diff options
author | Stephen Hemminger <shemminger@linux-foundation.org> | 2007-10-03 16:41:36 -0700 |
---|---|---|
committer | David S. Miller <davem@sunset.davemloft.net> | 2007-10-10 16:47:45 -0700 |
commit | bea3348eef27e6044b6161fd04c3152215f96411 (patch) | |
tree | f0990b263e5ce42505d290a4c346fe990bcd4c33 | |
parent | dde4e47e8fe333a5649a3fa0e7db1fa7c08d6158 (diff) |
[NET]: Make NAPI polling independent of struct net_device objects.
Several devices have multiple independant RX queues per net
device, and some have a single interrupt doorbell for several
queues.
In either case, it's easier to support layouts like that if the
structure representing the poll is independant from the net
device itself.
The signature of the ->poll() call back goes from:
int foo_poll(struct net_device *dev, int *budget)
to
int foo_poll(struct napi_struct *napi, int budget)
The caller is returned the number of RX packets processed (or
the number of "NAPI credits" consumed if you want to get
abstract). The callee no longer messes around bumping
dev->quota, *budget, etc. because that is all handled in the
caller upon return.
The napi_struct is to be embedded in the device driver private data
structures.
Furthermore, it is the driver's responsibility to disable all NAPI
instances in it's ->stop() device close handler. Since the
napi_struct is privatized into the driver's private data structures,
only the driver knows how to get at all of the napi_struct instances
it may have per-device.
With lots of help and suggestions from Rusty Russell, Roland Dreier,
Michael Chan, Jeff Garzik, and Jamal Hadi Salim.
Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra,
Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan.
[ Ported to current tree and all drivers converted. Integrated
Stephen's follow-on kerneldoc additions, and restored poll_list
handling to the old style to fix mutual exclusion issues. -DaveM ]
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
91 files changed, 1758 insertions, 2375 deletions
diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl index b886f52a9aa..e5da4f2b7c2 100644 --- a/Documentation/DocBook/kernel-api.tmpl +++ b/Documentation/DocBook/kernel-api.tmpl @@ -240,17 +240,23 @@ X!Ilib/string.c <sect1><title>Driver Support</title> !Enet/core/dev.c !Enet/ethernet/eth.c +!Enet/sched/sch_generic.c !Iinclude/linux/etherdevice.h +!Iinclude/linux/netdevice.h + </sect1> + <sect1><title>PHY Support</title> !Edrivers/net/phy/phy.c !Idrivers/net/phy/phy.c !Edrivers/net/phy/phy_device.c !Idrivers/net/phy/phy_device.c !Edrivers/net/phy/mdio_bus.c !Idrivers/net/phy/mdio_bus.c + </sect1> <!-- FIXME: Removed for now since no structured comments in source + <sect1><title>Wireless</title> X!Enet/core/wireless.c ---> </sect1> +--> <sect1><title>Synchronous PPP</title> !Edrivers/net/wan/syncppp.c </sect1> diff --git a/Documentation/networking/NAPI_HOWTO.txt b/Documentation/networking/NAPI_HOWTO.txt deleted file mode 100644 index 7907435a661..00000000000 --- a/Documentation/networking/NAPI_HOWTO.txt +++ /dev/null @@ -1,766 +0,0 @@ -HISTORY: -February 16/2002 -- revision 0.2.1: -COR typo corrected -February 10/2002 -- revision 0.2: -some spell checking ;-> -January 12/2002 -- revision 0.1 -This is still work in progress so may change. -To keep up to date please watch this space. - -Introduction to NAPI -==================== - -NAPI is a proven (www.cyberus.ca/~hadi/usenix-paper.tgz) technique -to improve network performance on Linux. For more details please -read that paper. -NAPI provides a "inherent mitigation" which is bound by system capacity -as can be seen from the following data collected by Robert on Gigabit -ethernet (e1000): - - Psize Ipps Tput Rxint Txint Done Ndone - --------------------------------------------------------------- - 60 890000 409362 17 27622 7 6823 - 128 758150 464364 21 9301 10 7738 - 256 445632 774646 42 15507 21 12906 - 512 232666 994445 241292 19147 241192 1062 - 1024 119061 1000003 872519 19258 872511 0 - 1440 85193 1000003 946576 19505 946569 0 - - -Legend: -"Ipps" stands for input packets per second. -"Tput" == packets out of total 1M that made it out. -"txint" == transmit completion interrupts seen -"Done" == The number of times that the poll() managed to pull all -packets out of the rx ring. Note from this that the lower the -load the more we could clean up the rxring -"Ndone" == is the converse of "Done". Note again, that the higher -the load the more times we couldn't clean up the rxring. - -Observe that: -when the NIC receives 890Kpackets/sec only 17 rx interrupts are generated. -The system cant handle the processing at 1 interrupt/packet at that load level. -At lower rates on the other hand, rx interrupts go up and therefore the -interrupt/packet ratio goes up (as observable from that table). So there is -possibility that under low enough input, you get one poll call for each -input packet caused by a single interrupt each time. And if the system -cant handle interrupt per packet ratio of 1, then it will just have to -chug along .... - - -0) Prerequisites: -================== -A driver MAY continue using the old 2.4 technique for interfacing -to the network stack and not benefit from the NAPI changes. -NAPI additions to the kernel do not break backward compatibility. -NAPI, however, requires the following features to be available: - -A) DMA ring or enough RAM to store packets in software devices. - -B) Ability to turn off interrupts or maybe events that send packets up -the stack. - -NAPI processes packet events in what is known as dev->poll() method. -Typically, only packet receive events are processed in dev->poll(). -The rest of the events MAY be processed by the regular interrupt handler -to reduce processing latency (justified also because there are not that -many of them). -Note, however, NAPI does not enforce that dev->poll() only processes -receive events. -Tests with the tulip driver indicated slightly increased latency if -all of the interrupt handler is moved to dev->poll(). Also MII handling -gets a little trickier. -The example used in this document is to move the receive processing only -to dev->poll(); this is shown with the patch for the tulip driver. -For an example of code that moves all the interrupt driver to -dev->poll() look at the ported e1000 code. - -There are caveats that might force you to go with moving everything to -dev->poll(). Different NICs work differently depending on their status/event -acknowledgement setup. -There are two types of event register ACK mechanisms. - I) what is known as Clear-on-read (COR). - when you read the status/event register, it clears everything! - The natsemi and sunbmac NICs are known to do this. - In this case your only choice is to move all to dev->poll() - - II) Clear-on-write (COW) - i) you clear the status by writing a 1 in the bit-location you want. - These are the majority of the NICs and work the best with NAPI. - Put only receive events in dev->poll(); leave the rest in - the old interrupt handler. - ii) whatever you write in the status register clears every thing ;-> - Cant seem to find any supported by Linux which do this. If - someone knows such a chip email us please. - Move all to dev->poll() - -C) Ability to detect new work correctly. -NAPI works by shutting down event interrupts when there's work and -turning them on when there's none. -New packets might show up in the small window while interrupts were being -re-enabled (refer to appendix 2). A packet might sneak in during the period -we are enabling interrupts. We only get to know about such a packet when the -next new packet arrives and generates an interrupt. -Essentially, there is a small window of opportunity for a race condition -which for clarity we'll refer to as the "rotting packet". - -This is a very important topic and appendix 2 is dedicated for more -discussion. - -Locking rules and environmental guarantees -========================================== - --Guarantee: Only one CPU at any time can call dev->poll(); this is because -only one CPU can pick the initial interrupt and hence the initial -netif_rx_schedule(dev); -- The core layer invokes devices to send packets in a round robin format. -This implies receive is totally lockless because of the guarantee that only -one CPU is executing it. -- contention can only be the result of some other CPU accessing the rx -ring. This happens only in close() and suspend() (when these methods -try to clean the rx ring); -****guarantee: driver authors need not worry about this; synchronization -is taken care for them by the top net layer. --local interrupts are enabled (if you dont move all to dev->poll()). For -example link/MII and txcomplete continue functioning just same old way. -This improves the latency of processing these events. It is also assumed that -the receive interrupt is the largest cause of noise. Note this might not -always be true. -[according to Manfred Spraul, the winbond insists on sending one -txmitcomplete interrupt for each packet (although this can be mitigated)]. -For these broken drivers, move all to dev->poll(). - -For the rest of this text, we'll assume that dev->poll() only -processes receive events. - -new methods introduce by NAPI -============================= - -a) netif_rx_schedule(dev) -Called by an IRQ handler to schedule a poll for device - -b) netif_rx_schedule_prep(dev) -puts the device in a state which allows for it to be added to the -CPU polling list if it is up and running. You can look at this as -the first half of netif_rx_schedule(dev) above; the second half -being c) below. - -c) __netif_rx_schedule(dev) -Add device to the poll list for this CPU; assuming that _prep above -has already been called and returned 1. - -d) netif_rx_reschedule(dev, undo) -Called to reschedule polling for device specifically for some -deficient hardware. Read Appendix 2 for more details. - -e) netif_rx_complete(dev) - -Remove interface from the CPU poll list: it must be in the poll list -on current cpu. This primitive is called by dev->poll(), when -it completes its work. The device cannot be out of poll list at this -call, if it is then clearly it is a BUG(). You'll know ;-> - -All of the above methods are used below, so keep reading for clarity. - -Device driver changes to be made when porting NAPI -================================================== - -Below we describe what kind of changes are required for NAPI to work. - -1) introduction of dev->poll() method -===================================== - -This is the method that is invoked by the network core when it requests -for new packets from the driver. A driver is allowed to send upto -dev->quota packets by the current CPU before yielding to the network -subsystem (so other devices can also get opportunity to send to the stack). - -dev->poll() prototype looks as follows: -int my_poll(struct net_device *dev, int *budget) - -budget is the remaining number of packets the network subsystem on the -current CPU can send up the stack before yielding to other system tasks. -*Each driver is responsible for decrementing budget by the total number of -packets sent. - Total number of packets cannot exceed dev->quota. - -dev->poll() method is invoked by the top layer, the driver just sends if it -can to the stack the packet quantity requested. - -more on dev->poll() below after the interrupt changes are explained. - -2) registering dev->poll() method -=================================== - -dev->poll should be set in the dev->probe() method. -e.g: -dev->open = my_open; -. -. -/* two new additions */ -/* first register my poll method */ -dev->poll = my_poll; -/* next register my weight/quanta; can be overridden in /proc */ -dev->weight = 16; -. -. -dev->stop = my_close; - - - -3) scheduling dev->poll() -============================= -This involves modifying the interrupt handler and the code -path which takes the packet off the NIC and sends them to the -stack. - -it's important at this point to introduce the classical D Becker -interrupt processor: - ------------------- -static irqreturn_t -netdevice_interrupt(int irq, void *dev_id, struct pt_regs *regs) -{ - - struct net_device *dev = (struct net_device *)dev_instance; - struct my_private *tp = (struct my_private *)dev->priv; - - int work_count = my_work_count; - status = read_interrupt_status_reg(); - if (status == 0) - return IRQ_NONE; /* Shared IRQ: not us */ - if (status == 0xffff) - return IRQ_HANDLED; /* Hot unplug */ - if (status & error) - do_some_error_handling() - - do { - acknowledge_ints_ASAP(); - - if (status & link_interrupt) { - spin_lock(&tp->link_lock); - do_some_link_stat_stuff(); - spin_lock(&tp->link_lock); - } - - if (status & rx_interrupt) { - receive_packets(dev); - } - - if (status & rx_nobufs) { - make_rx_buffs_avail(); - } - - if (status & tx_related) { - spin_lock(&tp->lock); - tx_ring_free(dev); - if (tx_died) - restart_tx(); - spin_unlock(&tp->lock); - } - - status = read_interrupt_status_reg(); - - } while (!(status & error) || more_work_to_be_done); - return IRQ_HANDLED; -} - ----------------------------------------------------------------------- - -We now change this to what is shown below to NAPI-enable it: - ----------------------------------------------------------------------- -static irqreturn_t -netdevice_interrupt(int irq, void *dev_id, struct pt_regs *regs) -{ - struct net_device *dev = (struct net_device *)dev_instance; - struct my_private *tp = (struct my_private *)dev->priv; - - status = read_interrupt_status_reg(); - if (status == 0) - return IRQ_NONE; /* Shared IRQ: not us */ - if (status == 0xffff) - return IRQ_HANDLED; /* Hot unplug */ - if (status & error) - do_some_error_handling(); - |