1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
|
/*
This file is part of GNUnet
Copyright (C) 2014,2016 GNUnet e.V.
GNUnet is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 3, or (at your option) any later version.
GNUnet is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
GNUnet; see the file COPYING. If not, If not, see <http://www.gnu.org/licenses/>
*/
/**
* @file util/crypto_rsa.c
* @brief Chaum-style Blind signatures based on RSA
* @author Sree Harsha Totakura <sreeharsha@totakura.in>
* @author Christian Grothoff
* @author Jeffrey Burdges <burdges@gnunet.org>
*/
#include "platform.h"
#include <gcrypt.h>
#include "gnunet_crypto_lib.h"
#define LOG(kind,...) GNUNET_log_from (kind, "util", __VA_ARGS__)
/**
* The private information of an RSA key pair.
*/
struct GNUNET_CRYPTO_RsaPrivateKey
{
/**
* Libgcrypt S-expression for the RSA private key.
*/
gcry_sexp_t sexp;
};
/**
* The public information of an RSA key pair.
*/
struct GNUNET_CRYPTO_RsaPublicKey
{
/**
* Libgcrypt S-expression for the RSA public key.
*/
gcry_sexp_t sexp;
};
/**
* @brief an RSA signature
*/
struct GNUNET_CRYPTO_RsaSignature
{
/**
* Libgcrypt S-expression for the RSA signature.
*/
gcry_sexp_t sexp;
};
/**
* @brief RSA blinding key
*/
struct RsaBlindingKey
{
/**
* Random value used for blinding.
*/
gcry_mpi_t r;
};
/**
* Extract values from an S-expression.
*
* @param array where to store the result(s)
* @param sexp S-expression to parse
* @param topname top-level name in the S-expression that is of interest
* @param elems names of the elements to extract
* @return 0 on success
*/
static int
key_from_sexp (gcry_mpi_t *array,
gcry_sexp_t sexp,
const char *topname,
const char *elems)
{
gcry_sexp_t list;
gcry_sexp_t l2;
const char *s;
unsigned int i;
unsigned int idx;
if (! (list = gcry_sexp_find_token (sexp, topname, 0)))
return 1;
l2 = gcry_sexp_cadr (list);
gcry_sexp_release (list);
list = l2;
if (! list)
return 2;
idx = 0;
for (s = elems; *s; s++, idx++)
{
if (! (l2 = gcry_sexp_find_token (list, s, 1)))
{
for (i = 0; i < idx; i++)
{
gcry_free (array[i]);
array[i] = NULL;
}
gcry_sexp_release (list);
return 3; /* required parameter not found */
}
array[idx] = gcry_sexp_nth_mpi (l2, 1, GCRYMPI_FMT_USG);
gcry_sexp_release (l2);
if (! array[idx])
{
for (i = 0; i < idx; i++)
{
gcry_free (array[i]);
array[i] = NULL;
}
gcry_sexp_release (list);
return 4; /* required parameter is invalid */
}
}
gcry_sexp_release (list);
return 0;
}
/**
* Create a new private key. Caller must free return value.
*
* @param len length of the key in bits (i.e. 2048)
* @return fresh private key
*/
struct GNUNET_CRYPTO_RsaPrivateKey *
GNUNET_CRYPTO_rsa_private_key_create (unsigned int len)
{
struct GNUNET_CRYPTO_RsaPrivateKey *ret;
gcry_sexp_t s_key;
gcry_sexp_t s_keyparam;
GNUNET_assert (0 ==
gcry_sexp_build (&s_keyparam,
NULL,
"(genkey(rsa(nbits %d)))",
len));
GNUNET_assert (0 ==
gcry_pk_genkey (&s_key,
s_keyparam));
gcry_sexp_release (s_keyparam);
#if EXTRA_CHECKS
GNUNET_assert (0 ==
gcry_pk_testkey (s_key));
#endif
ret = GNUNET_new (struct GNUNET_CRYPTO_RsaPrivateKey);
ret->sexp = s_key;
return ret;
}
/**
* Free memory occupied by the private key.
*
* @param key pointer to the memory to free
*/
void
GNUNET_CRYPTO_rsa_private_key_free (struct GNUNET_CRYPTO_RsaPrivateKey *key)
{
gcry_sexp_release (key->sexp);
GNUNET_free (key);
}
/**
* Encode the private key in a format suitable for
* storing it into a file.
*
* @param key the private key
* @param[out] buffer set to a buffer with the encoded key
* @return size of memory allocated in @a buffer
*/
size_t
GNUNET_CRYPTO_rsa_private_key_encode (const struct GNUNET_CRYPTO_RsaPrivateKey *key,
char **buffer)
{
size_t n;
char *b;
n = gcry_sexp_sprint (key->sexp,
GCRYSEXP_FMT_DEFAULT,
NULL,
0);
b = GNUNET_malloc (n);
GNUNET_assert ((n - 1) == /* since the last byte is \0 */
gcry_sexp_sprint (key->sexp,
GCRYSEXP_FMT_DEFAULT,
b,
n));
*buffer = b;
return n;
}
/**
* Decode the private key from the data-format back
* to the "normal", internal format.
*
* @param buf the buffer where the private key data is stored
* @param len the length of the data in @a buf
* @return NULL on error
*/
struct GNUNET_CRYPTO_RsaPrivateKey *
GNUNET_CRYPTO_rsa_private_key_decode (const char *buf,
size_t len)
{
struct GNUNET_CRYPTO_RsaPrivateKey *key;
key = GNUNET_new (struct GNUNET_CRYPTO_RsaPrivateKey);
if (0 !=
gcry_sexp_new (&key->sexp,
buf,
len,
0))
{
LOG (GNUNET_ERROR_TYPE_WARNING,
"Decoded private key is not valid\n");
GNUNET_free (key);
return NULL;
}
if (0 != gcry_pk_testkey (key->sexp))
{
LOG (GNUNET_ERROR_TYPE_WARNING,
"Decoded private key is not valid\n");
GNUNET_CRYPTO_rsa_private_key_free (key);
return NULL;
}
return key;
}
/**
* Extract the public key of the given private key.
*
* @param priv the private key
* @retur NULL on error, otherwise the public key
*/
struct GNUNET_CRYPTO_RsaPublicKey *
GNUNET_CRYPTO_rsa_private_key_get_public (const struct GNUNET_CRYPTO_RsaPrivateKey *priv)
{
struct GNUNET_CRYPTO_RsaPublicKey *pub;
gcry_mpi_t ne[2];
int rc;
gcry_sexp_t result;
rc = key_from_sexp (ne, priv->sexp, "public-key", "ne");
if (0 != rc)
rc = key_from_sexp (ne, priv->sexp, "private-key", "ne");
if (0 != rc)
rc = key_from_sexp (ne, priv->sexp, "rsa", "ne");
if (0 != rc)
{
GNUNET_break_op (0);
return NULL;
}
rc = gcry_sexp_build (&result,
NULL,
"(public-key(rsa(n %m)(e %m)))",
ne[0],
ne[1]);
gcry_mpi_release (ne[0]);
gcry_mpi_release (ne[1]);
pub = GNUNET_new (struct GNUNET_CRYPTO_RsaPublicKey);
pub->sexp = result;
return pub;
}
/**
* Free memory occupied by the public key.
*
* @param key pointer to the memory to free
*/
void
GNUNET_CRYPTO_rsa_public_key_free (struct GNUNET_CRYPTO_RsaPublicKey *key)
{
gcry_sexp_release (key->sexp);
GNUNET_free (key);
}
/**
* Encode the public key in a format suitable for
* storing it into a file.
*
* @param key the private key
* @param[out] buffer set to a buffer with the encoded key
* @return size of memory allocated in @a buffer
*/
size_t
GNUNET_CRYPTO_rsa_public_key_encode (const struct GNUNET_CRYPTO_RsaPublicKey *key,
char **buffer)
{
size_t n;
char *b;
n = gcry_sexp_sprint (key->sexp,
GCRYSEXP_FMT_ADVANCED,
NULL,
0);
b = GNUNET_malloc (n);
GNUNET_assert ((n -1) == /* since the last byte is \0 */
gcry_sexp_sprint (key->sexp,
GCRYSEXP_FMT_ADVANCED,
b,
n));
*buffer = b;
return n;
}
/**
* Compute hash over the public key.
*
* @param key public key to hash
* @param hc where to store the hash code
*/
void
GNUNET_CRYPTO_rsa_public_key_hash (const struct GNUNET_CRYPTO_RsaPublicKey *key,
struct GNUNET_HashCode *hc)
{
char *buf;
size_t buf_size;
buf_size = GNUNET_CRYPTO_rsa_public_key_encode (key,
&buf);
GNUNET_CRYPTO_hash (buf,
buf_size,
hc);
GNUNET_free (buf);
}
/**
* Decode the public key from the data-format back
* to the "normal", internal format.
*
* @param buf the buffer where the public key data is stored
* @param len the length of the data in @a buf
* @return NULL on error
*/
struct GNUNET_CRYPTO_RsaPublicKey *
GNUNET_CRYPTO_rsa_public_key_decode (const char *buf,
size_t len)
{
struct GNUNET_CRYPTO_RsaPublicKey *key;
gcry_mpi_t n;
int ret;
key = GNUNET_new (struct GNUNET_CRYPTO_RsaPublicKey);
if (0 !=
gcry_sexp_new (&key->sexp,
buf,
len,
0))
{
GNUNET_break_op (0);
GNUNET_free (key);
return NULL;
}
/* verify that this is an RSA public key */
ret = key_from_sexp (&n, key->sexp, "public-key", "n");
if (0 != ret)
ret = key_from_sexp (&n, key->sexp, "rsa", "n");
if (0 != ret)
{
/* this is no public RSA key */
GNUNET_break (0);
gcry_sexp_release (key->sexp);
GNUNET_free (key);
return NULL;
}
gcry_mpi_release (n);
return key;
}
/**
* Test for malicious RSA key.
*
* Assuming n is an RSA modulous and r is generated using a call to
* GNUNET_CRYPTO_kdf_mod_mpi, if gcd(r,n) != 1 then n must be a
* malicious RSA key designed to deanomize the user.
*
* @param r KDF result
* @param n RSA modulus
* @return Asserts gcd(r,n) = 1
*/
static int
rsa_gcd_validate(gcry_mpi_t r, gcry_mpi_t n)
{
gcry_mpi_t g;
int t;
g = gcry_mpi_new (0);
t = gcry_mpi_gcd(g,r,n);
gcry_mpi_release (g);
GNUNET_assert( t );
return t;
}
/**
* Create a blinding key
*
* @param len length of the key in bits (i.e. 2048)
* @param bks pre-secret to use to derive the blinding key
* @return the newly created blinding key
*/
static struct RsaBlindingKey *
rsa_blinding_key_derive (const struct GNUNET_CRYPTO_RsaPublicKey *pkey,
const struct GNUNET_CRYPTO_RsaBlindingKeySecret *bks)
{
char *xts = "Blinding KDF extrator HMAC key"; /* Trusts bks' randomness more */
struct RsaBlindingKey *blind;
gcry_mpi_t n;
blind = GNUNET_new (struct RsaBlindingKey);
/* Extract the composite n from the RSA public key */
GNUNET_assert( 0 == key_from_sexp (&n, pkey->sexp, "rsa", "n") );
GNUNET_assert( 0 == gcry_mpi_get_flag(n, GCRYMPI_FLAG_OPAQUE) );
GNUNET_CRYPTO_kdf_mod_mpi (&blind->r,
n,
xts, strlen(xts),
bks, sizeof(*bks),
"Blinding KDF");
rsa_gcd_validate(blind->r,n);
gcry_mpi_release (n);
return blind;
}
/*
We originally added GNUNET_CRYPTO_kdf_mod_mpi for the benifit of the
previous routine.
There was previously a call to GNUNET_CRYPTO_kdf in
bkey = rsa_blinding_key_derive (len, bks);
that gives exactly len bits where
len = GNUNET_CRYPTO_rsa_public_key_len (pkey);
Now r = 2^(len-1)/pkey.n is the probability that a set high bit being
okay, meaning bkey < pkey.n. It follows that (1-r)/2 of the time bkey >
pkey.n making the effective bkey be
bkey mod pkey.n = bkey - pkey.n
so the effective bkey has its high bit set with probability r/2.
We expect r to be close to 1/2 if the exchange is honest, but the
exchange can choose r otherwise.
In blind signing, the exchange sees
B = bkey * S mod pkey.n
On deposit, the exchange sees S so they can compute bkey' = B/S mod
pkey.n for all B they recorded to see if bkey' has it's high bit set.
Also, note the exchange can compute 1/S efficiently since they know the
factors of pkey.n.
I suppose that happens with probability r/(1+r) if its the wrong B, not
completely sure. If otoh we've the right B, then we've the probability
r/2 of a set high bit in the effective bkey.
Interestingly, r^2-r has a maximum at the default r=1/2 anyways, giving
the wrong and right probabilities 1/3 and 1/4, respectively.
I feared this gives the exchange a meaningful fraction of a bit of
information per coin involved in the transaction. It sounds damaging if
numerous coins were involved. And it could run across transactions in
some scenarios.
We fixed this by using a more uniform deterministic pseudo-random number
generator for blinding factors. I do not believe this to be a problem
for the rsa_full_domain_hash routine, but better safe than sorry.
*/
/**
* Compare the values of two signatures.
*
* @param s1 one signature
* @param s2 the other signature
* @return 0 if the two are equal
*/
int
GNUNET_CRYPTO_rsa_signature_cmp (struct GNUNET_CRYPTO_RsaSignature *s1,
struct GNUNET_CRYPTO_RsaSignature *s2)
{
char *b1;
char *b2;
size_t z1;
size_t z2;
int ret;
z1 = GNUNET_CRYPTO_rsa_signature_encode (s1,
&b1);
z2 = GNUNET_CRYPTO_rsa_signature_encode (s2,
&b2);
if (z1 != z2)
ret = 1;
else
ret = memcmp (b1,
b2,
z1);
GNUNET_free (b1);
GNUNET_free (b2);
return ret;
}
/**
* Compare the values of two public keys.
*
* @param p1 one public key
* @param p2 the other public key
* @return 0 if the two are equal
*/
int
GNUNET_CRYPTO_rsa_public_key_cmp (struct GNUNET_CRYPTO_RsaPublicKey *p1,
struct GNUNET_CRYPTO_RsaPublicKey *p2)
{
char *b1;
char *b2;
size_t z1;
size_t z2;
int ret;
z1 = GNUNET_CRYPTO_rsa_public_key_encode (p1,
&b1);
z2 = GNUNET_CRYPTO_rsa_public_key_encode (p2,
&b2);
if (z1 != z2)
ret = 1;
else
ret = memcmp (b1,
b2,
z1);
GNUNET_free (b1);
GNUNET_free (b2);
return ret;
}
/**
* Compare the values of two private keys.
*
* @param p1 one private key
* @param p2 the other private key
* @return 0 if the two are equal
*/
int
GNUNET_CRYPTO_rsa_private_key_cmp (struct GNUNET_CRYPTO_RsaPrivateKey *p1,
struct GNUNET_CRYPTO_RsaPrivateKey *p2)
{
char *b1;
char *b2;
size_t z1;
size_t z2;
int ret;
z1 = GNUNET_CRYPTO_rsa_private_key_encode (p1,
&b1);
z2 = GNUNET_CRYPTO_rsa_private_key_encode (p2,
&b2);
if (z1 != z2)
ret = 1;
else
ret = memcmp (b1,
b2,
z1);
GNUNET_free (b1);
GNUNET_free (b2);
return ret;
}
/**
* Obtain the length of the RSA key in bits.
*
* @param key the public key to introspect
* @return length of the key in bits
*/
unsigned int
GNUNET_CRYPTO_rsa_public_key_len (const struct GNUNET_CRYPTO_RsaPublicKey *key)
{
gcry_mpi_t n;
unsigned int rval;
if (0 != key_from_sexp (&n, key->sexp, "rsa", "n"))
{ /* Not an RSA public key */
GNUNET_break (0);
return 0;
}
rval = gcry_mpi_get_nbits (n);
gcry_mpi_release (n);
return rval;
}
/**
* Destroy a blinding key
*
* @param bkey the blinding key to destroy
*/
static void
rsa_blinding_key_free (struct RsaBlindingKey *bkey)
{
gcry_mpi_release (bkey->r);
GNUNET_free (bkey);
}
/**
* Print an MPI to a newly created buffer
*
* @param v MPI to print.
* @param[out] newly allocated buffer containing the result
* @return number of bytes stored in @a buffer
*/
static size_t
numeric_mpi_alloc_n_print (gcry_mpi_t v,
char **buffer)
{
size_t n;
char *b;
size_t rsize;
gcry_mpi_print (GCRYMPI_FMT_USG,
NULL,
0,
&n,
v);
b = GNUNET_malloc (n);
GNUNET_assert (0 ==
gcry_mpi_print (GCRYMPI_FMT_USG,
(unsigned char *) b,
n,
&rsize,
v));
*buffer = b;
return n;
}
/**
* Computes a full domain hash seeded by the given public key.
* This gives a measure of provable security to the Taler exchange
* against one-more forgery attacks. See:
* https://eprint.iacr.org/2001/002.pdf
* http://www.di.ens.fr/~pointche/Documents/Papers/2001_fcA.pdf
*
* @param[out] r MPI value set to the FDH
* @param hash initial hash of the message to sign
* @param pkey the public key of the signer
* @param rsize If not NULL, the number of bytes actually stored in buffer
*/
static void
rsa_full_domain_hash (gcry_mpi_t *r,
const struct GNUNET_HashCode *hash,
const struct GNUNET_CRYPTO_RsaPublicKey *pkey)
{
gcry_mpi_t n;
char *xts;
size_t xts_len;
/* Extract the composite n from the RSA public key */
GNUNET_assert( 0 == key_from_sexp (&n, pkey->sexp, "rsa", "n") );
GNUNET_assert( 0 == gcry_mpi_get_flag(n, GCRYMPI_FLAG_OPAQUE) );
/* We key with the public denomination key as a homage to RSA-PSS by *
* Mihir Bellare and Phillip Rogaway. Doing this lowers the degree *
* of the hypothetical polyomial-time attack on RSA-KTI created by a *
* polynomial-time one-more forgary attack. Yey seeding! */
xts_len = GNUNET_CRYPTO_rsa_public_key_encode (pkey, &xts);
GNUNET_CRYPTO_kdf_mod_mpi (r,
n,
xts, xts_len,
hash, sizeof(*hash),
"RSA-FDA FTpsW!");
GNUNET_free (xts);
rsa_gcd_validate(*r,n);
gcry_mpi_release (n);
}
/**
* Blinds the given message with the given blinding key
*
* @param hash hash of the message to sign
* @param bkey the blinding key
* @param pkey the public key of the signer
* @param[out] buffer set to a buffer with the blinded message to be signed
* @return number of bytes stored in @a buffer
*/
size_t
GNUNET_CRYPTO_rsa_blind (const struct GNUNET_HashCode *hash,
const struct GNUNET_CRYPTO_RsaBlindingKeySecret *bks,
struct GNUNET_CRYPTO_RsaPublicKey *pkey,
char **buffer)
{
struct RsaBlindingKey *bkey;
gcry_mpi_t data;
gcry_mpi_t ne[2];
gcry_mpi_t r_e;
gcry_mpi_t data_r_e;
size_t n;
int ret;
ret = key_from_sexp (ne, pkey->sexp, "public-key", "ne");
if (0 != ret)
ret = key_from_sexp (ne, pkey->sexp, "rsa", "ne");
if (0 != ret)
{
GNUNET_break (0);
*buffer = NULL;
return 0;
}
rsa_full_domain_hash (&data, hash, pkey);
bkey = rsa_blinding_key_derive (pkey,
bks);
r_e = gcry_mpi_new (0);
gcry_mpi_powm (r_e,
bkey->r,
ne[1],
ne[0]);
data_r_e = gcry_mpi_new (0);
gcry_mpi_mulm (data_r_e,
data,
r_e,
ne[0]);
gcry_mpi_release (data);
gcry_mpi_release (ne[0]);
gcry_mpi_release (ne[1]);
gcry_mpi_release (r_e);
rsa_blinding_key_free (bkey);
n = numeric_mpi_alloc_n_print (data_r_e, buffer);
gcry_mpi_release (data_r_e);
return n;
}
/**
* Convert an MPI to an S-expression suitable for signature operations.
*
* @param value pointer to the data to convert
* @return converted s-expression
*/
static gcry_sexp_t
mpi_to_sexp (gcry_mpi_t value)
{
gcry_sexp_t data = NULL;
GNUNET_assert (0 ==
gcry_sexp_build (&data,
NULL,
"(data (flags raw) (value %M))",
value));
return data;
}
/**
* Sign the given MPI.
*
* @param key private key to use for the signing
* @param value the MPI to sign
* @return NULL on error, signature on success
*/
static struct GNUNET_CRYPTO_RsaSignature *
rsa_sign_mpi (const struct GNUNET_CRYPTO_RsaPrivateKey *key,
gcry_mpi_t value)
{
struct GNUNET_CRYPTO_RsaSignature *sig;
struct GNUNET_CRYPTO_RsaPublicKey *public_key;
gcry_sexp_t data;
gcry_sexp_t result;
int rc;
data = mpi_to_sexp (value);
if (0 !=
(rc = gcry_pk_sign (&result,
data,
key->sexp)))
{
LOG (GNUNET_ERROR_TYPE_WARNING,
_("RSA signing failed at %s:%d: %s\n"),
__FILE__,
__LINE__,
gcry_strerror (rc));
GNUNET_break (0);
return NULL;
}
/* verify signature (guards against Lenstra's attack with fault injection...) */
public_key = GNUNET_CRYPTO_rsa_private_key_get_public (key);
if (0 !=
gcry_pk_verify (result,
data,
public_key->sexp))
{
GNUNET_break (0);
GNUNET_CRYPTO_rsa_public_key_free (public_key);
gcry_sexp_release (data);
gcry_sexp_release (result);
return NULL;
}
GNUNET_CRYPTO_rsa_public_key_free (public_key);
/* return signature */
gcry_sexp_release (data);
sig = GNUNET_new (struct GNUNET_CRYPTO_RsaSignature);
sig->sexp = result;
return sig;
}
/**
* Sign a blinded value, which must be a full domain hash of a message.
*
* @param key private key to use for the signing
* @param msg the message to sign
* @param msg_len number of bytes in @a msg to sign
* @return NULL on error, signature on success
*/
struct GNUNET_CRYPTO_RsaSignature *
GNUNET_CRYPTO_rsa_sign_blinded (const struct GNUNET_CRYPTO_RsaPrivateKey *key,
const void *msg,
size_t msg_len)
{
gcry_mpi_t v = NULL;
struct GNUNET_CRYPTO_RsaSignature *sig;
GNUNET_assert (0 ==
gcry_mpi_scan (&v,
GCRYMPI_FMT_USG,
msg,
msg_len,
NULL));
sig = rsa_sign_mpi (key, v);
gcry_mpi_release (v);
return sig;
}
/**
* Create and sign a full domain hash of a message.
*
* @param key private key to use for the signing
* @param hash the hash of the message to sign
* @return NULL on error, signature on success
*/
struct GNUNET_CRYPTO_RsaSignature *
GNUNET_CRYPTO_rsa_sign_fdh (const struct GNUNET_CRYPTO_RsaPrivateKey *key,
const struct GNUNET_HashCode *hash)
{
struct GNUNET_CRYPTO_RsaPublicKey *pkey;
gcry_mpi_t v = NULL;
struct GNUNET_CRYPTO_RsaSignature *sig;
pkey = GNUNET_CRYPTO_rsa_private_key_get_public (key);
rsa_full_domain_hash (&v, hash, pkey);
GNUNET_CRYPTO_rsa_public_key_free (pkey);
sig = rsa_sign_mpi (key, v);
gcry_mpi_release (v);
return sig;
}
/**
* Free memory occupied by signature.
*
* @param sig memory to freee
*/
void
GNUNET_CRYPTO_rsa_signature_free (struct GNUNET_CRYPTO_RsaSignature *sig)
{
gcry_sexp_release (sig->sexp);
GNUNET_free (sig);
}
/**
* Encode the given signature in a format suitable for storing it into a file.
*
* @param sig the signature
* @param[out] buffer set to a buffer with the encoded key
* @return size of memory allocated in @a buffer
*/
size_t
GNUNET_CRYPTO_rsa_signature_encode (const struct GNUNET_CRYPTO_RsaSignature *sig,
char **buffer)
{
size_t n;
char *b;
n = gcry_sexp_sprint (sig->sexp,
GCRYSEXP_FMT_ADVANCED,
NULL,
0);
b = GNUNET_malloc (n);
GNUNET_assert ((n - 1) == /* since the last byte is \0 */
gcry_sexp_sprint (sig->sexp,
GCRYSEXP_FMT_ADVANCED,
b,
n));
*buffer = b;
return n;
}
/**
* Decode the signature from the data-format back to the "normal", internal
* format.
*
* @param buf the buffer where the public key data is stored
* @param len the length of the data in @a buf
* @return NULL on error
*/
struct GNUNET_CRYPTO_RsaSignature *
GNUNET_CRYPTO_rsa_signature_decode (const char *buf,
size_t len)
{
struct GNUNET_CRYPTO_RsaSignature *sig;
int ret;
gcry_mpi_t s;
sig = GNUNET_new (struct GNUNET_CRYPTO_RsaSignature);
if (0 !=
gcry_sexp_new (&sig->sexp,
buf,
len,
0))
{
GNUNET_break_op (0);
GNUNET_free (sig);
return NULL;
}
/* verify that this is an RSA signature */
ret = key_from_sexp (&s, sig->sexp, "sig-val", "s");
if (0 != ret)
ret = key_from_sexp (&s, sig->sexp, "rsa", "s");
if (0 != ret)
{
/* this is no RSA Signature */
GNUNET_break_op (0);
gcry_sexp_release (sig->sexp);
GNUNET_free (sig);
return NULL;
}
gcry_mpi_release (s);
return sig;
}
/**
* Duplicate the given public key
*
* @param key the public key to duplicate
* @return the duplicate key; NULL upon error
*/
struct GNUNET_CRYPTO_RsaPublicKey *
GNUNET_CRYPTO_rsa_public_key_dup (const struct GNUNET_CRYPTO_RsaPublicKey *key)
{
struct GNUNET_CRYPTO_RsaPublicKey *dup;
gcry_sexp_t dup_sexp;
size_t erroff;
/* check if we really are exporting a public key */
dup_sexp = gcry_sexp_find_token (key->sexp, "public-key", 0);
GNUNET_assert (NULL != dup_sexp);
gcry_sexp_release (dup_sexp);
/* copy the sexp */
GNUNET_assert (0 == gcry_sexp_build (&dup_sexp, &erroff, "%S", key->sexp));
dup = GNUNET_new (struct GNUNET_CRYPTO_RsaPublicKey);
dup->sexp = dup_sexp;
return dup;
}
/**
* Unblind a blind-signed signature. The signature should have been generated
* with #GNUNET_CRYPTO_rsa_sign() using a hash that was blinded with
* #GNUNET_CRYPTO_rsa_blind().
*
* @param sig the signature made on the blinded signature purpose
* @param bks the blinding key secret used to blind the signature purpose
* @param pkey the public key of the signer
* @return unblinded signature on success, NULL on error
*/
struct GNUNET_CRYPTO_RsaSignature *
GNUNET_CRYPTO_rsa_unblind (struct GNUNET_CRYPTO_RsaSignature *sig,
const struct GNUNET_CRYPTO_RsaBlindingKeySecret *bks,
struct GNUNET_CRYPTO_RsaPublicKey *pkey)
{
struct RsaBlindingKey *bkey;
gcry_mpi_t n;
gcry_mpi_t s;
gcry_mpi_t r_inv;
gcry_mpi_t ubsig;
int ret;
struct GNUNET_CRYPTO_RsaSignature *sret;
ret = key_from_sexp (&n, pkey->sexp, "public-key", "n");
if (0 != ret)
ret = key_from_sexp (&n, pkey->sexp, "rsa", "n");
if (0 != ret)
{
GNUNET_break_op (0);
return NULL;
}
ret = key_from_sexp (&s, sig->sexp, "sig-val", "s");
if (0 != ret)
ret = key_from_sexp (&s, sig->sexp, "rsa", "s");
if (0 != ret)
{
gcry_mpi_release (n);
GNUNET_break_op (0);
return NULL;
}
bkey = rsa_blinding_key_derive (pkey,
bks);
r_inv = gcry_mpi_new (0);
if (1 !=
gcry_mpi_invm (r_inv,
bkey->r,
n))
{
GNUNET_break_op (0);
gcry_mpi_release (n);
gcry_mpi_release (r_inv);
gcry_mpi_release (s);
rsa_blinding_key_free (bkey);
return NULL;
}
ubsig = gcry_mpi_new (0);
gcry_mpi_mulm (ubsig, s, r_inv, n);
gcry_mpi_release (n);
gcry_mpi_release (r_inv);
gcry_mpi_release (s);
rsa_blinding_key_free (bkey);
sret = GNUNET_new (struct GNUNET_CRYPTO_RsaSignature);
GNUNET_assert (0 ==
gcry_sexp_build (&sret->sexp,
NULL,
"(sig-val (rsa (s %M)))",
ubsig));
gcry_mpi_release (ubsig);
return sret;
}
/**
* Verify whether the given hash corresponds to the given signature and the
* signature is valid with respect to the given public key.
*
* @param hash hash of the message to verify to match the @a sig
* @param sig signature that is being validated
* @param pkey public key of the signer
* @returns #GNUNET_OK if ok, #GNUNET_SYSERR if invalid
*/
int
GNUNET_CRYPTO_rsa_verify (const struct GNUNET_HashCode *hash,
const struct GNUNET_CRYPTO_RsaSignature *sig,
const struct GNUNET_CRYPTO_RsaPublicKey *pkey)
{
gcry_sexp_t data;
gcry_mpi_t r;
int rc;
rsa_full_domain_hash (&r, hash, pkey);
data = mpi_to_sexp(r);
gcry_mpi_release (r);
rc = gcry_pk_verify (sig->sexp,
data,
pkey->sexp);
gcry_sexp_release (data);
if (0 != rc)
{
LOG (GNUNET_ERROR_TYPE_WARNING,
_("RSA signature verification failed at %s:%d: %s\n"),
__FILE__,
__LINE__,
gcry_strerror (rc));
return GNUNET_SYSERR;
}
return GNUNET_OK;
}
/**
* Duplicate the given private key
*
* @param key the private key to duplicate
* @return the duplicate key; NULL upon error
*/
struct GNUNET_CRYPTO_RsaPrivateKey *
GNUNET_CRYPTO_rsa_private_key_dup (const struct GNUNET_CRYPTO_RsaPrivateKey *key)
{
struct GNUNET_CRYPTO_RsaPrivateKey *dup;
gcry_sexp_t dup_sexp;
size_t erroff;
/* check if we really are exporting a private key */
dup_sexp = gcry_sexp_find_token (key->sexp, "private-key", 0);
GNUNET_assert (NULL != dup_sexp);
gcry_sexp_release (dup_sexp);
/* copy the sexp */
GNUNET_assert (0 == gcry_sexp_build (&dup_sexp, &erroff, "%S", key->sexp));
dup = GNUNET_new (struct GNUNET_CRYPTO_RsaPrivateKey);
dup->sexp = dup_sexp;
return dup;
}
/**
* Duplicate the given private key
*
* @param key the private key to duplicate
* @return the duplicate key; NULL upon error
*/
struct GNUNET_CRYPTO_RsaSignature *
GNUNET_CRYPTO_rsa_signature_dup (const struct GNUNET_CRYPTO_RsaSignature *sig)
{
struct GNUNET_CRYPTO_RsaSignature *dup;
gcry_sexp_t dup_sexp;
size_t erroff;
gcry_mpi_t s;
int ret;
/* verify that this is an RSA signature */
ret = key_from_sexp (&s, sig->sexp, "sig-val", "s");
if (0 != ret)
ret = key_from_sexp (&s, sig->sexp, "rsa", "s");
GNUNET_assert (0 == ret);
gcry_mpi_release (s);
/* copy the sexp */
GNUNET_assert (0 == gcry_sexp_build (&dup_sexp, &erroff, "%S", sig->sexp));
dup = GNUNET_new (struct GNUNET_CRYPTO_RsaSignature);
dup->sexp = dup_sexp;
return dup;
}
/* end of util/rsa.c */
|