aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2012-03-27 16:30:09 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2012-03-27 16:30:09 -0700
commit46b407ca4a6149c8d27fcec1881d4f184bec7c77 (patch)
treea608dadec12b8dd74866721b3de32435f575e809
parent1bfecd935849a45b6b47d9f011e1c278ff880512 (diff)
parent6458acb5a31926dcc1295410221493544d628cf7 (diff)
Merge tag 'rpmsg' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull "remoteproc/rpmsg: new subsystem" from Arnd Bergmann: "This new subsystem provides a common way to talk to secondary processors on an SoC, e.g. a DSP, GPU or service processor, using virtio as the transport. In the long run, it should replace a few dozen vendor specific ways to do the same thing, which all never made it into the upstream kernel. There is a broad agreement that rpmsg is the way to go here and several vendors have started working on replacing their own subsystems. Two branches each add one virtio protocol number. Fortunately the numbers were agreed upon in advance, so there are only context changes. Signed-off-by: Arnd Bergmann <arnd@arndb.de>" Fixed up trivial protocol number conflict due to the mentioned additions next to each other. * tag 'rpmsg' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (32 commits) remoteproc: cleanup resource table parsing paths remoteproc: remove the hardcoded vring alignment remoteproc/omap: remove the mbox_callback limitation remoteproc: remove the single rpmsg vdev limitation remoteproc: safer boot/shutdown order remoteproc: remoteproc_rpmsg -> remoteproc_virtio remoteproc: resource table overhaul rpmsg: fix build warning when dma_addr_t is 64-bit rpmsg: fix published buffer length in rpmsg_recv_done rpmsg: validate incoming message length before propagating rpmsg: fix name service endpoint leak remoteproc/omap: two Kconfig fixes remoteproc: make sure we're parsing a 32bit firmware remoteproc: s/big switch/lookup table/ remoteproc: bail out if firmware has different endianess remoteproc: don't use virtio's weak barriers rpmsg: rename virtqueue_add_buf_gfp to virtqueue_add_buf rpmsg: depend on EXPERIMENTAL remoteproc: depend on EXPERIMENTAL rpmsg: add Kconfig menu ... Conflicts: include/linux/virtio_ids.h
-rw-r--r--Documentation/ABI/testing/sysfs-bus-rpmsg75
-rw-r--r--Documentation/remoteproc.txt322
-rw-r--r--Documentation/rpmsg.txt293
-rw-r--r--MAINTAINERS7
-rw-r--r--arch/arm/plat-omap/include/plat/remoteproc.h57
-rw-r--r--drivers/Kconfig4
-rw-r--r--drivers/Makefile2
-rw-r--r--drivers/remoteproc/Kconfig28
-rw-r--r--drivers/remoteproc/Makefile9
-rw-r--r--drivers/remoteproc/omap_remoteproc.c229
-rw-r--r--drivers/remoteproc/omap_remoteproc.h69
-rw-r--r--drivers/remoteproc/remoteproc_core.c1586
-rw-r--r--drivers/remoteproc/remoteproc_debugfs.c179
-rw-r--r--drivers/remoteproc/remoteproc_internal.h44
-rw-r--r--drivers/remoteproc/remoteproc_virtio.c289
-rw-r--r--drivers/rpmsg/Kconfig10
-rw-r--r--drivers/rpmsg/Makefile1
-rw-r--r--drivers/rpmsg/virtio_rpmsg_bus.c1054
-rw-r--r--include/linux/mod_devicetable.h9
-rw-r--r--include/linux/remoteproc.h478
-rw-r--r--include/linux/rpmsg.h326
-rw-r--r--include/linux/virtio_ids.h1
-rw-r--r--samples/Kconfig8
-rw-r--r--samples/Makefile2
-rw-r--r--samples/rpmsg/Makefile1
-rw-r--r--samples/rpmsg/rpmsg_client_sample.c100
26 files changed, 5182 insertions, 1 deletions
diff --git a/Documentation/ABI/testing/sysfs-bus-rpmsg b/Documentation/ABI/testing/sysfs-bus-rpmsg
new file mode 100644
index 00000000000..189e419a5a2
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-rpmsg
@@ -0,0 +1,75 @@
+What: /sys/bus/rpmsg/devices/.../name
+Date: June 2011
+KernelVersion: 3.3
+Contact: Ohad Ben-Cohen <ohad@wizery.com>
+Description:
+ Every rpmsg device is a communication channel with a remote
+ processor. Channels are identified with a (textual) name,
+ which is maximum 32 bytes long (defined as RPMSG_NAME_SIZE in
+ rpmsg.h).
+
+ This sysfs entry contains the name of this channel.
+
+What: /sys/bus/rpmsg/devices/.../src
+Date: June 2011
+KernelVersion: 3.3
+Contact: Ohad Ben-Cohen <ohad@wizery.com>
+Description:
+ Every rpmsg device is a communication channel with a remote
+ processor. Channels have a local ("source") rpmsg address,
+ and remote ("destination") rpmsg address. When an entity
+ starts listening on one end of a channel, it assigns it with
+ a unique rpmsg address (a 32 bits integer). This way when
+ inbound messages arrive to this address, the rpmsg core
+ dispatches them to the listening entity (a kernel driver).
+
+ This sysfs entry contains the src (local) rpmsg address
+ of this channel. If it contains 0xffffffff, then an address
+ wasn't assigned (can happen if no driver exists for this
+ channel).
+
+What: /sys/bus/rpmsg/devices/.../dst
+Date: June 2011
+KernelVersion: 3.3
+Contact: Ohad Ben-Cohen <ohad@wizery.com>
+Description:
+ Every rpmsg device is a communication channel with a remote
+ processor. Channels have a local ("source") rpmsg address,
+ and remote ("destination") rpmsg address. When an entity
+ starts listening on one end of a channel, it assigns it with
+ a unique rpmsg address (a 32 bits integer). This way when
+ inbound messages arrive to this address, the rpmsg core
+ dispatches them to the listening entity.
+
+ This sysfs entry contains the dst (remote) rpmsg address
+ of this channel. If it contains 0xffffffff, then an address
+ wasn't assigned (can happen if the kernel driver that
+ is attached to this channel is exposing a service to the
+ remote processor. This make it a local rpmsg server,
+ and it is listening for inbound messages that may be sent
+ from any remote rpmsg client; it is not bound to a single
+ remote entity).
+
+What: /sys/bus/rpmsg/devices/.../announce
+Date: June 2011
+KernelVersion: 3.3
+Contact: Ohad Ben-Cohen <ohad@wizery.com>
+Description:
+ Every rpmsg device is a communication channel with a remote
+ processor. Channels are identified by a textual name (see
+ /sys/bus/rpmsg/devices/.../name above) and have a local
+ ("source") rpmsg address, and remote ("destination") rpmsg
+ address.
+
+ A channel is first created when an entity, whether local
+ or remote, starts listening on it for messages (and is thus
+ called an rpmsg server).
+
+ When that happens, a "name service" announcement is sent
+ to the other processor, in order to let it know about the
+ creation of the channel (this way remote clients know they
+ can start sending messages).
+
+ This sysfs entry tells us whether the channel is a local
+ server channel that is announced (values are either
+ true or false).
diff --git a/Documentation/remoteproc.txt b/Documentation/remoteproc.txt
new file mode 100644
index 00000000000..70a048cd3fa
--- /dev/null
+++ b/Documentation/remoteproc.txt
@@ -0,0 +1,322 @@
+Remote Processor Framework
+
+1. Introduction
+
+Modern SoCs typically have heterogeneous remote processor devices in asymmetric
+multiprocessing (AMP) configurations, which may be running different instances
+of operating system, whether it's Linux or any other flavor of real-time OS.
+
+OMAP4, for example, has dual Cortex-A9, dual Cortex-M3 and a C64x+ DSP.
+In a typical configuration, the dual cortex-A9 is running Linux in a SMP
+configuration, and each of the other three cores (two M3 cores and a DSP)
+is running its own instance of RTOS in an AMP configuration.
+
+The remoteproc framework allows different platforms/architectures to
+control (power on, load firmware, power off) those remote processors while
+abstracting the hardware differences, so the entire driver doesn't need to be
+duplicated. In addition, this framework also adds rpmsg virtio devices
+for remote processors that supports this kind of communication. This way,
+platform-specific remoteproc drivers only need to provide a few low-level
+handlers, and then all rpmsg drivers will then just work
+(for more information about the virtio-based rpmsg bus and its drivers,
+please read Documentation/rpmsg.txt).
+Registration of other types of virtio devices is now also possible. Firmwares
+just need to publish what kind of virtio devices do they support, and then
+remoteproc will add those devices. This makes it possible to reuse the
+existing virtio drivers with remote processor backends at a minimal development
+cost.
+
+2. User API
+
+ int rproc_boot(struct rproc *rproc)
+ - Boot a remote processor (i.e. load its firmware, power it on, ...).
+ If the remote processor is already powered on, this function immediately
+ returns (successfully).
+ Returns 0 on success, and an appropriate error value otherwise.
+ Note: to use this function you should already have a valid rproc
+ handle. There are several ways to achieve that cleanly (devres, pdata,
+ the way remoteproc_rpmsg.c does this, or, if this becomes prevalent, we
+ might also consider using dev_archdata for this). See also
+ rproc_get_by_name() below.
+
+ void rproc_shutdown(struct rproc *rproc)
+ - Power off a remote processor (previously booted with rproc_boot()).
+ In case @rproc is still being used by an additional user(s), then
+ this function will just decrement the power refcount and exit,
+ without really powering off the device.
+ Every call to rproc_boot() must (eventually) be accompanied by a call
+ to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
+ Notes:
+ - we're not decrementing the rproc's refcount, only the power refcount.
+ which means that the @rproc handle stays valid even after
+ rproc_shutdown() returns, and users can still use it with a subsequent
+ rproc_boot(), if needed.
+ - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
+ because rproc_shutdown() _does not_ decrement the refcount of @rproc.
+ To decrement the refcount of @rproc, use rproc_put() (but _only_ if
+ you acquired @rproc using rproc_get_by_name()).
+
+ struct rproc *rproc_get_by_name(const char *name)
+ - Find an rproc handle using the remote processor's name, and then
+ boot it. If it's already powered on, then just immediately return
+ (successfully). Returns the rproc handle on success, and NULL on failure.
+ This function increments the remote processor's refcount, so always
+ use rproc_put() to decrement it back once rproc isn't needed anymore.
+ Note: currently rproc_get_by_name() and rproc_put() are not used anymore
+ by the rpmsg bus and its drivers. We need to scrutinize the use cases
+ that still need them, and see if we can migrate them to use the non
+ name-based boot/shutdown interface.
+
+ void rproc_put(struct rproc *rproc)
+ - Decrement @rproc's power refcount and shut it down if it reaches zero
+ (essentially by just calling rproc_shutdown), and then decrement @rproc's
+ validity refcount too.
+ After this function returns, @rproc may _not_ be used anymore, and its
+ handle should be considered invalid.
+ This function should be called _iff_ the @rproc handle was grabbed by
+ calling rproc_get_by_name().
+
+3. Typical usage
+
+#include <linux/remoteproc.h>
+
+/* in case we were given a valid 'rproc' handle */
+int dummy_rproc_example(struct rproc *my_rproc)
+{
+ int ret;
+
+ /* let's power on and boot our remote processor */
+ ret = rproc_boot(my_rproc);
+ if (ret) {
+ /*
+ * something went wrong. handle it and leave.
+ */
+ }
+
+ /*
+ * our remote processor is now powered on... give it some work
+ */
+
+ /* let's shut it down now */
+ rproc_shutdown(my_rproc);
+}
+
+4. API for implementors
+
+ struct rproc *rproc_alloc(struct device *dev, const char *name,
+ const struct rproc_ops *ops,
+ const char *firmware, int len)
+ - Allocate a new remote processor handle, but don't register
+ it yet. Required parameters are the underlying device, the
+ name of this remote processor, platform-specific ops handlers,
+ the name of the firmware to boot this rproc with, and the
+ length of private data needed by the allocating rproc driver (in bytes).
+
+ This function should be used by rproc implementations during
+ initialization of the remote processor.
+ After creating an rproc handle using this function, and when ready,
+ implementations should then call rproc_register() to complete
+ the registration of the remote processor.
+ On success, the new rproc is returned, and on failure, NULL.
+
+ Note: _never_ directly deallocate @rproc, even if it was not registered
+ yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
+
+ void rproc_free(struct rproc *rproc)
+ - Free an rproc handle that was allocated by rproc_alloc.
+ This function should _only_ be used if @rproc was only allocated,
+ but not registered yet.
+ If @rproc was already successfully registered (by calling
+ rproc_register()), then use rproc_unregister() instead.
+
+ int rproc_register(struct rproc *rproc)
+ - Register @rproc with the remoteproc framework, after it has been
+ allocated with rproc_alloc().
+ This is called by the platform-specific rproc implementation, whenever
+ a new remote processor device is probed.
+ Returns 0 on success and an appropriate error code otherwise.
+ Note: this function initiates an asynchronous firmware loading
+ context, which will look for virtio devices supported by the rproc's
+ firmware.
+ If found, those virtio devices will be created and added, so as a result
+ of registering this remote processor, additional virtio drivers might get
+ probed.
+
+ int rproc_unregister(struct rproc *rproc)
+ - Unregister a remote processor, and decrement its refcount.
+ If its refcount drops to zero, then @rproc will be freed. If not,
+ it will be freed later once the last reference is dropped.
+
+ This function should be called when the platform specific rproc
+ implementation decides to remove the rproc device. it should
+ _only_ be called if a previous invocation of rproc_register()
+ has completed successfully.
+
+ After rproc_unregister() returns, @rproc is _not_ valid anymore and
+ it shouldn't be used. More specifically, don't call rproc_free()
+ or try to directly free @rproc after rproc_unregister() returns;
+ none of these are needed, and calling them is a bug.
+
+ Returns 0 on success and -EINVAL if @rproc isn't valid.
+
+5. Implementation callbacks
+
+These callbacks should be provided by platform-specific remoteproc
+drivers:
+
+/**
+ * struct rproc_ops - platform-specific device handlers
+ * @start: power on the device and boot it
+ * @stop: power off the device
+ * @kick: kick a virtqueue (virtqueue id given as a parameter)
+ */
+struct rproc_ops {
+ int (*start)(struct rproc *rproc);
+ int (*stop)(struct rproc *rproc);
+ void (*kick)(struct rproc *rproc, int vqid);
+};
+
+Every remoteproc implementation should at least provide the ->start and ->stop
+handlers. If rpmsg/virtio functionality is also desired, then the ->kick handler
+should be provided as well.
+
+The ->start() handler takes an rproc handle and should then power on the
+device and boot it (use rproc->priv to access platform-specific private data).
+The boot address, in case needed, can be found in rproc->bootaddr (remoteproc
+core puts there the ELF entry point).
+On success, 0 should be returned, and on failure, an appropriate error code.
+
+The ->stop() handler takes an rproc handle and powers the device down.
+On success, 0 is returned, and on failure, an appropriate error code.
+
+The ->kick() handler takes an rproc handle, and an index of a virtqueue
+where new message was placed in. Implementations should interrupt the remote
+processor and let it know it has pending messages. Notifying remote processors
+the exact virtqueue index to look in is optional: it is easy (and not
+too expensive) to go through the existing virtqueues and look for new buffers
+in the used rings.
+
+6. Binary Firmware Structure
+
+At this point remoteproc only supports ELF32 firmware binaries. However,
+it is quite expected that other platforms/devices which we'd want to
+support with this framework will be based on different binary formats.
+
+When those use cases show up, we will have to decouple the binary format
+from the framework core, so we can support several binary formats without
+duplicating common code.
+
+When the firmware is parsed, its various segments are loaded to memory
+according to the specified device address (might be a physical address
+if the remote processor is accessing memory directly).
+
+In addition to the standard ELF segments, most remote processors would
+also include a special section which we call "the resource table".
+
+The resource table contains system resources that the remote processor
+requires before it should be powered on, such as allocation of physically
+contiguous memory, or iommu mapping of certain on-chip peripherals.
+Remotecore will only power up the device after all the resource table's
+requirement are met.
+
+In addition to system resources, the resource table may also contain
+resource entries that publish the existence of supported features
+or configurations by the remote processor, such as trace buffers and
+supported virtio devices (and their configurations).
+
+The resource table begins with this header:
+
+/**
+ * struct resource_table - firmware resource table header
+ * @ver: version number
+ * @num: number of resource entries
+ * @reserved: reserved (must be zero)
+ * @offset: array of offsets pointing at the various resource entries
+ *
+ * The header of the resource table, as expressed by this structure,
+ * contains a version number (should we need to change this format in the
+ * future), the number of available resource entries, and their offsets
+ * in the table.
+ */
+struct resource_table {
+ u32 ver;
+ u32 num;
+ u32 reserved[2];
+ u32 offset[0];
+} __packed;
+
+Immediately following this header are the resource entries themselves,
+each of which begins with the following resource entry header:
+
+/**
+ * struct fw_rsc_hdr - firmware resource entry header
+ * @type: resource type
+ * @data: resource data
+ *
+ * Every resource entry begins with a 'struct fw_rsc_hdr' header providing
+ * its @type. The content of the entry itself will immediately follow
+ * this header, and it should be parsed according to the resource type.
+ */
+struct fw_rsc_hdr {
+ u32 type;
+ u8 data[0];
+} __packed;
+
+Some resources entries are mere announcements, where the host is informed
+of specific remoteproc configuration. Other entries require the host to
+do something (e.g. allocate a system resource). Sometimes a negotiation
+is expected, where the firmware requests a resource, and once allocated,
+the host should provide back its details (e.g. address of an allocated
+memory region).
+
+Here are the various resource types that are currently supported:
+
+/**
+ * enum fw_resource_type - types of resource entries
+ *
+ * @RSC_CARVEOUT: request for allocation of a physically contiguous
+ * memory region.
+ * @RSC_DEVMEM: request to iommu_map a memory-based peripheral.
+ * @RSC_TRACE: announces the availability of a trace buffer into which
+ * the remote processor will be writing logs.
+ * @RSC_VDEV: declare support for a virtio device, and serve as its
+ * virtio header.
+ * @RSC_LAST: just keep this one at the end
+ *
+ * Please note that these values are used as indices to the rproc_handle_rsc
+ * lookup table, so please keep them sane. Moreover, @RSC_LAST is used to
+ * check the validity of an index before the lookup table is accessed, so
+ * please update it as needed.
+ */
+enum fw_resource_type {
+ RSC_CARVEOUT = 0,
+ RSC_DEVMEM = 1,
+ RSC_TRACE = 2,
+ RSC_VDEV = 3,
+ RSC_LAST = 4,
+};
+
+For more details regarding a specific resource type, please see its
+dedicated structure in include/linux/remoteproc.h.
+
+We also expect that platform-specific resource entries will show up
+at some point. When that happens, we could easily add a new RSC_PLATFORM
+type, and hand those resources to the platform-specific rproc driver to handle.
+
+7. Virtio and remoteproc
+
+The firmware should provide remoteproc information about virtio devices
+that it supports, and their configurations: a RSC_VDEV resource entry
+should specify the virtio device id (as in virtio_ids.h), virtio features,
+virtio config space, vrings information, etc.
+
+When a new remote processor is registered, the remoteproc framework
+will look for its resource table and will register the virtio devices
+it supports. A firmware may support any number of virtio devices, and
+of any type (a single remote processor can also easily support several
+rpmsg virtio devices this way, if desired).
+
+Of course, RSC_VDEV resource entries are only good enough for static
+allocation of virtio devices. Dynamic allocations will also be made possible
+using the rpmsg bus (similar to how we already do dynamic allocations of
+rpmsg channels; read more about it in rpmsg.txt).
diff --git a/Documentation/rpmsg.txt b/Documentation/rpmsg.txt
new file mode 100644
index 00000000000..409d9f964c5
--- /dev/null
+++ b/Documentation/rpmsg.txt
@@ -0,0 +1,293 @@
+Remote Processor Messaging (rpmsg) Framework
+
+Note: this document describes the rpmsg bus and how to write rpmsg drivers.
+To learn how to add rpmsg support for new platforms, check out remoteproc.txt
+(also a resident of Documentation/).
+
+1. Introduction
+
+Modern SoCs typically employ heterogeneous remote processor devices in
+asymmetric multiprocessing (AMP) configurations, which may be running
+different instances of operating system, whether it's Linux or any other
+flavor of real-time OS.
+
+OMAP4, for example, has dual Cortex-A9, dual Cortex-M3 and a C64x+ DSP.
+Typically, the dual cortex-A9 is running Linux in a SMP configuration,
+and each of the other three cores (two M3 cores and a DSP) is running
+its own instance of RTOS in an AMP configuration.
+
+Typically AMP remote processors employ dedicated DSP codecs and multimedia
+hardware accelerators, and therefore are often used to offload CPU-intensive
+multimedia tasks from the main application processor.
+
+These remote processors could also be used to control latency-sensitive
+sensors, drive random hardware blocks, or just perform background tasks
+while the main CPU is idling.
+
+Users of those remote processors can either be userland apps (e.g. multimedia
+frameworks talking with remote OMX components) or kernel drivers (controlling
+hardware accessible only by the remote processor, reserving kernel-controlled
+resources on behalf of the remote processor, etc..).
+
+Rpmsg is a virtio-based messaging bus that allows kernel drivers to communicate
+with remote processors available on the system. In turn, drivers could then
+expose appropriate user space interfaces, if needed.
+
+When writing a driver that exposes rpmsg communication to userland, please
+keep in mind that remote processors might have direct access to the
+system's physical memory and other sensitive hardware resources (e.g. on
+OMAP4, remote cores and hardware accelerators may have direct access to the
+physical memory, gpio banks, dma controllers, i2c bus, gptimers, mailbox
+devices, hwspinlocks, etc..). Moreover, those remote processors might be
+running RTOS where every task can access the entire memory/devices exposed
+to the processor. To minimize the risks of rogue (or buggy) userland code
+exploiting remote bugs, and by that taking over the system, it is often
+desired to limit userland to specific rpmsg channels (see definition below)
+it can send messages on, and if possible, minimize how much control
+it has over the content of the messages.
+
+Every rpmsg device is a communication channel with a remote processor (thus
+rpmsg devices are called channels). Channels are identified by a textual name
+and have a local ("source") rpmsg address, and remote ("destination") rpmsg
+address.
+
+When a driver starts listening on a channel, its rx callback is bound with
+a unique rpmsg local address (a 32-bit integer). This way when inbound messages
+arrive, the rpmsg core dispatches them to the appropriate driver according
+to their destination address (this is done by invoking the driver's rx handler
+with the payload of the inbound message).
+
+
+2. User API
+
+ int rpmsg_send(struct rpmsg_channel *rpdev, void *data, int len);
+ - sends a message across to the remote processor on a given channel.
+ The caller should specify the channel, the data it wants to send,
+ and its length (in bytes). The message will be sent on the specified
+ channel, i.e. its source and destination address fields will be
+ set to the channel's src and dst addresses.
+
+ In case there are no TX buffers available, the function will block until
+ one becomes available (i.e. until the remote processor consumes
+ a tx buffer and puts it back on virtio's used descriptor ring),
+ or a timeout of 15 seconds elapses. When the latter happens,
+ -ERESTARTSYS is returned.
+ The function can only be called from a process context (for now).
+ Returns 0 on success and an appropriate error value on failure.
+
+ int rpmsg_sendto(struct rpmsg_channel *rpdev, void *data, int len, u32 dst);
+ - sends a message across to the remote processor on a given channel,
+ to a destination address provided by the caller.
+ The caller should specify the channel, the data it wants to send,
+ its length (in bytes), and an explicit destination address.
+ The message will then be sent to the remote processor to which the
+ channel belongs, using the channel's src address, and the user-provided
+ dst address (thus the channel's dst address will be ignored).
+
+ In case there are no TX buffers available, the function will block until
+ one becomes available (i.e. until the remote processor consumes
+ a tx buffer and puts it back on virtio's used descriptor ring),
+ or a timeout of 15 seconds elapses. When the latter happens,
+ -ERESTARTSYS is returned.
+ The function can only be called from a process context (for now).
+ Returns 0 on success and an appropriate error value on failure.
+
+ int rpmsg_send_offchannel(struct rpmsg_channel *rpdev, u32 src, u32 dst,
+ void *data, int len);
+ - sends a message across to the remote processor, using the src and dst
+ addresses provided by the user.
+ The caller should specify the channel, the data it wants to send,
+ its length (in bytes), and explicit source and destination addresses.
+ The message will then be sent to the remote processor to which the
+ channel belongs, but the channel's src and dst addresses will be
+ ignored (and the user-provided addresses will be used instead).
+
+ In case there are no TX buffers available, the function will block until
+ one becomes available (i.e. until the remote processor consumes
+ a tx buffer and puts it back on virtio's used descriptor ring),
+ or a timeout of 15 seconds elapses. When the latter happens,
+ -ERESTARTSYS is returned.
+ The function can only be called from a process context (for now).
+ Returns 0 on success and an appropriate error value on failure.
+
+ int rpmsg_trysend(struct rpmsg_channel *rpdev, void *data, int len);
+ - sends a message across to the remote processor on a given channel.
+ The caller should specify the channel, the data it wants to send,
+ and its length (in bytes). The message will be sent on the specified
+ channel, i.e. its source and destination address fields will be
+ set to the channel's src and dst addresses.
+
+ In case there are no TX buffers available, the function will immediately
+ return -ENOMEM without waiting until one becomes available.
+ The function can only be called from a process context (for now).
+ Returns 0 on success and an appropriate error value on failure.
+
+ int rpmsg_trysendto(struct rpmsg_channel *rpdev, void *data, int len, u32 dst)
+ - sends a message across to the remote processor on a given channel,
+ to a destination address provided by the user.
+ The user should specify the channel, the data it wants to send,
+ its length (in bytes), and an explicit destination address.
+ The message will then be sent to the remote processor to which the
+ channel belongs, using the channel's src address, and the user-provided
+ dst address (thus the channel's dst address will be ignored).
+
+ In case there are no TX buffers available, the function will immediately
+ return -ENOMEM without waiting until one becomes available.
+ The function can only be called from a process context (for now).
+ Returns 0 on success and an appropriate error value on failure.
+
+ int rpmsg_trysend_offchannel(struct rpmsg_channel *rpdev, u32 src, u32 dst,
+ void *data, int len);
+ - sends a message across to the remote processor, using source and
+ destination addresses provided by the user.
+ The user should specify the channel, the data it wants to send,
+ its length (in bytes), and explicit source and destination addresses.
+ The message will then be sent to the remote processor to which the
+ channel belongs, but the channel's src and dst addresses will be
+ ignored (and the user-provided addresses will be used instead).
+
+ In case there are no TX buffers available, the function will immediately
+ return -ENOMEM without waiting until one becomes available.
+ The function can only be called from a process context (for now).
+ Returns 0 on success and an appropriate error value on failure.
+
+ struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *rpdev,
+ void (*cb)(struct rpmsg_channel *, void *, int, void *, u32),
+ void *priv, u32 addr);
+ - every rpmsg address in the system is bound to an rx callback (so when
+ inbound messages arrive, they are dispatched by the rpmsg bus using the
+ appropriate callback handler) by means of an rpmsg_endpoint struct.
+
+ This function allows drivers to create such an endpoint, and by that,
+ bind a callback, and possibly some private data too, to an rpmsg address
+ (either one that is known in advance, or one that will be dynamically
+ assigned for them).
+
+ Simple rpmsg drivers need not call rpmsg_create_ept, because an endpoint
+ is already created for them when they are probed by the rpmsg bus
+ (using the rx callback they provide when they registered to the rpmsg bus).
+
+ So things should just work for simple drivers: they already have an
+ endpoint, their rx callback is bound to their rpmsg address, and when
+ relevant inbound messages arrive (i.e. messages which their dst address
+ equals to the src address of their rpmsg channel), the driver's handler
+ is invoked to process it.
+
+ That said, more complicated drivers might do need to allocate
+ additional rpmsg addresses, and bind them to different rx callbacks.
+ To accomplish that, those drivers need to call this function.
+ Drivers should provide their channel (so the new endpoint would bind
+ to the same remote processor their channel belongs to), an rx callback
+ function, an optional private data (which is provided back when the
+ rx callback is invoked), and an address they want to bind with the
+ callback. If addr is RPMSG_ADDR_ANY, then rpmsg_create_ept will
+ dynamically assign them an available rpmsg address (drivers should have
+ a very good reason why not to always use RPMSG_ADDR_ANY here).
+
+ Returns a pointer to the endpoint on success, or NULL on error.
+
+ void rpmsg_destroy_ept(struct rpmsg_endpoint *ept);
+ - destroys an existing rpmsg endpoint. user should provide a pointer
+ to an rpmsg endpoint that was previously created with rpmsg_create_ept().
+
+ int register_rpmsg_driver(struct rpmsg_driver *rpdrv);
+ - registers an rpmsg driver with the rpmsg bus. user should provide
+ a pointer to an rpmsg_driver struct, which contains the driver's
+ ->probe() and ->remove() functions, an rx callback, and an id_table
+ specifying the names of the channels this driver is interested to
+ be probed with.
+
+ void unregister_rpmsg_driver(struct rpmsg_driver *rpdrv);
+ - unregisters an rpmsg driver from the rpmsg bus. user should provide
+ a pointer to a previously-registered rpmsg_driver struct.
+ Returns 0 on success, and an appropriate error value on failure.
+
+
+3. Typical usage
+
+The following is a simple rpmsg driver, that sends an "hello!" message
+on probe(), and whenever it receives an incoming message, it dumps its
+content to the console.
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/rpmsg.h>
+
+static void rpmsg_sample_cb(struct rpmsg_channel *rpdev, void *data, int len,
+ void *priv, u32 src)
+{
+ print_hex_dump(KERN_INFO, "incoming message:", DUMP_PREFIX_NONE,
+ 16, 1, data, len, true);
+}
+
+static int rpmsg_sample_probe(struct rpmsg_channel *rpdev)
+{
+ int err;
+
+ dev_info(&rpdev->dev, "chnl: 0x%x -> 0x%x\n", rpdev->src, rpdev->dst);
+
+ /* send a message on our channel */
+ err = rpmsg_send(rpdev, "hello!", 6);
+ if (err) {
+ pr_err("rpmsg_send failed: %d\n", err);
+ return err;
+ }
+
+ return 0;
+}
+
+static void __devexit rpmsg_sample_remove(struct rpmsg_channel *rpdev)
+{
+ dev_info(&rpdev->dev, "rpmsg sample client driver is removed\n");
+}
+
+static struct rpmsg_device_id rpmsg_driver_sample_id_table[] = {
+ { .name = "rpmsg-client-sample" },
+ { },
+};
+MODULE_DEVICE_TABLE(rpmsg, rpmsg_driver_sample_id_table);
+
+static struct rpmsg_driver rpmsg_sample_client = {
+ .drv.name = KBUILD_MODNAME,
+ .drv.owner = THIS_MODULE,
+ .id_table = rpmsg_driver_sample_id_table,
+ .probe = rpmsg_sample_probe,
+ .callback = rpmsg_sample_cb,
+ .remove = __devexit_p(rpmsg_sample_remove),
+};
+
+static int __init init(void)
+{
+ return register_rpmsg_driver(&rpmsg_sample_client);
+}
+module_init(init);
+
+static void __exit fini(void)
+{
+ unregister_rpmsg_driver(&rpmsg_sample_client);
+}
+module_exit(fini);
+
+Note: a similar sample which can be built and loaded can be found
+in samples/rpmsg/.
+
+4. Allocations of rpmsg channels:
+
+At this point we only support dynamic