will hit the disk. In case we are journaling data, we
- * cannot start transaction directly because transaction start ranks above page
- * lock so we have to do some magic.
- *
- * In all journaling modes block_write_full_page() will start the I/O.
- *
- * Problem:
- *
- * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
- * ext4_writepage()
- *
- * Similar for:
- *
- * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
- *
- * Same applies to ext4_get_block(). We will deadlock on various things like
- * lock_journal and i_data_sem
- *
- * Setting PF_MEMALLOC here doesn't work - too many internal memory
- * allocations fail.
- *
- * 16May01: If we're reentered then journal_current_handle() will be
- * non-zero. We simply *return*.
- *
- * 1 July 2001: @@@ FIXME:
- * In journalled data mode, a data buffer may be metadata against the
- * current transaction. But the same file is part of a shared mapping
- * and someone does a writepage() on it.
- *
- * We will move the buffer onto the async_data list, but *after* it has
- * been dirtied. So there's a small window where we have dirty data on
- * BJ_Metadata.
- *
- * Note that this only applies to the last partial page in the file. The
- * bit which block_write_full_page() uses prepare/commit for. (That's
- * broken code anyway: it's wrong for msync()).
- *
- * It's a rare case: affects the final partial page, for journalled data
- * where the file is subject to bith write() and writepage() in the same
- * transction. To fix it we'll need a custom block_write_full_page().
- * We'll probably need that anyway for journalling writepage() output.
- *
- * We don't honour synchronous mounts for writepage(). That would be
- * disastrous. Any write() or metadata operation will sync the fs for
- * us.
- *
- */
-static int __ext4_normal_writepage(struct page *page,
- struct writeback_control *wbc)
-{
- struct inode *inode = page->mapping->host;
-
- if (test_opt(inode->i_sb, NOBH))
- return nobh_writepage(page, noalloc_get_block_write, wbc);
- else
- return block_write_full_page(page, noalloc_get_block_write,
- wbc);
-}
-
-static int ext4_normal_writepage(struct page *page,
- struct writeback_control *wbc)
-{
- struct inode *inode = page->mapping->host;
- loff_t size = i_size_read(inode);
- loff_t len;
-
- trace_ext4_normal_writepage(inode, page);
- J_ASSERT(PageLocked(page));
- if (page->index == size >> PAGE_CACHE_SHIFT)
- len = size & ~PAGE_CACHE_MASK;
- else
- len = PAGE_CACHE_SIZE;
-
- if (page_has_buffers(page)) {
- /* if page has buffers it should all be mapped
- * and allocated. If there are not buffers attached
- * to the page we know the page is dirty but it lost
- * buffers. That means that at some moment in time
- * after write_begin() / write_end() has been called
- * all buffers have been clean and thus they must have been
- * written at least once. So they are all mapped and we can
- * happily proceed with mapping them and writing the page.
- */
- BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
- ext4_bh_delay_or_unwritten));
- }
-
- if (!ext4_journal_current_handle())
- return __ext4_normal_writepage(page, wbc);
-
- redirty_page_for_writepage(wbc, page);
- unlock_page(page);
- return 0;
-}
-
static int __ext4_journalled_writepage(struct page *page,
- struct writeback_control *wbc)
+ struct writeback_control *wbc,
+ unsigned int len)
{
- loff_t size;
- unsigned int len;
struct address_space *mapping = page->mapping;
struct inode *inode = mapping->host;
struct buffer_head *page_bufs;
@@ -3248,16 +3193,8 @@ static int __ext4_journalled_writepage(struct page *page,
int ret = 0;
int err;
- size = i_size_read(inode);
- if (page->index == size >> PAGE_CACHE_SHIFT)
- len = size & ~PAGE_CACHE_MASK;
- else
- len = PAGE_CACHE_SIZE;
- ret = block_prepare_write(page, 0, len, noalloc_get_block_write);
- if (ret != 0)
- goto out_unlock;
-
page_bufs = page_buffers(page);
+ BUG_ON(!page_bufs);
walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
/* As soon as we unlock the page, it can go away, but we have
* references to buffers so we are safe */
@@ -3282,67 +3219,10 @@ static int __ext4_journalled_writepage(struct page *page,
walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
- goto out;
-
-out_unlock:
- unlock_page(page);
out:
return ret;
}
-static int ext4_journalled_writepage(struct page *page,
- struct writeback_control *wbc)
-{
- struct inode *inode = page->mapping->host;
- loff_t size = i_size_read(inode);
- loff_t len;
-
- trace_ext4_journalled_writepage(inode, page);
- J_ASSERT(PageLocked(page));
- if (page->index == size >> PAGE_CACHE_SHIFT)
- len = size & ~PAGE_CACHE_MASK;
- else
- len = PAGE_CACHE_SIZE;
-
- if (page_has_buffers(page)) {
- /* if page has buffers it should all be mapped
- * and allocated. If there are not buffers attached
- * to the page we know the page is dirty but it lost
- * buffers. That means that at some moment in time
- * after write_begin() / write_end() has been called
- * all buffers have been clean and thus they must have been
- * written at least once. So they are all mapped and we can
- * happily proceed with mapping them and writing the page.
- */
- BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
- ext4_bh_delay_or_unwritten));
- }
-
- if (ext4_journal_current_handle())
- goto no_write;
-
- if (PageChecked(page)) {
- /*
- * It's mmapped pagecache. Add buffers and journal it. There
- * doesn't seem much point in redirtying the page here.
- */
- ClearPageChecked(page);
- return __ext4_journalled_writepage(page, wbc);
- } else {
- /*
- * It may be a page full of checkpoint-mode buffers. We don't
- * really know unless we go poke around in the buffer_heads.
- * But block_write_full_page will do the right thing.
- */
- return block_write_full_page(page, noalloc_get_block_write,
- wbc);
- }
-no_write:
- redirty_page_for_writepage(wbc, page);
- unlock_page(page);
- return 0;
-}
-
static int ext4_readpage(struct file *file, struct page *page)
{
return mpage_readpage(page, ext4_get_block);
@@ -3489,7 +3369,7 @@ static int ext4_journalled_set_page_dirty(struct page *page)
static const struct address_space_operations ext4_ordered_aops = {
.readpage = ext4_readpage,
.readpages = ext4_readpages,
- .writepage = ext4_normal_writepage,
+ .writepage = ext4_writepage,
.sync_page = block_sync_page,
.write_begin = ext4_write_begin,
.write_end = ext4_ordered_write_end,
@@ -3504,7 +3384,7 @@ static const struct address_space_operations ext4_ordered_aops = {
static const struct address_space_operations ext4_writeback_aops = {
.readpage = ext4_readpage,
.readpages = ext4_readpages,
- .writepage = ext4_normal_writepage,
+ .writepage = ext4_writepage,
.sync_page = block_sync_page,
.write_begin = ext4_write_begin,
.write_end = ext4_writeback_write_end,
@@ -3519,7 +3399,7 @@ static const struct address_space_operations ext4_writeback_aops = {
static const struct address_space_operations ext4_journalled_aops = {
.readpage = ext4_readpage,
.readpages = ext4_readpages,
- .writepage = ext4_journalled_writepage,
+ .writepage = ext4_writepage,
.sync_page = block_sync_page,
.write_begin = ext4_write_begin,
.write_end = ext4_journalled_write_end,
@@ -3533,7 +3413,7 @@ static const struct address_space_operations ext4_journalled_aops = {
static const struct address_space_operations ext4_da_aops = {
.readpage = ext4_readpage,
.readpages = ext4_readpages,
- .writepage = ext4_da_writepage,
+ .writepage = ext4_writepage,
.writepages = ext4_da_writepages,
.sync_page = block_sync_page,
.write_begin = ext4_da_write_begin,
diff --git a/include/trace/events/ext4.h b/include/trace/events/ext4.h
index b456fb0a3c5..dfbc9b0edc8 100644
--- a/include/trace/events/ext4.h
+++ b/include/trace/events/ext4.h
@@ -190,7 +190,7 @@ TRACE_EVENT(ext4_journalled_write_end,
__entry->copied)
);
-TRACE_EVENT(ext4_da_writepage,
+TRACE_EVENT(ext4_writepage,
TP_PROTO(struct inode *inode, struct page *page),
TP_ARGS(inode, page),
@@ -342,49 +342,6 @@ TRACE_EVENT(ext4_da_write_end,
__entry->copied)
);
-TRACE_EVENT(ext4_normal_writepage,
- TP_PROTO(struct inode *inode, struct page *page),
-
- TP_ARGS(inode, page),
-
- TP_STRUCT__entry(
- __field( dev_t, dev )
- __field( ino_t, ino )
- __field( pgoff_t, index )
- ),
-
- TP_fast_assign(
- __entry->dev = inode->i_sb->s_dev;
- __entry->ino = inode->i_ino;
- __entry->index = page->index;
- ),
-
- TP_printk("dev %s ino %lu page_index %lu",
- jbd2_dev_to_name(__entry->dev), __entry->ino, __entry->index)
-);
-
-TRACE_EVENT(ext4_journalled_writepage,
- TP_PROTO(struct inode *inode, struct page *page),
-
- TP_ARGS(inode, page),
-
- TP_STRUCT__entry(
- __field( dev_t, dev )
- __field( ino_t, ino )
- __field( pgoff_t, index )
-
- ),
-
- TP_fast_assign(
- __entry->dev = inode->i_sb->s_dev;
- __entry->ino = inode->i_ino;
- __entry->index = page->index;
- ),
-
- TP_printk("dev %s ino %lu page_index %lu",
- jbd2_dev_to_name(__entry->dev), __entry->ino, __entry->index)
-);
-
TRACE_EVENT(ext4_discard_blocks,
TP_PROTO(struct super_block *sb, unsigned long long blk,
unsigned long long count),