aboutsummaryrefslogtreecommitdiff
path: root/src/util/crypto_ksk.c
blob: 0c091099e6954aaa2e73a57c835692d1840061e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
/*
     This file is part of GNUnet.
     Copyright (C) 1994, 1996, 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
     Copyright (C) 2004, 2005, 2006 Christian Grothoff (and other contributing authors)

     GNUnet is free software; you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published
     by the Free Software Foundation; either version 2, or (at your
     option) any later version.

     GNUnet is distributed in the hope that it will be useful, but
     WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     General Public License for more details.

     You should have received a copy of the GNU General Public License
     along with GNUnet; see the file COPYING.  If not, write to the
     Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     Boston, MA 02111-1307, USA.

     Note: This code is based on code from libgcrypt
     The code was adapted for GNUnet to support RSA-key generation
     based on weak, pseudo-random keys.  Do NOT use to generate
     ordinary RSA keys!
*/


/**
 * @file util/crypto_ksk.c
 * @brief implementation of RSA-Key generation for KBlocks
 *        (do NOT use for pseudonyms or hostkeys!)
 * @author Christian Grothoff
 */

#include "platform.h"
#include "gnunet_common.h"
#include "gnunet_crypto_lib.h"
#include "gnunet_os_lib.h"
#include <gcrypt.h>
#include <limits.h>

#define LOG(kind,...) GNUNET_log_from (kind, "util", __VA_ARGS__)

/**
 * Log an error message at log-level 'level' that indicates
 * a failure of the command 'cmd' with the message given
 * by gcry_strerror(rc).
 */
#define LOG_GCRY(level, cmd, rc) do { LOG(level, _("`%s' failed at %s:%d with error: %s\n"), cmd, __FILE__, __LINE__, gcry_strerror(rc)); } while(0);


typedef struct
{
  gcry_mpi_t n;                 /* public modulus */
  gcry_mpi_t e;                 /* public exponent */
  gcry_mpi_t d;                 /* exponent */
  gcry_mpi_t p;                 /* prime  p. */
  gcry_mpi_t q;                 /* prime  q. */
  gcry_mpi_t u;                 /* inverse of p mod q. */
} KBlock_secret_key;

/**
 * The private information of an RSA key pair.
 * NOTE: this must match the definition in crypto_rsa.c
 */
struct GNUNET_CRYPTO_RsaPrivateKey
{
  gcry_sexp_t sexp;
};


static void
mpz_randomize (gcry_mpi_t n, unsigned int nbits, struct GNUNET_HashCode * rnd)
{
  struct GNUNET_HashCode hc;
  struct GNUNET_HashCode tmp;
  int bits_per_hc = sizeof (struct GNUNET_HashCode) * 8;
  int cnt;
  int i;

  GNUNET_assert (nbits > 0);
  cnt = (nbits + bits_per_hc - 1) / bits_per_hc;
  gcry_mpi_set_ui (n, 0);

  tmp = *rnd;
  for (i = 0; i < cnt; i++)
  {
    int j;

    if (i > 0)
      GNUNET_CRYPTO_hash (&hc, sizeof (struct GNUNET_HashCode), &tmp);
    for (j = 0; j < sizeof (struct GNUNET_HashCode) / sizeof (uint32_t); j++)
    {
#if HAVE_GCRY_MPI_LSHIFT
      gcry_mpi_lshift (n, n, sizeof (uint32_t) * 8);
#else
      gcry_mpi_mul_ui (n, n, 1 << (sizeof (uint32_t) * 4));
      gcry_mpi_mul_ui (n, n, 1 << (sizeof (uint32_t) * 4));
#endif
      gcry_mpi_add_ui (n, n, ntohl (((uint32_t *) & tmp)[j]));
    }
    hc = tmp;
  }
  GNUNET_CRYPTO_hash (&hc, sizeof (struct GNUNET_HashCode), rnd);
  i = gcry_mpi_get_nbits (n);
  while (i > nbits)
    gcry_mpi_clear_bit (n, --i);
}

static unsigned long
mpz_trailing_zeroes (gcry_mpi_t n)
{
  unsigned int idx, cnt;

  cnt = gcry_mpi_get_nbits (n);
  for (idx = 0; idx < cnt; idx++)
  {
    if (gcry_mpi_test_bit (n, idx) == 0)
      return idx;
  }

  return ULONG_MAX;
}

static void
mpz_tdiv_q_2exp (gcry_mpi_t q, gcry_mpi_t n, unsigned int b)
{
  gcry_mpi_t u, d;

  u = gcry_mpi_set_ui (NULL, 1);
  d = gcry_mpi_new (0);
  gcry_mpi_mul_2exp (d, u, b);
  gcry_mpi_div (q, NULL, n, d, 0);
}

/**
 * Return true if n is probably a prime
 */
static int
is_prime (gcry_mpi_t n, int steps, struct GNUNET_HashCode * hc)
{
  gcry_mpi_t x;
  gcry_mpi_t y;
  gcry_mpi_t z;
  gcry_mpi_t nminus1;
  gcry_mpi_t a2;
  gcry_mpi_t q;
  unsigned int i, j, k;
  int rc = 0;
  unsigned int nbits;

  x = gcry_mpi_new (0);
  y = gcry_mpi_new (0);
  z = gcry_mpi_new (0);
  nminus1 = gcry_mpi_new (0);
  a2 = gcry_mpi_set_ui (NULL, 2);

  nbits = gcry_mpi_get_nbits (n);
  gcry_mpi_sub_ui (nminus1, n, 1);

  /* Find q and k, so that n = 1 + 2^k * q . */
  q = gcry_mpi_set (NULL, nminus1);
  k = mpz_trailing_zeroes (q);
  mpz_tdiv_q_2exp (q, q, k);

  for (i = 0; i < steps; i++)
  {
    if (!i)
    {
      gcry_mpi_set_ui (x, 2);
    }
    else
    {
      mpz_randomize (x, nbits - 1, hc);
      GNUNET_assert (gcry_mpi_cmp (x, nminus1) < 0);
      GNUNET_assert (gcry_mpi_cmp_ui (x, 1) > 0);
    }
    gcry_mpi_powm (y, x, q, n);
    if (gcry_mpi_cmp_ui (y, 1) && gcry_mpi_cmp (y, nminus1))
    {
      for (j = 1; j < k && gcry_mpi_cmp (y, nminus1); j++)
      {
        gcry_mpi_powm (y, y, a2, n);
        if (!gcry_mpi_cmp_ui (y, 1))
          goto leave;           /* Not a prime. */
      }
      if (gcry_mpi_cmp (y, nminus1))
        goto leave;             /* Not a prime. */
    }
  }
  rc = 1;                       /* May be a prime. */

leave:
  gcry_mpi_release (x);
  gcry_mpi_release (y);
  gcry_mpi_release (z);
  gcry_mpi_release (nminus1);
  gcry_mpi_release (q);
  gcry_mpi_release (a2);

  return rc;
}

/**
 * If target != size, move target bytes to the
 * end of the size-sized buffer and zero out the
 * first target-size bytes.
 */
static void
adjust (unsigned char *buf, size_t size, size_t target)
{
  if (size < target)
  {
    memmove (&buf[target - size], buf, size);
    memset (buf, 0, target - size);
  }
}


static void
gen_prime (gcry_mpi_t * ptest, unsigned int nbits, struct GNUNET_HashCode * hc)
{
  /* Note: 2 is not included because it can be tested more easily by
   * looking at bit 0. The last entry in this list is marked by a zero */
  static const uint16_t small_prime_numbers[] = {
    3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
    47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
    103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
    157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
    211, 223, 227, 229, 233, 239, 241, 251, 257, 263,
    269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
    331, 337, 347, 349, 353, 359, 367, 373, 379, 383,
    389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
    449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
    509, 521, 523, 541, 547, 557, 563, 569, 571, 577,
    587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
    643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
    709, 719, 727, 733, 739, 743, 751, 757, 761, 769,
    773, 787, 797, 809, 811, 821, 823, 827, 829, 839,
    853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
    919, 929, 937, 941, 947, 953, 967, 971, 977, 983,
    991, 997, 1009, 1013, 1019, 1021, 1031, 1033,
    1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091,
    1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151,
    1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213,
    1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277,
    1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307,
    1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,
    1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,
    1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493,
    1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559,
    1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609,
    1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667,
    1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733,
    1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,
    1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871,
    1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,
    1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997,
    1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053,
    2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111,
    2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161,
    2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243,
    2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297,
    2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,
    2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411,
    2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473,
    2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551,
    2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633,
    2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687,
    2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729,
    2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791,
    2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851,
    2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917,
    2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999,
    3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061,
    3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137,
    3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209,
    3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271,
    3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331,
    3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391,
    3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467,
    3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533,
    3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583,
    3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643,
    3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709,
    3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779,
    3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851,
    3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917,
    3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989,
    4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049,
    4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111,
    4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177,
    4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243,
    4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297,
    4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391,
    4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457,
    4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519,
    4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597,
    4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657,
    4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729,
    4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799,
    4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889,
    4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951,
    4957, 4967, 4969, 4973, 4987, 4993, 4999,
    0
  };
#define DIM(v) (sizeof(v)/sizeof((v)[0]))
  static int no_of_small_prime_numbers = DIM (small_prime_numbers) - 1;

  gcry_mpi_t prime, pminus1, val_2, val_3, result;
  unsigned int i;
  unsigned int step;
  unsigned int mods[no_of_small_prime_numbers];
  gcry_mpi_t tmp;
  gcry_mpi_t sp;

  GNUNET_assert (nbits >= 16);

  /* Make nbits fit into mpz_t implementation. */
  val_2 = gcry_mpi_set_ui (NULL, 2);
  val_3 = gcry_mpi_set_ui (NULL, 3);
  prime = gcry_mpi_snew (0);
  result = gcry_mpi_new (0);
  pminus1 = gcry_mpi_new (0);
  *ptest = gcry_mpi_new (0);
  tmp = gcry_mpi_new (0);
  sp = gcry_mpi_new (0);
  while (1)
  {
    /* generate a random number */
    mpz_randomize (prime, nbits, hc);
    /* Set high order bit to 1, set low order bit to 1.  If we are
     * generating a secret prime we are most probably doing that
     * for RSA, to make sure that the modulus does have the
     * requested key size we set the 2 high order bits. */
    gcry_mpi_set_bit (prime, nbits - 1);
    gcry_mpi_set_bit (prime, nbits - 2);
    gcry_mpi_set_bit (prime, 0);

    /* Calculate all remainders. */
    for (i = 0; i < no_of_small_prime_numbers; i++)
    {
      size_t written;

      gcry_mpi_set_ui (sp, small_prime_numbers[i]);
      gcry_mpi_div (NULL, tmp, prime, sp, -1);
      mods[i] = 0;
      written = sizeof (unsigned int);
      GNUNET_assert (0 ==
                     gcry_mpi_print (GCRYMPI_FMT_USG,
                                     (unsigned char *) &mods[i], written,
                                     &written, tmp));
      adjust ((unsigned char *) &mods[i], written, sizeof (unsigned int));
      mods[i] = ntohl (mods[i]);
    }
    /* Now try some primes starting with prime. */
    for (step = 0; step < 20000; step += 2)
    {
      /* Check against all the small primes we have in mods. */
      for (i = 0; i < no_of_small_prime_numbers; i++)
      {
        uint16_t x = small_prime_numbers[i];

        while (mods[i] + step >= x)
          mods[i] -= x;
        if (!(mods[i] + step))
          break;
      }
      if (i < no_of_small_prime_numbers)
        continue;               /* Found a multiple of an already known prime. */

      gcry_mpi_add_ui (*ptest, prime, step);
      if (!gcry_mpi_test_bit (*ptest, nbits - 2))
        break;

      /* Do a fast Fermat test now. */
      gcry_mpi_sub_ui (pminus1, *ptest, 1);
      gcry_mpi_powm (result, val_2, pminus1, *ptest);
      if ((!gcry_mpi_cmp_ui (result, 1)) && (is_prime (*ptest, 5, hc)))
      {
        /* Got it. */
        gcry_mpi_release (sp);
        gcry_mpi_release (tmp);
        gcry_mpi_release (val_2);
        gcry_mpi_release (val_3);
        gcry_mpi_release (result);
        gcry_mpi_release (pminus1);
        gcry_mpi_release (prime);
        return;
      }
    }
  }
}

/**
 * Generate a key pair with a key of size NBITS.
 * @param sk where to store the key
 * @param nbits the number of bits to use
 * @param hc the HC to use for PRNG (modified!)
 */
static void
generate_kblock_key (KBlock_secret_key *sk, unsigned int nbits,
                     struct GNUNET_HashCode * hc)
{
  gcry_mpi_t t1, t2;
  gcry_mpi_t phi;               /* helper: (p-1)(q-1) */
  gcry_mpi_t g;
  gcry_mpi_t f;

  /* make sure that nbits is even so that we generate p, q of equal size */
  if ((nbits & 1))
    nbits++;

  sk->e = gcry_mpi_set_ui (NULL, 257);
  sk->n = gcry_mpi_new (0);
  sk->p = gcry_mpi_new (0);
  sk->q = gcry_mpi_new (0);
  sk->d = gcry_mpi_new (0);
  sk->u = gcry_mpi_new (0);

  t1 = gcry_mpi_new (0);
  t2 = gcry_mpi_new (0);
  phi = gcry_mpi_new (0);
  g = gcry_mpi_new (0);
  f = gcry_mpi_new (0);

  do
  {
    do
    {
      gcry_mpi_release (sk->p);
      gcry_mpi_release (sk->q);
      gen_prime (&sk->p, nbits / 2, hc);
      gen_prime (&sk->q, nbits / 2, hc);

      if (gcry_mpi_cmp (sk->p, sk->q) > 0)      /* p shall be smaller than q (for calc of u) */
        gcry_mpi_swap (sk->p, sk->q);
      /* calculate the modulus */
      gcry_mpi_mul (sk->n, sk->p, sk->q);
    }
    while (gcry_mpi_get_nbits (sk->n) != nbits);

    /* calculate Euler totient: phi = (p-1)(q-1) */
    gcry_mpi_sub_ui (t1, sk->p, 1);
    gcry_mpi_sub_ui (t2, sk->q, 1);
    gcry_mpi_mul (phi, t1, t2);
    gcry_mpi_gcd (g, t1, t2);
    gcry_mpi_div (f, NULL, phi, g, 0);
    while (0 == gcry_mpi_gcd (t1, sk->e, phi))
    {                           /* (while gcd is not 1) */
      gcry_mpi_add_ui (sk->e, sk->e, 2);
    }

    /* calculate the secret key d = e^1 mod phi */
  }
  while ((0 == gcry_mpi_invm (sk->d, sk->e, f)) ||
         (0 == gcry_mpi_invm (sk->u, sk->p, sk->q)));

  gcry_mpi_release (t1);
  gcry_mpi_release (t2);
  gcry_mpi_release (phi);
  gcry_mpi_release (f);
  gcry_mpi_release (g);
}

GNUNET_NETWORK_STRUCT_BEGIN

/**
 * Internal representation of the private key.
 */
struct KskRsaPrivateKeyBinaryEncoded
{
  /**
   * Total size of the structure, in bytes, in big-endian!
   */
  uint16_t len GNUNET_PACKED;
  uint16_t sizen GNUNET_PACKED; /*  in big-endian! */
  uint16_t sizee GNUNET_PACKED; /*  in big-endian! */
  uint16_t sized GNUNET_PACKED; /*  in big-endian! */
  uint16_t sizep GNUNET_PACKED; /*  in big-endian! */
  uint16_t sizeq GNUNET_PACKED; /*  in big-endian! */
  uint16_t sizedmp1 GNUNET_PACKED;      /*  in big-endian! */
  uint16_t sizedmq1 GNUNET_PACKED;      /*  in big-endian! */
  /* followed by the actual values */
};
GNUNET_NETWORK_STRUCT_END

/**
 * Deterministically (!) create a hostkey using only the
 * given HashCode as input to the PRNG.
 */
static struct KskRsaPrivateKeyBinaryEncoded *
makeKblockKeyInternal (const struct GNUNET_HashCode * hc)
{
  KBlock_secret_key sk;
  struct GNUNET_HashCode hx;
  unsigned char *pbu[6];
  gcry_mpi_t *pkv[6];
  size_t sizes[6];
  struct KskRsaPrivateKeyBinaryEncoded *retval;
  int i;
  size_t size;

  hx = *hc;
  generate_kblock_key (&sk, 1024,       /* at least 10x as fast than 2048 bits
                                         * -- we simply cannot afford 2048 bits
                                         * even on modern hardware, and especially
                                         * not since clearly a dictionary attack
                                         * will still be much cheaper
                                         * than breaking a 1024 bit RSA key.
                                         * If an adversary can spend the time to
                                         * break a 1024 bit RSA key just to forge
                                         * a signature -- SO BE IT. [ CG, 6/2005 ] */
                       &hx);
  pkv[0] = &sk.n;
  pkv[1] = &sk.e;
  pkv[2] = &sk.d;
  pkv[3] = &sk.p;
  pkv[4] = &sk.q;
  pkv[5] = &sk.u;
  size = sizeof (struct KskRsaPrivateKeyBinaryEncoded);
  for (i = 0; i < 6; i++)
  {
    gcry_mpi_aprint (GCRYMPI_FMT_STD, &pbu[i], &sizes[i], *pkv[i]);
    size += sizes[i];
  }
  GNUNET_assert (size < 65536);
  retval = GNUNET_malloc (size);
  retval->len = htons (size);
  i = 0;
  retval->sizen = htons (sizes[0]);
  memcpy (&((char *) &retval[1])[i], pbu[0], sizes[0]);
  i += sizes[0];
  retval->sizee = htons (sizes[1]);
  memcpy (&((char *) &retval[1])[i], pbu[1], sizes[1]);
  i += sizes[1];
  retval->sized = htons (sizes[2]);
  memcpy (&((char *) &retval[1])[i], pbu[2], sizes[2]);
  i += sizes[2];
  /* swap p and q! */
  retval->sizep = htons (sizes[4]);
  memcpy (&((char *) &retval[1])[i], pbu[4], sizes[4]);
  i += sizes[4];
  retval->sizeq = htons (sizes[3]);
  memcpy (&((char *) &retval[1])[i], pbu[3], sizes[3]);
  i += sizes[3];
  retval->sizedmp1 = htons (0);
  retval->sizedmq1 = htons (0);
  memcpy (&((char *) &retval[1])[i], pbu[5], sizes[5]);
  for (i = 0; i < 6; i++)
  {
    gcry_mpi_release (*pkv[i]);
    free (pbu[i]);
  }
  return retval;
}


/**
 * Entry in the KSK cache.
 */
struct KBlockKeyCacheLine
{
  /**
   * Hash from which the key was generated.
   */
  struct GNUNET_HashCode hc;

  /**
   * The encoded key.
   */
  struct KskRsaPrivateKeyBinaryEncoded *pke;
};


/**
 * Cached KSK keys so that we don't have to recompute them
 * all the time.
 */
static struct KBlockKeyCacheLine **cache;


/**
 * Size of the 'cache' array.
 */
static unsigned int cacheSize;


/**
 * Deterministically (!) create a hostkey using only the
 * given HashCode as input to the PRNG.
 *
 * @param hc hash code to generate the key from
 * @return corresponding private key; must not be freed!
 */
struct GNUNET_CRYPTO_RsaPrivateKey *
GNUNET_CRYPTO_rsa_key_create_from_hash (const struct GNUNET_HashCode * hc)
{
  struct KBlockKeyCacheLine *line;
  unsigned int i;

  for (i = 0; i < cacheSize; i++)  
    if (0 == memcmp (hc, &cache[i]->hc, sizeof (struct GNUNET_HashCode)))
      return GNUNET_CRYPTO_rsa_decode_key ((const char*) cache[i]->pke,
					   ntohs (cache[i]->pke->len));  
  line = GNUNET_malloc (sizeof (struct KBlockKeyCacheLine));
  line->hc = *hc;
  line->pke = makeKblockKeyInternal (hc);
  GNUNET_array_grow (cache, cacheSize, cacheSize + 1);
  cache[cacheSize - 1] = line;
  return GNUNET_CRYPTO_rsa_decode_key ((const char*) line->pke,
				       ntohs (line->pke->len));
}


/**
 * Destructor that frees the KSK cache.
 */
void __attribute__ ((destructor)) GNUNET_CRYPTO_ksk_fini ()
{
  unsigned int i;

  for (i = 0; i < cacheSize; i++)
  {
    GNUNET_free (cache[i]->pke);
    GNUNET_free (cache[i]);
  }
  GNUNET_array_grow (cache, cacheSize, 0);
}


/* end of crypto_ksk.c */