aboutsummaryrefslogtreecommitdiff
path: root/src/regex/regex.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/regex/regex.c')
-rw-r--r--src/regex/regex.c2252
1 files changed, 2252 insertions, 0 deletions
diff --git a/src/regex/regex.c b/src/regex/regex.c
new file mode 100644
index 0000000..5244c26
--- /dev/null
+++ b/src/regex/regex.c
@@ -0,0 +1,2252 @@
+/*
+ This file is part of GNUnet
+ (C) 2012 Christian Grothoff (and other contributing authors)
+
+ GNUnet is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published
+ by the Free Software Foundation; either version 3, or (at your
+ option) any later version.
+
+ GNUnet is distributed in the hope that it will be useful, but
+ WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GNUnet; see the file COPYING. If not, write to the
+ Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA.
+*/
+/**
+ * @file src/regex/regex.c
+ * @brief library to create automatons from regular expressions
+ * @author Maximilian Szengel
+ */
+#include "platform.h"
+#include "gnunet_container_lib.h"
+#include "gnunet_crypto_lib.h"
+#include "gnunet_regex_lib.h"
+#include "regex.h"
+
+#define initial_bits 10
+
+/**
+ * Context that contains an id counter for states and transitions as well as a
+ * DLL of automatons used as a stack for NFA construction.
+ */
+struct GNUNET_REGEX_Context
+{
+ /**
+ * Unique state id.
+ */
+ unsigned int state_id;
+
+ /**
+ * Unique transition id.
+ */
+ unsigned int transition_id;
+
+ /**
+ * Unique SCC (Strongly Connected Component) id.
+ */
+ unsigned int scc_id;
+
+ /**
+ * DLL of GNUNET_REGEX_Automaton's used as a stack.
+ */
+ struct GNUNET_REGEX_Automaton *stack_head;
+
+ /**
+ * DLL of GNUNET_REGEX_Automaton's used as a stack.
+ */
+ struct GNUNET_REGEX_Automaton *stack_tail;
+};
+
+/**
+ * Type of an automaton.
+ */
+enum GNUNET_REGEX_automaton_type
+{
+ NFA,
+ DFA
+};
+
+/**
+ * Automaton representation.
+ */
+struct GNUNET_REGEX_Automaton
+{
+ /**
+ * This is a linked list.
+ */
+ struct GNUNET_REGEX_Automaton *prev;
+
+ /**
+ * This is a linked list.
+ */
+ struct GNUNET_REGEX_Automaton *next;
+
+ /**
+ * First state of the automaton. This is mainly used for constructing an NFA,
+ * where each NFA itself consists of one or more NFAs linked together.
+ */
+ struct GNUNET_REGEX_State *start;
+
+ /**
+ * End state of the automaton.
+ */
+ struct GNUNET_REGEX_State *end;
+
+ /**
+ * Number of states in the automaton.
+ */
+ unsigned int state_count;
+
+ /**
+ * DLL of states.
+ */
+ struct GNUNET_REGEX_State *states_head;
+
+ /**
+ * DLL of states
+ */
+ struct GNUNET_REGEX_State *states_tail;
+
+ /**
+ * Type of the automaton.
+ */
+ enum GNUNET_REGEX_automaton_type type;
+};
+
+/**
+ * A state. Can be used in DFA and NFA automatons.
+ */
+struct GNUNET_REGEX_State
+{
+ /**
+ * This is a linked list.
+ */
+ struct GNUNET_REGEX_State *prev;
+
+ /**
+ * This is a linked list.
+ */
+ struct GNUNET_REGEX_State *next;
+
+ /**
+ * Unique state id.
+ */
+ unsigned int id;
+
+ /**
+ * If this is an accepting state or not.
+ */
+ int accepting;
+
+ /**
+ * Marking of the state. This is used for marking all visited states when
+ * traversing all states of an automaton and for cases where the state id
+ * cannot be used (dfa minimization).
+ */
+ int marked;
+
+ /**
+ * Marking the state as contained. This is used for checking, if the state is
+ * contained in a set in constant time
+ */
+ int contained;
+
+ /**
+ * Marking the state as part of an SCC (Strongly Connected Component). All
+ * states with the same scc_id are part of the same SCC. scc_id is 0, if state
+ * is not a part of any SCC.
+ */
+ unsigned int scc_id;
+
+ /**
+ * Used for SCC detection.
+ */
+ int index;
+
+ /**
+ * Used for SCC detection.
+ */
+ int lowlink;
+
+ /**
+ * Human readable name of the automaton. Used for debugging and graph
+ * creation.
+ */
+ char *name;
+
+ /**
+ * Hash of the state.
+ */
+ GNUNET_HashCode hash;
+
+ /**
+ * Proof for this state.
+ */
+ char *proof;
+
+ /**
+ * Number of transitions from this state to other states.
+ */
+ unsigned int transition_count;
+
+ /**
+ * DLL of transitions.
+ */
+ struct Transition *transitions_head;
+
+ /**
+ * DLL of transitions.
+ */
+ struct Transition *transitions_tail;
+
+ /**
+ * Set of states on which this state is based on. Used when creating a DFA out
+ * of several NFA states.
+ */
+ struct GNUNET_REGEX_StateSet *nfa_set;
+};
+
+/**
+ * Transition between two states. Each state can have 0-n transitions. If label
+ * is 0, this is considered to be an epsilon transition.
+ */
+struct Transition
+{
+ /**
+ * This is a linked list.
+ */
+ struct Transition *prev;
+
+ /**
+ * This is a linked list.
+ */
+ struct Transition *next;
+
+ /**
+ * Unique id of this transition.
+ */
+ unsigned int id;
+
+ /**
+ * Label for this transition. This is basically the edge label for the graph.
+ */
+ char label;
+
+ /**
+ * State to which this transition leads.
+ */
+ struct GNUNET_REGEX_State *to_state;
+
+ /**
+ * State from which this transition origins.
+ */
+ struct GNUNET_REGEX_State *from_state;
+
+ /**
+ * Mark this transition. For example when reversing the automaton.
+ */
+ int mark;
+};
+
+/**
+ * Set of states.
+ */
+struct GNUNET_REGEX_StateSet
+{
+ /**
+ * Array of states.
+ */
+ struct GNUNET_REGEX_State **states;
+
+ /**
+ * Length of the 'states' array.
+ */
+ unsigned int len;
+};
+
+/*
+ * Debug helper functions
+ */
+void
+debug_print_transitions (struct GNUNET_REGEX_State *);
+
+void
+debug_print_state (struct GNUNET_REGEX_State *s)
+{
+ char *proof;
+
+ if (NULL == s->proof)
+ proof = "NULL";
+ else
+ proof = s->proof;
+
+ GNUNET_log (GNUNET_ERROR_TYPE_DEBUG,
+ "State %i: %s marked: %i accepting: %i scc_id: %i transitions: %i proof: %s\n",
+ s->id, s->name, s->marked, s->accepting, s->scc_id,
+ s->transition_count, proof);
+
+ GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Transitions:\n");
+ debug_print_transitions (s);
+}
+
+void
+debug_print_states (struct GNUNET_REGEX_Automaton *a)
+{
+ struct GNUNET_REGEX_State *s;
+
+ for (s = a->states_head; NULL != s; s = s->next)
+ debug_print_state (s);
+}
+
+void
+debug_print_transition (struct Transition *t)
+{
+ char *to_state;
+ char *from_state;
+ char label;
+
+ if (NULL == t)
+ return;
+
+ if (0 == t->label)
+ label = '0';
+ else
+ label = t->label;
+
+ if (NULL == t->to_state)
+ to_state = "NULL";
+ else
+ to_state = t->to_state->name;
+
+ if (NULL == t->from_state)
+ from_state = "NULL";
+ else
+ from_state = t->from_state->name;
+
+ GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Transition %i: From %s on %c to %s\n",
+ t->id, from_state, label, to_state);
+}
+
+void
+debug_print_transitions (struct GNUNET_REGEX_State *s)
+{
+ struct Transition *t;
+
+ for (t = s->transitions_head; NULL != t; t = t->next)
+ debug_print_transition (t);
+}
+
+/**
+ * Recursive function doing DFS with 'v' as a start, detecting all SCCs inside
+ * the subgraph reachable from 'v'. Used with scc_tarjan function to detect all
+ * SCCs inside an automaton.
+ *
+ * @param ctx context
+ * @param v start vertex
+ * @param index current index
+ * @param stack stack for saving all SCCs
+ * @param stack_size current size of the stack
+ */
+static void
+scc_tarjan_strongconnect (struct GNUNET_REGEX_Context *ctx,
+ struct GNUNET_REGEX_State *v, int *index,
+ struct GNUNET_REGEX_State **stack,
+ unsigned int *stack_size)
+{
+ struct GNUNET_REGEX_State *w;
+ struct Transition *t;
+
+ v->index = *index;
+ v->lowlink = *index;
+ (*index)++;
+ stack[(*stack_size)++] = v;
+ v->contained = 1;
+
+ for (t = v->transitions_head; NULL != t; t = t->next)
+ {
+ w = t->to_state;
+ if (NULL != w && w->index < 0)
+ {
+ scc_tarjan_strongconnect (ctx, w, index, stack, stack_size);
+ v->lowlink = (v->lowlink > w->lowlink) ? w->lowlink : v->lowlink;
+ }
+ else if (0 != w->contained)
+ v->lowlink = (v->lowlink > w->index) ? w->index : v->lowlink;
+ }
+
+ if (v->lowlink == v->index)
+ {
+ w = stack[--(*stack_size)];
+ w->contained = 0;
+
+ if (v != w)
+ {
+ ctx->scc_id++;
+ while (v != w)
+ {
+ w->scc_id = ctx->scc_id;
+ w = stack[--(*stack_size)];
+ w->contained = 0;
+ }
+ w->scc_id = ctx->scc_id;
+ }
+ }
+}
+
+/**
+ * Detect all SCCs (Strongly Connected Components) inside the given automaton.
+ * SCCs will be marked using the scc_id on each state.
+ *
+ * @param ctx context
+ * @param a automaton
+ */
+static void
+scc_tarjan (struct GNUNET_REGEX_Context *ctx, struct GNUNET_REGEX_Automaton *a)
+{
+ int index;
+ struct GNUNET_REGEX_State *v;
+ struct GNUNET_REGEX_State *stack[a->state_count];
+ unsigned int stack_size;
+
+ for (v = a->states_head; NULL != v; v = v->next)
+ {
+ v->contained = 0;
+ v->index = -1;
+ v->lowlink = -1;
+ }
+
+ stack_size = 0;
+ index = 0;
+
+ for (v = a->states_head; NULL != v; v = v->next)
+ {
+ if (v->index < 0)
+ scc_tarjan_strongconnect (ctx, v, &index, stack, &stack_size);
+ }
+}
+
+/**
+ * Adds a transition from one state to another on 'label'. Does not add
+ * duplicate states.
+ *
+ * @param ctx context
+ * @param from_state starting state for the transition
+ * @param label transition label
+ * @param to_state state to where the transition should point to
+ */
+static void
+state_add_transition (struct GNUNET_REGEX_Context *ctx,
+ struct GNUNET_REGEX_State *from_state, const char label,
+ struct GNUNET_REGEX_State *to_state)
+{
+ int is_dup;
+ struct Transition *t;
+
+ if (NULL == from_state)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not create Transition.\n");
+ return;
+ }
+
+ // Do not add duplicate state transitions
+ is_dup = GNUNET_NO;
+ for (t = from_state->transitions_head; NULL != t; t = t->next)
+ {
+ if (t->to_state == to_state && t->label == label &&
+ t->from_state == from_state)
+ {
+ is_dup = GNUNET_YES;
+ break;
+ }
+ }
+
+ if (is_dup)
+ return;
+
+ t = GNUNET_malloc (sizeof (struct Transition));
+ t->id = ctx->transition_id++;
+ t->label = label;
+ t->to_state = to_state;
+ t->from_state = from_state;
+
+ // Add outgoing transition to 'from_state'
+ from_state->transition_count++;
+ GNUNET_CONTAINER_DLL_insert (from_state->transitions_head,
+ from_state->transitions_tail, t);
+}
+
+/**
+ * Compare two states. Used for sorting.
+ *
+ * @param a first state
+ * @param b second state
+ *
+ * @return an integer less than, equal to, or greater than zero
+ * if the first argument is considered to be respectively
+ * less than, equal to, or greater than the second.
+ */
+static int
+state_compare (const void *a, const void *b)
+{
+ struct GNUNET_REGEX_State **s1;
+ struct GNUNET_REGEX_State **s2;
+
+ s1 = (struct GNUNET_REGEX_State **) a;
+ s2 = (struct GNUNET_REGEX_State **) b;
+
+ return (*s1)->id - (*s2)->id;
+}
+
+/**
+ * Get all edges leaving state 's'.
+ *
+ * @param s state.
+ * @param edges all edges leaving 's'.
+ *
+ * @return number of edges.
+ */
+static unsigned int
+state_get_edges (struct GNUNET_REGEX_State *s, struct GNUNET_REGEX_Edge *edges)
+{
+ struct Transition *t;
+ unsigned int count;
+
+ if (NULL == s)
+ return 0;
+
+ count = 0;
+
+ for (t = s->transitions_head; NULL != t; t = t->next)
+ {
+ if (NULL != t->to_state)
+ {
+ edges[count].label = &t->label;
+ edges[count].destination = t->to_state->hash;
+ count++;
+ }
+ }
+ return count;
+}
+
+/**
+ * Compare to state sets by comparing the id's of the states that are contained
+ * in each set. Both sets are expected to be sorted by id!
+ *
+ * @param sset1 first state set
+ * @param sset2 second state set
+ *
+ * @return an integer less than, equal to, or greater than zero
+ * if the first argument is considered to be respectively
+ * less than, equal to, or greater than the second.
+ */
+static int
+state_set_compare (struct GNUNET_REGEX_StateSet *sset1,
+ struct GNUNET_REGEX_StateSet *sset2)
+{
+ int result;
+ int i;
+
+ if (NULL == sset1 || NULL == sset2)
+ return 1;
+
+ result = sset1->len - sset2->len;
+
+ for (i = 0; i < sset1->len; i++)
+ {
+ if (0 != result)
+ break;
+
+ result = state_compare (&sset1->states[i], &sset2->states[i]);
+ }
+ return result;
+}
+
+/**
+ * Clears the given StateSet 'set'
+ *
+ * @param set set to be cleared
+ */
+static void
+state_set_clear (struct GNUNET_REGEX_StateSet *set)
+{
+ if (NULL != set)
+ {
+ if (NULL != set->states)
+ GNUNET_free (set->states);
+ GNUNET_free (set);
+ }
+}
+
+/**
+ * Clears an automaton fragment. Does not destroy the states inside the
+ * automaton.
+ *
+ * @param a automaton to be cleared
+ */
+static void
+automaton_fragment_clear (struct GNUNET_REGEX_Automaton *a)
+{
+ if (NULL == a)
+ return;
+
+ a->start = NULL;
+ a->end = NULL;
+ a->states_head = NULL;
+ a->states_tail = NULL;
+ a->state_count = 0;
+ GNUNET_free (a);
+}
+
+/**
+ * Frees the memory used by State 's'
+ *
+ * @param s state that should be destroyed
+ */
+static void
+automaton_destroy_state (struct GNUNET_REGEX_State *s)
+{
+ struct Transition *t;
+ struct Transition *next_t;
+
+ if (NULL == s)
+ return;
+
+ if (NULL != s->name)
+ GNUNET_free (s->name);
+
+ if (NULL != s->proof)
+ GNUNET_free (s->proof);
+
+ for (t = s->transitions_head; NULL != t; t = next_t)
+ {
+ next_t = t->next;
+ GNUNET_CONTAINER_DLL_remove (s->transitions_head, s->transitions_tail, t);
+ GNUNET_free (t);
+ }
+
+ state_set_clear (s->nfa_set);
+
+ GNUNET_free (s);
+}
+
+/**
+ * Remove a state from the given automaton 'a'. Always use this function when
+ * altering the states of an automaton. Will also remove all transitions leading
+ * to this state, before destroying it.
+ *
+ * @param a automaton
+ * @param s state to remove
+ */
+static void
+automaton_remove_state (struct GNUNET_REGEX_Automaton *a,
+ struct GNUNET_REGEX_State *s)
+{
+ struct GNUNET_REGEX_State *ss;
+ struct GNUNET_REGEX_State *s_check;
+ struct Transition *t_check;
+
+ if (NULL == a || NULL == s)
+ return;
+
+ // remove state
+ ss = s;
+ GNUNET_CONTAINER_DLL_remove (a->states_head, a->states_tail, s);
+ a->state_count--;
+
+ // remove all transitions leading to this state
+ for (s_check = a->states_head; NULL != s_check; s_check = s_check->next)
+ {
+ for (t_check = s_check->transitions_head; NULL != t_check;
+ t_check = t_check->next)
+ {
+ if (t_check->to_state == ss)
+ {
+ GNUNET_CONTAINER_DLL_remove (s_check->transitions_head,
+ s_check->transitions_tail, t_check);
+ s_check->transition_count--;
+ }
+ }
+ }
+
+ automaton_destroy_state (ss);
+}
+
+/**
+ * Merge two states into one. Will merge 's1' and 's2' into 's1' and destroy
+ * 's2'.
+ *
+ * @param ctx context
+ * @param a automaton
+ * @param s1 first state
+ * @param s2 second state, will be destroyed
+ */
+static void
+automaton_merge_states (struct GNUNET_REGEX_Context *ctx,
+ struct GNUNET_REGEX_Automaton *a,
+ struct GNUNET_REGEX_State *s1,
+ struct GNUNET_REGEX_State *s2)
+{
+ struct GNUNET_REGEX_State *s_check;
+ struct Transition *t_check;
+ char *new_name;
+
+ GNUNET_assert (NULL != ctx && NULL != a && NULL != s1 && NULL != s2);
+
+ if (s1 == s2)
+ return;
+
+ // 1. Make all transitions pointing to s2 point to s1
+ for (s_check = a->states_head; NULL != s_check; s_check = s_check->next)
+ {
+ for (t_check = s_check->transitions_head; NULL != t_check;
+ t_check = t_check->next)
+ {
+ if (s2 == t_check->to_state)
+ t_check->to_state = s1;
+ }
+ }
+
+ // 2. Add all transitions from s2 to sX to s1
+ for (t_check = s2->transitions_head; NULL != t_check; t_check = t_check->next)
+ {
+ if (t_check->to_state != s1)
+ state_add_transition (ctx, s1, t_check->label, t_check->to_state);
+ }
+
+ // 3. Rename s1 to {s1,s2}
+ new_name = GNUNET_strdup (s1->name);
+ if (NULL != s1->name)
+ {
+ GNUNET_free (s1->name);
+ s1->name = NULL;
+ }
+ GNUNET_asprintf (&s1->name, "{%s,%s}", new_name, s2->name);
+ GNUNET_free (new_name);
+
+ // remove state
+ GNUNET_CONTAINER_DLL_remove (a->states_head, a->states_tail, s2);
+ a->state_count--;
+ automaton_destroy_state (s2);
+}
+
+/**
+ * Add a state to the automaton 'a', always use this function to alter the
+ * states DLL of the automaton.
+ *
+ * @param a automaton to add the state to
+ * @param s state that should be added
+ */
+static void
+automaton_add_state (struct GNUNET_REGEX_Automaton *a,
+ struct GNUNET_REGEX_State *s)
+{
+ GNUNET_CONTAINER_DLL_insert (a->states_head, a->states_tail, s);
+ a->state_count++;
+}
+
+/**
+ * Function that is called with each state, when traversing an automaton.
+ *
+ * @param cls closure
+ * @param s state
+ */
+typedef void (*GNUNET_REGEX_traverse_action) (void *cls,
+ struct GNUNET_REGEX_State * s);
+
+/**
+ * Traverses all states that are reachable from state 's'. Expects the states to
+ * be unmarked (s->marked == GNUNET_NO). Performs 'action' on each visited
+ * state.
+ *
+ * @param cls closure.
+ * @param s start state.
+ * @param action action to be performed on each state.
+ */
+static void
+automaton_state_traverse (void *cls, struct GNUNET_REGEX_State *s,
+ GNUNET_REGEX_traverse_action action)
+{
+ struct Transition *t;
+
+ if (GNUNET_NO == s->marked)
+ {
+ s->marked = GNUNET_YES;
+
+ if (action > 0)
+ action (cls, s);
+
+ for (t = s->transitions_head; NULL != t; t = t->next)
+ automaton_state_traverse (cls, t->to_state, action);
+ }
+}
+
+/**
+ * Traverses the given automaton from it's start state, visiting all reachable
+ * states and calling 'action' on each one of them.
+ *
+ * @param cls closure.
+ * @param a automaton.
+ * @param action action to be performed on each state.
+ */
+static void
+automaton_traverse (void *cls, struct GNUNET_REGEX_Automaton *a,
+ GNUNET_REGEX_traverse_action action)
+{
+ struct GNUNET_REGEX_State *s;
+
+ for (s = a->states_head; NULL != s; s = s->next)
+ s->marked = GNUNET_NO;
+
+ automaton_state_traverse (cls, a->start, action);
+}
+
+/**
+ * Reverses all transitions of the given automaton.
+ *
+ * @param a automaton.
+ */
+static void
+automaton_reverse (struct GNUNET_REGEX_Automaton *a)
+{
+ struct GNUNET_REGEX_State *s;
+ struct Transition *t;
+ struct Transition *t_next;
+ struct GNUNET_REGEX_State *s_swp;
+
+ for (s = a->states_head; NULL != s; s = s->next)
+ for (t = s->transitions_head; NULL != t; t = t->next)
+ t->mark = GNUNET_NO;
+
+ for (s = a->states_head; NULL != s; s = s->next)
+ {
+ for (t = s->transitions_head; NULL != t; t = t_next)
+ {
+ t_next = t->next;
+
+ if (GNUNET_YES == t->mark || t->from_state == t->to_state)
+ continue;
+
+ t->mark = GNUNET_YES;
+
+ GNUNET_CONTAINER_DLL_remove (t->from_state->transitions_head,
+ t->from_state->transitions_tail, t);
+ t->from_state->transition_count--;
+ GNUNET_CONTAINER_DLL_insert (t->to_state->transitions_head,
+ t->to_state->transitions_tail, t);
+ t->to_state->transition_count++;
+
+ s_swp = t->from_state;
+ t->from_state = t->to_state;
+ t->to_state = s_swp;
+ }
+ }
+}
+
+/**
+ * Create proof for the given state.
+ *
+ * @param cls closure.
+ * @param s state.
+ */
+static void
+automaton_create_proofs_step (void *cls, struct GNUNET_REGEX_State *s)
+{
+ struct Transition *t;
+ int i;
+ char *tmp;
+
+ for (i = 0, t = s->transitions_head; NULL != t; t = t->next, i++)
+ {
+ if (t->to_state == s)
+ GNUNET_asprintf (&tmp, "%c*", t->label);
+ else if (i != s->transition_count - 1)
+ GNUNET_asprintf (&tmp, "%c|", t->label);
+ else
+ GNUNET_asprintf (&tmp, "%c", t->label);
+
+ if (NULL != s->proof)
+ s->proof =
+ GNUNET_realloc (s->proof, strlen (s->proof) + strlen (tmp) + 1);
+ else
+ s->proof = GNUNET_malloc (strlen (tmp) + 1);
+ strcat (s->proof, tmp);
+ GNUNET_free (tmp);
+ }
+}
+
+/**
+ * Create proofs for all states in the given automaton.
+ *
+ * @param a automaton.
+ */
+static void
+automaton_create_proofs (struct GNUNET_REGEX_Automaton *a)
+{
+ struct GNUNET_REGEX_State *s;
+
+ automaton_reverse (a);
+
+ for (s = a->states_head; NULL != s; s = s->next)
+ automaton_create_proofs_step (NULL, s);
+
+ automaton_reverse (a);
+}
+
+/**
+ * Creates a new DFA state based on a set of NFA states. Needs to be freed using
+ * automaton_destroy_state.
+ *
+ * @param ctx context
+ * @param nfa_states set of NFA states on which the DFA should be based on
+ *
+ * @return new DFA state
+ */
+static struct GNUNET_REGEX_State *
+dfa_state_create (struct GNUNET_REGEX_Context *ctx,
+ struct GNUNET_REGEX_StateSet *nfa_states)
+{
+ struct GNUNET_REGEX_State *s;
+ char *name;
+ int len = 0;
+ struct GNUNET_REGEX_State *cstate;
+ struct Transition *ctran;
+ int insert = 1;
+ struct Transition *t;
+ int i;
+
+ s = GNUNET_malloc (sizeof (struct GNUNET_REGEX_State));
+ s->id = ctx->state_id++;
+ s->accepting = 0;
+ s->marked = 0;
+ s->name = NULL;
+ s->scc_id = 0;
+ s->index = -1;
+ s->lowlink = -1;
+ s->contained = 0;
+ s->proof = NULL;
+
+ if (NULL == nfa_states)
+ {
+ GNUNET_asprintf (&s->name, "s%i", s->id);
+ return s;
+ }
+
+ s->nfa_set = nfa_states;
+
+ if (nfa_states->len < 1)
+ return s;
+
+ // Create a name based on 'sset'
+ s->name = GNUNET_malloc (sizeof (char) * 2);
+ strcat (s->name, "{");
+ name = NULL;
+
+ for (i = 0; i < nfa_states->len; i++)
+ {
+ cstate = nfa_states->states[i];
+ GNUNET_asprintf (&name, "%i,", cstate->id);
+
+ if (NULL != name)
+ {
+ len = strlen (s->name) + strlen (name) + 1;
+ s->name = GNUNET_realloc (s->name, len);
+ strcat (s->name, name);
+ GNUNET_free (name);
+ name = NULL;
+ }
+
+ // Add a transition for each distinct label to NULL state
+ for (ctran = cstate->transitions_head; NULL != ctran; ctran = ctran->next)
+ {
+ if (0 != ctran->label)
+ {
+ insert = 1;
+
+ for (t = s->transitions_head; NULL != t; t = t->next)
+ {
+ if (t->label == ctran->label)
+ {
+ insert = 0;
+ break;
+ }
+ }
+
+ if (insert)
+ state_add_transition (ctx, s, ctran->label, NULL);
+ }
+ }
+
+ // If the nfa_states contain an accepting state, the new dfa state is also
+ // accepting
+ if (cstate->accepting)
+ s->accepting = 1;
+ }
+
+ s->name[strlen (s->name) - 1] = '}';
+
+ return s;
+}
+
+/**
+ * Move from the given state 's' to the next state on transition 'label'
+ *
+ * @param s starting state
+ * @param label edge label to follow
+ *
+ * @return new state or NULL, if transition on label not possible
+ */
+static struct GNUNET_REGEX_State *
+dfa_move (struct GNUNET_REGEX_State *s, const char label)
+{
+ struct Transition *t;
+ struct GNUNET_REGEX_State *new_s;
+
+ if (NULL == s)
+ return NULL;
+
+ new_s = NULL;
+
+ for (t = s->transitions_head; NULL != t; t = t->next)
+ {
+ if (label == t->label)
+ {
+ new_s = t->to_state;
+ break;
+ }
+ }
+
+ return new_s;
+}
+
+/**
+ * Remove all unreachable states from DFA 'a'. Unreachable states are those
+ * states that are not reachable from the starting state.
+ *
+ * @param a DFA automaton
+ */
+static void
+dfa_remove_unreachable_states (struct GNUNET_REGEX_Automaton *a)
+{
+ struct GNUNET_REGEX_State *s;
+ struct GNUNET_REGEX_State *s_next;
+
+ // 1. unmark all states
+ for (s = a->states_head; NULL != s; s = s->next)
+ s->marked = GNUNET_NO;
+
+ // 2. traverse dfa from start state and mark all visited states
+ automaton_traverse (NULL, a, NULL);
+
+ // 3. delete all states that were not visited
+ for (s = a->states_head; NULL != s; s = s_next)
+ {
+ s_next = s->next;
+ if (GNUNET_NO == s->marked)
+ automaton_remove_state (a, s);
+ }
+}
+
+/**
+ * Remove all dead states from the DFA 'a'. Dead states are those states that do
+ * not transition to any other state but themselfes.
+ *
+ * @param a DFA automaton
+ */
+static void
+dfa_remove_dead_states (struct GNUNET_REGEX_Automaton *a)
+{
+ struct GNUNET_REGEX_State *s;
+ struct Transition *t;
+ int dead;
+
+ GNUNET_assert (DFA == a->type);
+
+ for (s = a->states_head; NULL != s; s = s->next)
+ {
+ if (s->accepting)
+ continue;
+
+ dead = 1;
+ for (t = s->transitions_head; NULL != t; t = t->next)
+ {
+ if (NULL != t->to_state && t->to_state != s)
+ {
+ dead = 0;
+ break;
+ }
+ }
+
+ if (0 == dead)
+ continue;
+
+ // state s is dead, remove it
+ automaton_remove_state (a, s);
+ }
+}
+
+/**
+ * Merge all non distinguishable states in the DFA 'a'
+ *
+ * @param ctx context
+ * @param a DFA automaton
+ */
+static void
+dfa_merge_nondistinguishable_states (struct GNUNET_REGEX_Context *ctx,
+ struct GNUNET_REGEX_Automaton *a)
+{
+ int i;
+ int table[a->state_count][a->state_count];
+ struct GNUNET_REGEX_State *s1;
+ struct GNUNET_REGEX_State *s2;
+ struct Transition *t1;
+ struct Transition *t2;
+ struct GNUNET_REGEX_State *s1_next;
+ struct GNUNET_REGEX_State *s2_next;
+ int change;
+ int num_equal_edges;
+
+ for (i = 0, s1 = a->states_head; i < a->state_count && NULL != s1;
+ i++, s1 = s1->next)
+ {
+ s1->marked = i;
+ }
+
+ // Mark all pairs of accepting/!accepting states
+ for (s1 = a->states_head; NULL != s1; s1 = s1->next)
+ {
+ for (s2 = a->states_head; NULL != s2; s2 = s2->next)
+ {
+ table[s1->marked][s2->marked] = 0;
+
+ if ((s1->accepting && !s2->accepting) ||
+ (!s1->accepting && s2->accepting))
+ {
+ table[s1->marked][s2->marked] = 1;
+ }
+ }
+ }
+
+ // Find all equal states
+ change = 1;
+ while (0 != change)
+ {
+ change = 0;
+ for (s1 = a->states_head; NULL != s1; s1 = s1->next)
+ {
+ for (s2 = a->states_head; NULL != s2 && s1 != s2; s2 = s2->next)
+ {
+ if (0 != table[s1->marked][s2->marked])
+ continue;
+
+ num_equal_edges = 0;
+ for (t1 = s1->transitions_head; NULL != t1; t1 = t1->next)
+ {
+ for (t2 = s2->transitions_head; NULL != t2; t2 = t2->next)
+ {
+ if (t1->label == t2->label)
+ {
+ num_equal_edges++;
+ if (0 != table[t1->to_state->marked][t2->to_state->marked] ||
+ 0 != table[t2->to_state->marked][t1->to_state->marked])
+ {
+ table[s1->marked][s2->marked] = t1->label != 0 ? t1->label : 1;
+ change = 1;
+ }
+ }
+ }
+ }
+ if (num_equal_edges != s1->transition_count ||
+ num_equal_edges != s2->transition_count)
+ {
+ // Make sure ALL edges of possible equal states are the same
+ table[s1->marked][s2->marked] = -2;
+ }
+ }
+ }
+ }
+
+ // Merge states that are equal
+ for (s1 = a->states_head; NULL != s1; s1 = s1_next)
+ {
+ s1_next = s1->next;
+ for (s2 = a->states_head; NULL != s2 && s1 != s2; s2 = s2_next)
+ {
+ s2_next = s2->next;
+ if (table[s1->marked][s2->marked] == 0)
+ automaton_merge_states (ctx, a, s1, s2);
+ }
+ }
+}
+
+/**
+ * Minimize the given DFA 'a' by removing all unreachable states, removing all
+ * dead states and merging all non distinguishable states
+ *
+ * @param ctx context
+ * @param a DFA automaton
+ */
+static void
+dfa_minimize (struct GNUNET_REGEX_Context *ctx,
+ struct GNUNET_REGEX_Automaton *a)
+{
+ if (NULL == a)
+ return;
+
+ GNUNET_assert (DFA == a->type);
+
+ // 1. remove unreachable states
+ dfa_remove_unreachable_states (a);
+
+ // 2. remove dead states
+ dfa_remove_dead_states (a);
+
+ // 3. Merge nondistinguishable states
+ dfa_merge_nondistinguishable_states (ctx, a);
+}
+
+/**
+ * Creates a new NFA fragment. Needs to be cleared using
+ * automaton_fragment_clear.
+ *
+ * @param start starting state
+ * @param end end state
+ *
+ * @return new NFA fragment
+ */
+static struct GNUNET_REGEX_Automaton *
+nfa_fragment_create (struct GNUNET_REGEX_State *start,
+ struct GNUNET_REGEX_State *end)
+{
+ struct GNUNET_REGEX_Automaton *n;
+
+ n = GNUNET_malloc (sizeof (struct GNUNET_REGEX_Automaton));
+
+ n->type = NFA;
+ n->start = NULL;
+ n->end = NULL;
+
+ if (NULL == start && NULL == end)
+ return n;
+
+ automaton_add_state (n, end);
+ automaton_add_state (n, start);
+
+ n->start = start;
+ n->end = end;
+
+ return n;
+}
+
+/**
+ * Adds a list of states to the given automaton 'n'.
+ *
+ * @param n automaton to which the states should be added
+ * @param states_head head of the DLL of states
+ * @param states_tail tail of the DLL of states
+ */
+static void
+nfa_add_states (struct GNUNET_REGEX_Automaton *n,
+ struct GNUNET_REGEX_State *states_head,
+ struct GNUNET_REGEX_State *states_tail)
+{
+ struct GNUNET_REGEX_State *s;
+
+ if (NULL == n || NULL == states_head)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not add states\n");
+ return;
+ }
+
+ if (NULL == n->states_head)
+ {
+ n->states_head = states_head;
+ n->states_tail = states_tail;
+ return;
+ }
+
+ if (NULL != states_head)
+ {
+ n->states_tail->next = states_head;
+ n->states_tail = states_tail;
+ }
+
+ for (s = states_head; NULL != s; s = s->next)
+ n->state_count++;
+}
+
+/**
+ * Creates a new NFA state. Needs to be freed using automaton_destroy_state.
+ *
+ * @param ctx context
+ * @param accepting is it an accepting state or not
+ *
+ * @return new NFA state
+ */
+static struct GNUNET_REGEX_State *
+nfa_state_create (struct GNUNET_REGEX_Context *ctx, int accepting)
+{
+ struct GNUNET_REGEX_State *s;
+
+ s = GNUNET_malloc (sizeof (struct GNUNET_REGEX_State));
+ s->id = ctx->state_id++;
+ s->accepting = accepting;
+ s->marked = 0;
+ s->contained = 0;
+ s->index = -1;
+ s->lowlink = -1;
+ s->scc_id = 0;
+ s->name = NULL;
+ GNUNET_asprintf (&s->name, "s%i", s->id);
+
+ return s;
+}
+
+/**
+ * Calculates the NFA closure set for the given state.
+ *
+ * @param nfa the NFA containing 's'
+ * @param s starting point state
+ * @param label transitioning label on which to base the closure on,
+ * pass 0 for epsilon transition
+ *
+ * @return sorted nfa closure on 'label' (epsilon closure if 'label' is 0)
+ */
+static struct GNUNET_REGEX_StateSet *
+nfa_closure_create (struct GNUNET_REGEX_Automaton *nfa,
+ struct GNUNET_REGEX_State *s, const char label)
+{
+ struct GNUNET_REGEX_StateSet *cls;
+ struct GNUNET_REGEX_StateSet *cls_check;
+ struct GNUNET_REGEX_State *clsstate;
+ struct GNUNET_REGEX_State *currentstate;
+ struct Transition *ctran;
+
+ if (NULL == s)
+ return NULL;
+
+ cls = GNUNET_malloc (sizeof (struct GNUNET_REGEX_StateSet));
+ cls_check = GNUNET_malloc (sizeof (struct GNUNET_REGEX_StateSet));
+
+ for (clsstate = nfa->states_head; NULL != clsstate; clsstate = clsstate->next)
+ clsstate->contained = 0;
+
+ // Add start state to closure only for epsilon closure
+ if (0 == label)
+ GNUNET_array_append (cls->states, cls->len, s);
+
+ GNUNET_array_append (cls_check->states, cls_check->len, s);
+ while (cls_check->len > 0)
+ {
+ currentstate = cls_check->states[cls_check->len - 1];
+ GNUNET_array_grow (cls_check->states, cls_check->len, cls_check->len - 1);
+
+ for (ctran = currentstate->transitions_head; NULL != ctran;
+ ctran = ctran->next)
+ {
+ if (NULL != ctran->to_state && label == ctran->label)
+ {
+ clsstate = ctran->to_state;
+
+ if (NULL != clsstate && 0 == clsstate->contained)
+ {
+ GNUNET_array_append (cls->states, cls->len, clsstate);
+ GNUNET_array_append (cls_check->states, cls_check->len, clsstate);
+ clsstate->contained = 1;
+ }
+ }
+ }
+ }
+ GNUNET_assert (0 == cls_check->len);
+ GNUNET_free (cls_check);
+
+ if (cls->len > 1)
+ qsort (cls->states, cls->len, sizeof (struct GNUNET_REGEX_State *),
+ state_compare);
+
+ return cls;
+}
+
+/**
+ * Calculates the closure set for the given set of states.
+ *
+ * @param nfa the NFA containing 's'
+ * @param states list of states on which to base the closure on
+ * @param label transitioning label for which to base the closure on,
+ * pass 0 for epsilon transition
+ *
+ * @return sorted nfa closure on 'label' (epsilon closure if 'label' is 0)
+ */
+static struct GNUNET_REGEX_StateSet *
+nfa_closure_set_create (struct GNUNET_REGEX_Automaton *nfa,
+ struct GNUNET_REGEX_StateSet *states, const char label)
+{
+ struct GNUNET_REGEX_State *s;
+ struct GNUNET_REGEX_StateSet *sset;
+ struct GNUNET_REGEX_StateSet *cls;
+ int i;
+ int j;
+ int k;
+ int contains;
+
+ if (NULL == states)
+ return NULL;
+
+ cls = GNUNET_malloc (sizeof (struct GNUNET_REGEX_StateSet));
+
+ for (i = 0; i < states->len; i++)
+ {
+ s = states->states[i];
+ sset = nfa_closure_create (nfa, s, label);
+
+ for (j = 0; j < sset->len; j++)
+ {
+ contains = 0;
+ for (k = 0; k < cls->len; k++)
+ {
+ if (sset->states[j]->id == cls->states[k]->id)
+ {
+ contains = 1;
+ break;
+ }
+ }
+ if (!contains)
+ GNUNET_array_append (cls->states, cls->len, sset->states[j]);
+ }
+ state_set_clear (sset);
+ }
+
+ if (cls->len > 1)
+ qsort (cls->states, cls->len, sizeof (struct GNUNET_REGEX_State *),
+ state_compare);
+
+ return cls;
+}
+
+/**
+ * Pops two NFA fragments (a, b) from the stack and concatenates them (ab)
+ *
+ * @param ctx context
+ */
+static void
+nfa_add_concatenation (struct GNUNET_REGEX_Context *ctx)
+{
+ struct GNUNET_REGEX_Automaton *a;
+ struct GNUNET_REGEX_Automaton *b;
+ struct GNUNET_REGEX_Automaton *new;
+
+ b = ctx->stack_tail;
+ GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, b);
+ a = ctx->stack_tail;
+ GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a);
+
+ state_add_transition (ctx, a->end, 0, b->start);
+ a->end->accepting = 0;
+ b->end->accepting = 1;
+
+ new = nfa_fragment_create (NULL, NULL);
+ nfa_add_states (new, a->states_head, a->states_tail);
+ nfa_add_states (new, b->states_head, b->states_tail);
+ new->start = a->start;
+ new->end = b->end;
+ automaton_fragment_clear (a);
+ automaton_fragment_clear (b);
+
+ GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new);
+}
+
+/**
+ * Pops a NFA fragment from the stack (a) and adds a new fragment (a*)
+ *
+ * @param ctx context
+ */
+static void
+nfa_add_star_op (struct GNUNET_REGEX_Context *ctx)
+{
+ struct GNUNET_REGEX_Automaton *a;
+ struct GNUNET_REGEX_Automaton *new;
+ struct GNUNET_REGEX_State *start;
+ struct GNUNET_REGEX_State *end;
+
+ a = ctx->stack_tail;
+ GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a);
+
+ if (NULL == a)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR,
+ "nfa_add_star_op failed, because there was no element on the stack");
+ return;
+ }
+
+ start = nfa_state_create (ctx, 0);
+ end = nfa_state_create (ctx, 1);
+
+ state_add_transition (ctx, start, 0, a->start);
+ state_add_transition (ctx, start, 0, end);
+ state_add_transition (ctx, a->end, 0, a->start);
+ state_add_transition (ctx, a->end, 0, end);
+
+ a->end->accepting = 0;
+ end->accepting = 1;
+
+ new = nfa_fragment_create (start, end);
+ nfa_add_states (new, a->states_head, a->states_tail);
+ automaton_fragment_clear (a);
+
+ GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new);
+}
+
+/**
+ * Pops an NFA fragment (a) from the stack and adds a new fragment (a+)
+ *
+ * @param ctx context
+ */
+static void
+nfa_add_plus_op (struct GNUNET_REGEX_Context *ctx)
+{
+ struct GNUNET_REGEX_Automaton *a;
+
+ a = ctx->stack_tail;
+ GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a);
+
+ state_add_transition (ctx, a->end, 0, a->start);
+
+ GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, a);
+}
+
+/**
+ * Pops an NFA fragment (a) from the stack and adds a new fragment (a?)
+ *
+ * @param ctx context
+ */
+static void
+nfa_add_question_op (struct GNUNET_REGEX_Context *ctx)
+{
+ struct GNUNET_REGEX_Automaton *a;
+ struct GNUNET_REGEX_Automaton *new;
+ struct GNUNET_REGEX_State *start;
+ struct GNUNET_REGEX_State *end;
+
+ a = ctx->stack_tail;
+ GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a);
+
+ if (NULL == a)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR,
+ "nfa_add_question_op failed, because there was no element on the stack");
+ return;
+ }
+
+ start = nfa_state_create (ctx, 0);
+ end = nfa_state_create (ctx, 1);
+
+ state_add_transition (ctx, start, 0, a->start);
+ state_add_transition (ctx, start, 0, end);
+ state_add_transition (ctx, a->end, 0, end);
+
+ a->end->accepting = 0;
+
+ new = nfa_fragment_create (start, end);
+ nfa_add_states (new, a->states_head, a->states_tail);
+ automaton_fragment_clear (a);
+
+ GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new);
+}
+
+/**
+ * Pops two NFA fragments (a, b) from the stack and adds a new NFA fragment that
+ * alternates between a and b (a|b)
+ *
+ * @param ctx context
+ */
+static void
+nfa_add_alternation (struct GNUNET_REGEX_Context *ctx)
+{
+ struct GNUNET_REGEX_Automaton *a;
+ struct GNUNET_REGEX_Automaton *b;
+ struct GNUNET_REGEX_Automaton *new;
+ struct GNUNET_REGEX_State *start;
+ struct GNUNET_REGEX_State *end;
+
+ b = ctx->stack_tail;
+ GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, b);
+ a = ctx->stack_tail;
+ GNUNET_CONTAINER_DLL_remove (ctx->stack_head, ctx->stack_tail, a);
+
+ start = nfa_state_create (ctx, 0);
+ end = nfa_state_create (ctx, 1);
+ state_add_transition (ctx, start, 0, a->start);
+ state_add_transition (ctx, start, 0, b->start);
+
+ state_add_transition (ctx, a->end, 0, end);
+ state_add_transition (ctx, b->end, 0, end);
+
+ a->end->accepting = 0;
+ b->end->accepting = 0;
+ end->accepting = 1;
+
+ new = nfa_fragment_create (start, end);
+ nfa_add_states (new, a->states_head, a->states_tail);
+ nfa_add_states (new, b->states_head, b->states_tail);
+ automaton_fragment_clear (a);
+ automaton_fragment_clear (b);
+
+ GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, new);
+}
+
+/**
+ * Adds a new nfa fragment to the stack
+ *
+ * @param ctx context
+ * @param lit label for nfa transition
+ */
+static void
+nfa_add_label (struct GNUNET_REGEX_Context *ctx, const char lit)
+{
+ struct GNUNET_REGEX_Automaton *n;
+ struct GNUNET_REGEX_State *start;
+ struct GNUNET_REGEX_State *end;
+
+ GNUNET_assert (NULL != ctx);
+
+ start = nfa_state_create (ctx, 0);
+ end = nfa_state_create (ctx, 1);
+ state_add_transition (ctx, start, lit, end);
+ n = nfa_fragment_create (start, end);
+ GNUNET_assert (NULL != n);
+ GNUNET_CONTAINER_DLL_insert_tail (ctx->stack_head, ctx->stack_tail, n);
+}
+
+/**
+ * Initialize a new context
+ *
+ * @param ctx context
+ */
+static void
+GNUNET_REGEX_context_init (struct GNUNET_REGEX_Context *ctx)
+{
+ if (NULL == ctx)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Context was NULL!");
+ return;
+ }
+ ctx->state_id = 0;
+ ctx->transition_id = 0;
+ ctx->scc_id = 0;
+ ctx->stack_head = NULL;
+ ctx->stack_tail = NULL;
+}
+
+/**
+ * Construct an NFA by parsing the regex string of length 'len'.
+ *
+ * @param regex regular expression string
+ * @param len length of the string
+ *
+ * @return NFA, needs to be freed using GNUNET_REGEX_destroy_automaton
+ */
+struct GNUNET_REGEX_Automaton *
+GNUNET_REGEX_construct_nfa (const char *regex, const size_t len)
+{
+ struct GNUNET_REGEX_Context ctx;
+ struct GNUNET_REGEX_Automaton *nfa;
+ const char *regexp;
+ char *error_msg;
+ unsigned int count;
+ unsigned int altcount;
+ unsigned int atomcount;
+ unsigned int pcount;
+ struct
+ {
+ int altcount;
+ int atomcount;
+ } *p;
+
+ GNUNET_REGEX_context_init (&ctx);
+
+ regexp = regex;
+ p = NULL;
+ error_msg = NULL;
+ altcount = 0;
+ atomcount = 0;
+ pcount = 0;
+
+ for (count = 0; count < len && *regexp; count++, regexp++)
+ {
+ switch (*regexp)
+ {
+ case '(':
+ if (atomcount > 1)
+ {
+ --atomcount;
+ nfa_add_concatenation (&ctx);
+ }
+ GNUNET_array_grow (p, pcount, pcount + 1);
+ p[pcount - 1].altcount = altcount;
+ p[pcount - 1].atomcount = atomcount;
+ altcount = 0;
+ atomcount = 0;
+ break;
+ case '|':
+ if (0 == atomcount)
+ {
+ error_msg = "Cannot append '|' to nothing";
+ goto error;
+ }
+ while (--atomcount > 0)
+ nfa_add_concatenation (&ctx);
+ altcount++;
+ break;
+ case ')':
+ if (0 == pcount)
+ {
+ error_msg = "Missing opening '('";
+ goto error;
+ }
+ if (0 == atomcount)
+ {
+ // Ignore this: "()"
+ pcount--;
+ altcount = p[pcount].altcount;
+ atomcount = p[pcount].atomcount;
+ break;
+ }
+ while (--atomcount > 0)
+ nfa_add_concatenation (&ctx);
+ for (; altcount > 0; altcount--)
+ nfa_add_alternation (&ctx);
+ pcount--;
+ altcount = p[pcount].altcount;
+ atomcount = p[pcount].atomcount;
+ atomcount++;
+ break;
+ case '*':
+ if (atomcount == 0)
+ {
+ error_msg = "Cannot append '*' to nothing";
+ goto error;
+ }
+ nfa_add_star_op (&ctx);
+ break;
+ case '+':
+ if (atomcount == 0)
+ {
+ error_msg = "Cannot append '+' to nothing";
+ goto error;
+ }
+ nfa_add_plus_op (&ctx);
+ break;
+ case '?':
+ if (atomcount == 0)
+ {
+ error_msg = "Cannot append '?' to nothing";
+ goto error;
+ }
+ nfa_add_question_op (&ctx);
+ break;
+ case 92: /* escape: \ */
+ regexp++;
+ count++;
+ default:
+ if (atomcount > 1)
+ {
+ --atomcount;
+ nfa_add_concatenation (&ctx);
+ }
+ nfa_add_label (&ctx, *regexp);
+ atomcount++;
+ break;
+ }
+ }
+ if (0 != pcount)
+ {
+ error_msg = "Unbalanced parenthesis";
+ goto error;
+ }
+ while (--atomcount > 0)
+ nfa_add_concatenation (&ctx);
+ for (; altcount > 0; altcount--)
+ nfa_add_alternation (&ctx);
+
+ if (NULL != p)
+ GNUNET_free (p);
+
+ nfa = ctx.stack_tail;
+ GNUNET_CONTAINER_DLL_remove (ctx.stack_head, ctx.stack_tail, nfa);
+
+ if (NULL != ctx.stack_head)
+ {
+ error_msg = "Creating the NFA failed. NFA stack was not empty!";
+ goto error;
+ }
+
+ return nfa;
+
+error:
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not parse regex\n");
+ if (NULL != error_msg)
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "%s\n", error_msg);
+ if (NULL != p)
+ GNUNET_free (p);
+ while (NULL != ctx.stack_tail)
+ {
+ GNUNET_REGEX_automaton_destroy (ctx.stack_tail);
+ GNUNET_CONTAINER_DLL_remove (ctx.stack_head, ctx.stack_tail,
+ ctx.stack_tail);
+ }
+ return NULL;
+}
+
+/**
+ * Create DFA states based on given 'nfa' and starting with 'dfa_state'.
+ *
+ * @param ctx context.
+ * @param nfa NFA automaton.
+ * @param dfa DFA automaton.
+ * @param dfa_state current dfa state, pass epsilon closure of first nfa state
+ * for starting.
+ */
+static void
+construct_dfa_states (struct GNUNET_REGEX_Context *ctx,
+ struct GNUNET_REGEX_Automaton *nfa,
+ struct GNUNET_REGEX_Automaton *dfa,
+ struct GNUNET_REGEX_State *dfa_state)
+{
+ struct Transition *ctran;
+ struct GNUNET_REGEX_State *state_iter;
+ struct GNUNET_REGEX_State *new_dfa_state;
+ struct GNUNET_REGEX_State *state_contains;
+ struct GNUNET_REGEX_StateSet *tmp;
+ struct GNUNET_REGEX_StateSet *nfa_set;
+
+ for (ctran = dfa_state->transitions_head; NULL != ctran; ctran = ctran->next)
+ {
+ if (0 == ctran->label || NULL != ctran->to_state)
+ continue;
+
+ tmp = nfa_closure_set_create (nfa, dfa_state->nfa_set, ctran->label);
+ nfa_set = nfa_closure_set_create (nfa, tmp, 0);
+ state_set_clear (tmp);
+ new_dfa_state = dfa_state_create (ctx, nfa_set);
+ state_contains = NULL;
+ for (state_iter = dfa->states_head; NULL != state_iter;
+ state_iter = state_iter->next)
+ {
+ if (0 == state_set_compare (state_iter->nfa_set, new_dfa_state->nfa_set))
+ state_contains = state_iter;
+ }
+
+ if (NULL == state_contains)
+ {
+ automaton_add_state (dfa, new_dfa_state);
+ ctran->to_state = new_dfa_state;
+ construct_dfa_states (ctx, nfa, dfa, new_dfa_state);
+ }
+ else
+ {
+ ctran->to_state = state_contains;
+ automaton_destroy_state (new_dfa_state);
+ }
+ }
+}
+
+/**
+ * Construct DFA for the given 'regex' of length 'len'
+ *
+ * @param regex regular expression string
+ * @param len length of the regular expression
+ *
+ * @return DFA, needs to be freed using GNUNET_REGEX_destroy_automaton
+ */
+struct GNUNET_REGEX_Automaton *
+GNUNET_REGEX_construct_dfa (const char *regex, const size_t len)
+{
+ struct GNUNET_REGEX_Context ctx;
+ struct GNUNET_REGEX_Automaton *dfa;
+ struct GNUNET_REGEX_Automaton *nfa;
+ struct GNUNET_REGEX_StateSet *nfa_set;
+
+ GNUNET_REGEX_context_init (&ctx);
+
+ // Create NFA
+ nfa = GNUNET_REGEX_construct_nfa (regex, len);
+
+ if (NULL == nfa)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR,
+ "Could not create DFA, because NFA creation failed\n");
+ return NULL;
+ }
+
+ dfa = GNUNET_malloc (sizeof (struct GNUNET_REGEX_Automaton));
+ dfa->type = DFA;
+
+ // Create DFA start state from epsilon closure
+ nfa_set = nfa_closure_create (nfa, nfa->start, 0);
+ dfa->start = dfa_state_create (&ctx, nfa_set);
+ automaton_add_state (dfa, dfa->start);
+
+ construct_dfa_states (&ctx, nfa, dfa, dfa->start);
+
+ GNUNET_REGEX_automaton_destroy (nfa);
+
+ // Minimize DFA
+ dfa_minimize (&ctx, dfa);
+
+ // Calculate SCCs
+ scc_tarjan (&ctx, dfa);
+
+ // Create proofs for all states
+ automaton_create_proofs (dfa);
+
+ return dfa;
+}
+
+/**
+ * Free the memory allocated by constructing the GNUNET_REGEX_Automaton data
+ * structure.
+ *
+ * @param a automaton to be destroyed
+ */
+void
+GNUNET_REGEX_automaton_destroy (struct GNUNET_REGEX_Automaton *a)
+{
+ struct GNUNET_REGEX_State *s;
+ struct GNUNET_REGEX_State *next_state;
+
+ if (NULL == a)
+ return;
+
+ for (s = a->states_head; NULL != s;)
+ {
+ next_state = s->next;
+ automaton_destroy_state (s);
+ s = next_state;
+ }
+
+ GNUNET_free (a);
+}
+
+/**
+ * Save the given automaton as a GraphViz dot file
+ *
+ * @param a the automaton to be saved
+ * @param filename where to save the file
+ */
+void
+GNUNET_REGEX_automaton_save_graph (struct GNUNET_REGEX_Automaton *a,
+ const char *filename)
+{
+ struct GNUNET_REGEX_State *s;
+ struct Transition *ctran;
+ char *s_acc = NULL;
+ char *s_tran = NULL;
+ char *start;
+ char *end;
+ FILE *p;
+
+ if (NULL == a)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not print NFA, was NULL!");
+ return;
+ }
+
+ if (NULL == filename || strlen (filename) < 1)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "No Filename given!");
+ return;
+ }
+
+ p = fopen (filename, "w");
+
+ if (NULL == p)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not open file for writing: %s",
+ filename);
+ return;
+ }
+
+ start = "digraph G {\nrankdir=LR\n";
+ fwrite (start, strlen (start), 1, p);
+
+ for (s = a->states_head; NULL != s; s = s->next)
+ {
+ if (s->accepting)
+ {
+ GNUNET_asprintf (&s_acc,
+ "\"%s\" [shape=doublecircle, color=\"0.%i 0.8 0.95\"];\n",
+ s->name, s->scc_id);
+ }
+ else
+ {
+ GNUNET_asprintf (&s_acc, "\"%s\" [color=\"0.%i 0.8 0.95\"];\n", s->name,
+ s->scc_id);
+ }
+
+ if (NULL == s_acc)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not print state %s\n",
+ s->name);
+ return;
+ }
+ fwrite (s_acc, strlen (s_acc), 1, p);
+ GNUNET_free (s_acc);
+ s_acc = NULL;
+
+ for (ctran = s->transitions_head; NULL != ctran; ctran = ctran->next)
+ {
+ if (NULL == ctran->to_state)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR,
+ "Transition from State %i has has no state for transitioning\n",
+ s->id);
+ continue;
+ }
+
+ if (ctran->label == 0)
+ {
+ GNUNET_asprintf (&s_tran,
+ "\"%s\" -> \"%s\" [label = \"epsilon\", color=\"0.%i 0.8 0.95\"];\n",
+ s->name, ctran->to_state->name, s->scc_id);
+ }
+ else
+ {
+ GNUNET_asprintf (&s_tran,
+ "\"%s\" -> \"%s\" [label = \"%c\", color=\"0.%i 0.8 0.95\"];\n",
+ s->name, ctran->to_state->name, ctran->label,
+ s->scc_id);
+ }
+
+ if (NULL == s_tran)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Could not print state %s\n",
+ s->name);
+ return;
+ }
+
+ fwrite (s_tran, strlen (s_tran), 1, p);
+ GNUNET_free (s_tran);
+ s_tran = NULL;
+ }
+ }
+
+ end = "\n}\n";
+ fwrite (end, strlen (end), 1, p);
+ fclose (p);
+}
+
+/**
+ * Evaluates the given string using the given DFA automaton
+ *
+ * @param a automaton, type must be DFA
+ * @param string string that should be evaluated
+ *
+ * @return 0 if string matches, non 0 otherwise
+ */
+static int
+evaluate_dfa (struct GNUNET_REGEX_Automaton *a, const char *string)
+{
+ const char *strp;
+ struct GNUNET_REGEX_State *s;
+
+ if (DFA != a->type)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR,
+ "Tried to evaluate DFA, but NFA automaton given");
+ return -1;
+ }
+
+ s = a->start;
+
+ for (strp = string; NULL != strp && *strp; strp++)
+ {
+ s = dfa_move (s, *strp);
+ if (NULL == s)
+ break;
+ }
+
+ if (NULL != s && s->accepting)
+ return 0;
+
+ return 1;
+}
+
+/**
+ * Evaluates the given string using the given NFA automaton
+ *
+ * @param a automaton, type must be NFA
+ * @param string string that should be evaluated
+ *
+ * @return 0 if string matches, non 0 otherwise
+ */
+static int
+evaluate_nfa (struct GNUNET_REGEX_Automaton *a, const char *string)
+{
+ const char *strp;
+ struct GNUNET_REGEX_State *s;
+ struct GNUNET_REGEX_StateSet *sset;
+ struct GNUNET_REGEX_StateSet *new_sset;
+ int i;
+ int result;
+
+ if (NFA != a->type)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR,
+ "Tried to evaluate NFA, but DFA automaton given");
+ return -1;
+ }
+
+ result = 1;
+ strp = string;
+ sset = nfa_closure_create (a, a->start, 0);
+
+ for (strp = string; NULL != strp && *strp; strp++)
+ {
+ new_sset = nfa_closure_set_create (a, sset, *strp);
+ state_set_clear (sset);
+ sset = nfa_closure_set_create (a, new_sset, 0);
+ state_set_clear (new_sset);
+ }
+
+ for (i = 0; i < sset->len; i++)
+ {
+ s = sset->states[i];
+ if (NULL != s && s->accepting)
+ {
+ result = 0;
+ break;
+ }
+ }
+
+ state_set_clear (sset);
+ return result;
+}
+
+/**
+ * Evaluates the given 'string' against the given compiled regex
+ *
+ * @param a automaton
+ * @param string string to check
+ *
+ * @return 0 if string matches, non 0 otherwise
+ */
+int
+GNUNET_REGEX_eval (struct GNUNET_REGEX_Automaton *a, const char *string)
+{
+ int result;
+
+ switch (a->type)
+ {
+ case DFA:
+ result = evaluate_dfa (a, string);
+ break;
+ case NFA:
+ result = evaluate_nfa (a, string);
+ break;
+ default:
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR,
+ "Evaluating regex failed, automaton has no type!\n");
+ result = GNUNET_SYSERR;
+ break;
+ }
+
+ return result;
+}
+
+/**
+ * Get the first key for the given 'input_string'. This hashes the first x bits
+ * of the 'input_strings'.
+ *
+ * @param input_string string.
+ * @param string_len length of the 'input_string'.
+ * @param key pointer to where to write the hash code.
+ *
+ * @return number of bits of 'input_string' that have been consumed
+ * to construct the key
+ */
+unsigned int
+GNUNET_REGEX_get_first_key (const char *input_string, unsigned int string_len,
+ GNUNET_HashCode * key)
+{
+ unsigned int size;
+
+ size = string_len < initial_bits ? string_len : initial_bits;
+
+ if (NULL == input_string)
+ {
+ GNUNET_log (GNUNET_ERROR_TYPE_ERROR, "Given input string was NULL!\n");
+ return 0;
+ }
+
+ GNUNET_CRYPTO_hash (input_string, size, key);
+
+ return size;
+}
+
+/**
+ * Check if the given 'proof' matches the given 'key'.
+ *
+ * @param proof partial regex
+ * @param key hash
+ *
+ * @return GNUNET_OK if the proof is valid for the given key
+ */
+int
+GNUNET_REGEX_check_proof (const char *proof, const GNUNET_HashCode * key)
+{
+ return GNUNET_OK;
+}
+
+/**
+ * Iterate over all edges helper function starting from state 's', calling
+ * iterator on for each edge.
+ *
+ * @param s state.
+ * @param iterator iterator function called for each edge.
+ * @param iterator_cls closure.
+ */
+static void
+iterate_edge (struct GNUNET_REGEX_State *s, GNUNET_REGEX_KeyIterator iterator,
+ void *iterator_cls)
+{
+ struct Transition *t;
+ struct GNUNET_REGEX_Edge edges[s->transition_count];
+ unsigned int num_edges;
+
+ if (GNUNET_YES != s->marked)
+ {
+ s->marked = GNUNET_YES;
+
+ num_edges = state_get_edges (s, edges);
+
+ iterator (iterator_cls, &s->hash, s->proof, s->accepting, num_edges, edges);
+
+ for (t = s->transitions_head; NULL != t; t = t->next)
+ iterate_edge (t->to_state, iterator, iterator_cls);
+ }
+}
+
+/**
+ * Iterate over all edges starting from start state of automaton 'a'. Calling
+ * iterator for each edge.
+ *
+ * @param a automaton.
+ * @param iterator iterator called for each edge.
+ * @param iterator_cls closure.
+ */
+void
+GNUNET_REGEX_iterate_all_edges (struct GNUNET_REGEX_Automaton *a,
+ GNUNET_REGEX_KeyIterator iterator,
+ void *iterator_cls)
+{
+ struct GNUNET_REGEX_State *s;
+
+ for (s = a->states_head; NULL != s; s = s->next)
+ s->marked = GNUNET_NO;
+
+ iterate_edge (a->start, iterator, iterator_cls);
+}