/*
This file is part of GNUnet.
Copyright (C) 2014 GNUnet e.V.
GNUnet is free software: you can redistribute it and/or modify it
under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.
GNUnet is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see .
*/
/**
* @file util/crypto_paillier.c
* @brief implementation of the paillier crypto system with libgcrypt
* @author Florian Dold
* @author Christian Fuchs
*/
#include "platform.h"
#include
#include "gnunet_util_lib.h"
/**
* Create a freshly generated paillier public key.
*
* @param[out] public_key Where to store the public key?
* @param[out] private_key Where to store the private key?
*/
void
GNUNET_CRYPTO_paillier_create (struct GNUNET_CRYPTO_PaillierPublicKey *public_key,
struct GNUNET_CRYPTO_PaillierPrivateKey *private_key)
{
gcry_mpi_t p;
gcry_mpi_t q;
gcry_mpi_t phi;
gcry_mpi_t mu;
gcry_mpi_t n;
/* Generate two distinct primes. The probability that the loop body
is executed more than once is very very low... */
p = NULL;
q = NULL;
do {
if (NULL != p)
gcry_mpi_release (p);
if (NULL != q)
gcry_mpi_release (q);
GNUNET_assert (0 ==
gcry_prime_generate (&p,
GNUNET_CRYPTO_PAILLIER_BITS / 2,
0, NULL, NULL, NULL,
GCRY_STRONG_RANDOM, 0));
GNUNET_assert (0 ==
gcry_prime_generate (&q,
GNUNET_CRYPTO_PAILLIER_BITS / 2,
0, NULL, NULL, NULL,
GCRY_STRONG_RANDOM, 0));
}
while (0 == gcry_mpi_cmp (p, q));
/* n = p * q */
GNUNET_assert (NULL != (n = gcry_mpi_new (0)));
gcry_mpi_mul (n,
p,
q);
GNUNET_CRYPTO_mpi_print_unsigned (public_key,
sizeof (struct GNUNET_CRYPTO_PaillierPublicKey),
n);
/* compute phi(n) = (p-1)(q-1) */
GNUNET_assert (NULL != (phi = gcry_mpi_new (0)));
gcry_mpi_sub_ui (p, p, 1);
gcry_mpi_sub_ui (q, q, 1);
gcry_mpi_mul (phi, p, q);
gcry_mpi_release (p);
gcry_mpi_release (q);
/* lambda equals phi(n) in the simplified key generation */
GNUNET_CRYPTO_mpi_print_unsigned (private_key->lambda,
GNUNET_CRYPTO_PAILLIER_BITS / 8,
phi);
/* mu = phi^{-1} mod n, as we use g = n + 1 */
GNUNET_assert (NULL != (mu = gcry_mpi_new (0)));
GNUNET_assert (0 != gcry_mpi_invm (mu,
phi,
n));
gcry_mpi_release (phi);
gcry_mpi_release (n);
GNUNET_CRYPTO_mpi_print_unsigned (private_key->mu,
GNUNET_CRYPTO_PAILLIER_BITS / 8,
mu);
gcry_mpi_release (mu);
}
/**
* Encrypt a plaintext with a paillier public key.
*
* @param public_key Public key to use.
* @param m Plaintext to encrypt.
* @param desired_ops How many homomorphic ops the caller intends to use
* @param[out] ciphertext Encrytion of @a plaintext with @a public_key.
* @return guaranteed number of supported homomorphic operations >= 1,
* or desired_ops, in case that is lower,
* or -1 if less than one homomorphic operation is possible
*/
int
GNUNET_CRYPTO_paillier_encrypt1 (const struct GNUNET_CRYPTO_PaillierPublicKey *public_key,
const gcry_mpi_t m,
int desired_ops,
struct GNUNET_CRYPTO_PaillierCiphertext *ciphertext)
{
int possible_opts;
gcry_mpi_t n_square;
gcry_mpi_t r;
gcry_mpi_t c;
gcry_mpi_t n;
gcry_mpi_t tmp1;
gcry_mpi_t tmp2;
unsigned int highbit;
/* determine how many operations we could allow, if the other number
has the same length. */
GNUNET_assert (NULL != (tmp1 = gcry_mpi_set_ui (NULL, 1)));
GNUNET_assert (NULL != (tmp2 = gcry_mpi_set_ui (NULL, 2)));
gcry_mpi_mul_2exp (tmp1, tmp1, GNUNET_CRYPTO_PAILLIER_BITS);
/* count number of possible operations
this would be nicer with gcry_mpi_get_nbits, however it does not return
the BITLENGTH of the given MPI's value, but the bits required
to represent the number as MPI. */
for (possible_opts = -2; gcry_mpi_cmp (tmp1, m) > 0; possible_opts++)
gcry_mpi_div (tmp1, NULL, tmp1, tmp2, 0);
gcry_mpi_release (tmp1);
gcry_mpi_release (tmp2);
if (possible_opts < 1)
possible_opts = 0;
/* soft-cap by caller */
possible_opts = (desired_ops < possible_opts)? desired_ops : possible_opts;
ciphertext->remaining_ops = htonl (possible_opts);
GNUNET_CRYPTO_mpi_scan_unsigned (&n,
public_key,
sizeof (struct GNUNET_CRYPTO_PaillierPublicKey));
highbit = GNUNET_CRYPTO_PAILLIER_BITS - 1;
while ( (! gcry_mpi_test_bit (n, highbit)) &&
(0 != highbit) )
highbit--;
if (0 == highbit)
{
/* invalid public key */
GNUNET_break_op (0);
gcry_mpi_release (n);
return GNUNET_SYSERR;
}
GNUNET_assert (0 != (n_square = gcry_mpi_new (0)));
GNUNET_assert (0 != (r = gcry_mpi_new (0)));
GNUNET_assert (0 != (c = gcry_mpi_new (0)));
gcry_mpi_mul (n_square, n, n);
/* generate r < n (without bias) */
do {
gcry_mpi_randomize (r, highbit + 1, GCRY_STRONG_RANDOM);
}
while (gcry_mpi_cmp (r, n) >= 0);
/* c = (n+1)^m mod n^2 */
/* c = n + 1 */
gcry_mpi_add_ui (c, n, 1);
/* c = (n+1)^m mod n^2 */
gcry_mpi_powm (c, c, m, n_square);
/* r <- r^n mod n^2 */
gcry_mpi_powm (r, r, n, n_square);
/* c <- r*c mod n^2 */
gcry_mpi_mulm (c, r, c, n_square);
GNUNET_CRYPTO_mpi_print_unsigned (ciphertext->bits,
sizeof ciphertext->bits,
c);
gcry_mpi_release (n_square);
gcry_mpi_release (n);
gcry_mpi_release (r);
gcry_mpi_release (c);
return possible_opts;
}
/**
* Encrypt a plaintext with a paillier public key.
*
* @param public_key Public key to use.
* @param m Plaintext to encrypt.
* @param desired_ops How many homomorphic ops the caller intends to use
* @param[out] ciphertext Encrytion of @a plaintext with @a public_key.
* @return guaranteed number of supported homomorphic operations >= 1,
* or desired_ops, in case that is lower,
* or -1 if less than one homomorphic operation is possible
*/
int
GNUNET_CRYPTO_paillier_encrypt (const struct GNUNET_CRYPTO_PaillierPublicKey *public_key,
const gcry_mpi_t m,
int desired_ops,
struct GNUNET_CRYPTO_PaillierCiphertext *ciphertext)
{
int possible_opts;
gcry_mpi_t n_square;
gcry_mpi_t r;
gcry_mpi_t rn;
gcry_mpi_t g;
gcry_mpi_t gm;
gcry_mpi_t c;
gcry_mpi_t n;
gcry_mpi_t max_num;
unsigned int highbit;
/* set max_num = 2^{GNUNET_CRYPTO_PAILLIER_BITS}, the largest
number we can have as a result */
GNUNET_assert (NULL != (max_num = gcry_mpi_set_ui (NULL, 1)));
gcry_mpi_mul_2exp (max_num,
max_num,
GNUNET_CRYPTO_PAILLIER_BITS);
/* Determine how many operations we could allow, assuming the other
number has the same length (or is smaller), by counting the
number of possible operations. We essentially divide max_num by
2 until the result is no longer larger than 'm', incrementing the
maximum number of operations in each round, starting at -2 */
for (possible_opts = -2; gcry_mpi_cmp (max_num, m) > 0; possible_opts++)
gcry_mpi_div (max_num,
NULL,
max_num,
GCRYMPI_CONST_TWO,
0);
gcry_mpi_release (max_num);
if (possible_opts < 1)
possible_opts = 0;
/* Enforce soft-cap by caller */
possible_opts = GNUNET_MIN (desired_ops, possible_opts);
ciphertext->remaining_ops = htonl (possible_opts);
GNUNET_CRYPTO_mpi_scan_unsigned (&n,
public_key,
sizeof (struct GNUNET_CRYPTO_PaillierPublicKey));
/* check public key for number of bits, bail out if key is all zeros */
highbit = GNUNET_CRYPTO_PAILLIER_BITS - 1;
while ( (! gcry_mpi_test_bit (n, highbit)) &&
(0 != highbit) )
highbit--;
if (0 == highbit)
{
/* invalid public key */
GNUNET_break_op (0);
gcry_mpi_release (n);
return GNUNET_SYSERR;
}
/* generate r < n (without bias) */
GNUNET_assert (NULL != (r = gcry_mpi_new (0)));
do {
gcry_mpi_randomize (r, highbit + 1, GCRY_STRONG_RANDOM);
}
while (gcry_mpi_cmp (r, n) >= 0);
/* g = n + 1 */
GNUNET_assert (0 != (g = gcry_mpi_new (0)));
gcry_mpi_add_ui (g, n, 1);
/* n_square = n^2 */
GNUNET_assert (0 != (n_square = gcry_mpi_new (0)));
gcry_mpi_mul (n_square,
n,
n);
/* gm = g^m mod n^2 */
GNUNET_assert (0 != (gm = gcry_mpi_new (0)));
gcry_mpi_powm (gm, g, m, n_square);
gcry_mpi_release (g);
/* rn <- r^n mod n^2 */
GNUNET_assert (0 != (rn = gcry_mpi_new (0)));
gcry_mpi_powm (rn, r, n, n_square);
gcry_mpi_release (r);
gcry_mpi_release (n);
/* c <- rn * gm mod n^2 */
GNUNET_assert (0 != (c = gcry_mpi_new (0)));
gcry_mpi_mulm (c, rn, gm, n_square);
gcry_mpi_release (n_square);
gcry_mpi_release (gm);
gcry_mpi_release (rn);
GNUNET_CRYPTO_mpi_print_unsigned (ciphertext->bits,
sizeof (ciphertext->bits),
c);
gcry_mpi_release (c);
return possible_opts;
}
/**
* Decrypt a paillier ciphertext with a private key.
*
* @param private_key Private key to use for decryption.
* @param public_key Public key to use for encryption.
* @param ciphertext Ciphertext to decrypt.
* @param[out] m Decryption of @a ciphertext with @private_key.
*/
void
GNUNET_CRYPTO_paillier_decrypt (const struct GNUNET_CRYPTO_PaillierPrivateKey *private_key,
const struct GNUNET_CRYPTO_PaillierPublicKey *public_key,
const struct GNUNET_CRYPTO_PaillierCiphertext *ciphertext,
gcry_mpi_t m)
{
gcry_mpi_t mu;
gcry_mpi_t lambda;
gcry_mpi_t n;
gcry_mpi_t n_square;
gcry_mpi_t c;
gcry_mpi_t cmu;
gcry_mpi_t cmum1;
gcry_mpi_t mod;
GNUNET_CRYPTO_mpi_scan_unsigned (&lambda,
private_key->lambda,
sizeof (private_key->lambda));
GNUNET_CRYPTO_mpi_scan_unsigned (&mu,
private_key->mu,
sizeof (private_key->mu));
GNUNET_CRYPTO_mpi_scan_unsigned (&n,
public_key,
sizeof (struct GNUNET_CRYPTO_PaillierPublicKey));
GNUNET_CRYPTO_mpi_scan_unsigned (&c,
ciphertext->bits,
sizeof (ciphertext->bits));
/* n_square = n * n */
GNUNET_assert (0 != (n_square = gcry_mpi_new (0)));
gcry_mpi_mul (n_square, n, n);
/* cmu = c^lambda mod n^2 */
GNUNET_assert (0 != (cmu = gcry_mpi_new (0)));
gcry_mpi_powm (cmu,
c,
lambda,
n_square);
gcry_mpi_release (n_square);
gcry_mpi_release (lambda);
gcry_mpi_release (c);
/* cmum1 = cmu - 1 */
GNUNET_assert (0 != (cmum1 = gcry_mpi_new (0)));
gcry_mpi_sub_ui (cmum1, cmu, 1);
gcry_mpi_release (cmu);
/* mod = cmum1 / n (mod n) */
GNUNET_assert (0 != (mod = gcry_mpi_new (0)));
gcry_mpi_div (mod, NULL, cmum1, n, 0);
gcry_mpi_release (cmum1);
/* m = mod * mu mod n */
gcry_mpi_mulm (m, mod, mu, n);
gcry_mpi_release (mod);
gcry_mpi_release (mu);
gcry_mpi_release (n);
}
/**
* Compute a ciphertext that represents the sum of the plaintext in @a
* c1 and @a c2.
*
* Note that this operation can only be done a finite number of times
* before an overflow occurs.
*
* @param public_key Public key to use for encryption.
* @param c1 Paillier cipher text.
* @param c2 Paillier cipher text.
* @param[out] result Result of the homomorphic operation.
* @return #GNUNET_OK if the result could be computed,
* #GNUNET_SYSERR if no more homomorphic operations are remaining.
*/
int
GNUNET_CRYPTO_paillier_hom_add (const struct GNUNET_CRYPTO_PaillierPublicKey *public_key,
const struct GNUNET_CRYPTO_PaillierCiphertext *c1,
const struct GNUNET_CRYPTO_PaillierCiphertext *c2,
struct GNUNET_CRYPTO_PaillierCiphertext *result)
{
gcry_mpi_t a;
gcry_mpi_t b;
gcry_mpi_t c;
gcry_mpi_t n;
gcry_mpi_t n_square;
int32_t o1;
int32_t o2;
o1 = (int32_t) ntohl (c1->remaining_ops);
o2 = (int32_t) ntohl (c2->remaining_ops);
if ( (0 >= o1) || (0 >= o2) )
{
GNUNET_break_op (0);
return GNUNET_SYSERR;
}
GNUNET_CRYPTO_mpi_scan_unsigned (&a,
c1->bits,
sizeof (c1->bits));
GNUNET_CRYPTO_mpi_scan_unsigned (&b,
c2->bits,
sizeof (c2->bits));
GNUNET_CRYPTO_mpi_scan_unsigned (&n,
public_key,
sizeof (struct GNUNET_CRYPTO_PaillierPublicKey));
/* n_square = n * n */
GNUNET_assert (0 != (n_square = gcry_mpi_new (0)));
gcry_mpi_mul (n_square, n, n);
gcry_mpi_release (n);
/* c = a * b mod n_square */
GNUNET_assert (0 != (c = gcry_mpi_new (0)));
gcry_mpi_mulm (c, a, b, n_square);
gcry_mpi_release (n_square);
gcry_mpi_release (a);
gcry_mpi_release (b);
result->remaining_ops = htonl (GNUNET_MIN (o1, o2) - 1);
GNUNET_CRYPTO_mpi_print_unsigned (result->bits,
sizeof (result->bits),
c);
gcry_mpi_release (c);
return ntohl (result->remaining_ops);
}
/**
* Get the number of remaining supported homomorphic operations.
*
* @param c Paillier cipher text.
* @return the number of remaining homomorphic operations
*/
int
GNUNET_CRYPTO_paillier_hom_get_remaining (const struct GNUNET_CRYPTO_PaillierCiphertext *c)
{
GNUNET_assert (NULL != c);
return ntohl (c->remaining_ops);
}
/* end of crypto_paillier.c */