aboutsummaryrefslogtreecommitdiff
path: root/tools/js-optimizer.js
blob: 21d521fd987130398d974d7b047c780365452394 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
//==============================================================================
// Optimizer tool. This is meant to be run after the emscripten compiler has
// finished generating code. These optimizations are done on the generated
// code to further improve it. Some of the modifications also work in
// conjunction with closure compiler.
//
// TODO: Optimize traverse to modify a node we want to replace, in-place,
//       instead of returning it to the previous call frame where we check?
// TODO: Share EMPTY_NODE instead of emptyNode that constructs?
//==============================================================================

// *** Environment setup code ***
var arguments_ = [];
var debug = false;

var ENVIRONMENT_IS_NODE = typeof process === 'object';
var ENVIRONMENT_IS_WEB = typeof window === 'object';
var ENVIRONMENT_IS_WORKER = typeof importScripts === 'function';
var ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER;

if (ENVIRONMENT_IS_NODE) {
  // Expose functionality in the same simple way that the shells work
  // Note that we pollute the global namespace here, otherwise we break in node
  print = function(x) {
    process['stdout'].write(x + '\n');
  };
  printErr = function(x) {
    process['stderr'].write(x + '\n');
  };

  var nodeFS = require('fs');
  var nodePath = require('path');

  if (!nodeFS.existsSync) {
    nodeFS.existsSync = function(path) {
      try {
        return !!nodeFS.readFileSync(path);
      } catch(e) {
        return false;
      }
    }
  }

  function find(filename) {
    var prefixes = [nodePath.join(__dirname, '..', 'src'), process.cwd()];
    for (var i = 0; i < prefixes.length; ++i) {
      var combined = nodePath.join(prefixes[i], filename);
      if (nodeFS.existsSync(combined)) {
        return combined;
      }
    }
    return filename;
  }

  read = function(filename) {
    var absolute = find(filename);
    return nodeFS['readFileSync'](absolute).toString();
  };

  load = function(f) {
    globalEval(read(f));
  };

  arguments_ = process['argv'].slice(2);

} else if (ENVIRONMENT_IS_SHELL) {
  // Polyfill over SpiderMonkey/V8 differences
  if (!this['read']) {
    this['read'] = function(f) { snarf(f) };
  }

  if (typeof scriptArgs != 'undefined') {
    arguments_ = scriptArgs;
  } else if (typeof arguments != 'undefined') {
    arguments_ = arguments;
  }

} else if (ENVIRONMENT_IS_WEB) {
  this['print'] = printErr = function(x) {
    console.log(x);
  };

  this['read'] = function(url) {
    var xhr = new XMLHttpRequest();
    xhr.open('GET', url, false);
    xhr.send(null);
    return xhr.responseText;
  };

  if (this['arguments']) {
    arguments_ = arguments;
  }
} else if (ENVIRONMENT_IS_WORKER) {
  // We can do very little here...

  this['load'] = importScripts;

} else {
  throw 'Unknown runtime environment. Where are we?';
}

function globalEval(x) {
  eval.call(null, x);
}

if (typeof load === 'undefined' && typeof read != 'undefined') {
  this['load'] = function(f) {
    globalEval(read(f));
  };
}

if (typeof printErr === 'undefined') {
  this['printErr'] = function(){};
}

if (typeof print === 'undefined') {
  this['print'] = printErr;
}
// *** Environment setup code ***

var uglify = require('../tools/eliminator/node_modules/uglify-js');
var fs = require('fs');
var path = require('path');

// Load some modules

load('utility.js');

// Utilities

var FUNCTION = set('defun', 'function');
var LOOP = set('do', 'while', 'for');
var LOOP_FLOW = set('break', 'continue');
var ASSIGN_OR_ALTER = set('assign', 'unary-postfix', 'unary-prefix');
var CONTROL_FLOW = set('do', 'while', 'for', 'if', 'switch');
var NAME_OR_NUM = set('name', 'num');
var ASSOCIATIVE_BINARIES = set('+', '*', '|', '&', '^');
var ALTER_FLOW = set('break', 'continue', 'return');

var BREAK_CAPTURERS = set('do', 'while', 'for', 'switch');
var CONTINUE_CAPTURERS = LOOP;

var NULL_NODE = ['name', 'null'];
var UNDEFINED_NODE = ['unary-prefix', 'void', ['num', 0]];
var TRUE_NODE = ['unary-prefix', '!', ['num', 0]];
var FALSE_NODE = ['unary-prefix', '!', ['num', 1]];

var GENERATED_FUNCTIONS_MARKER = '// EMSCRIPTEN_GENERATED_FUNCTIONS';
var generatedFunctions = false; // whether we have received only generated functions

var extraInfo = null;

function srcToAst(src) {
  return uglify.parser.parse(src, false, debug);
}

function astToSrc(ast, minifyWhitespace) {
    return uglify.uglify.gen_code(ast, {
    debug: debug,
    ascii_only: true,
    beautify: !minifyWhitespace,
    indent_level: 1
  });
}

// Traverses the children of a node. If the traverse function returns an object,
// replaces the child. If it returns true, stop the traversal and return true.
function traverseChildren(node, traverse, pre, post, stack) {
  for (var i = 0; i < node.length; i++) {
    var subnode = node[i];
    if (Array.isArray(subnode)) {
      var subresult = traverse(subnode, pre, post, stack);
      if (subresult === true) return true;
      if (subresult !== null && typeof subresult === 'object') node[i] = subresult;
    }
  }
}

// Traverses a JavaScript syntax tree rooted at the given node calling the given
// callback for each node.
//   @arg node: The root of the AST.
//   @arg pre: The pre to call for each node. This will be called with
//     the node as the first argument and its type as the second. If true is
//     returned, the traversal is stopped. If an object is returned,
//     it replaces the passed node in the tree. If null is returned, we stop
//     traversing the subelements (but continue otherwise).
//   @arg post: A callback to call after traversing all children.
//   @arg stack: If true, a stack will be implemented: If pre does not push on
//               the stack, we push a 0. We pop when we leave the node. The
//               stack is passed as a third parameter to the callbacks.
//   @returns: If the root node was replaced, the new root node. If the traversal
//     was stopped, true. Otherwise undefined.
function traverse(node, pre, post, stack) {
  var type = node[0], result, len;
  var relevant = typeof type === 'string';
  if (relevant) {
    if (stack) len = stack.length;
    var result = pre(node, type, stack);
    if (result === true) return true;
    if (result && result !== null) node = result; // Continue processing on this node
    if (stack && len === stack.length) stack.push(0);
  }
  if (result !== null) {
    if (traverseChildren(node, traverse, pre, post, stack) === true) return true;
  }
  if (relevant) {
    if (post) {
      var postResult = post(node, type, stack);
      result = result || postResult;
    }
    if (stack) stack.pop();
  }
  return result;
}

// Only walk through the generated functions
function traverseGenerated(ast, pre, post, stack) {
  assert(generatedFunctions);
  traverse(ast, function(node) {
    if (node[0] === 'defun') {
      traverse(node, pre, post, stack);
      return null;
    }
  });
}

function traverseGeneratedFunctions(ast, callback) {
  assert(generatedFunctions);
  if (ast[0] === 'toplevel') {
    var stats = ast[1];
    for (var i = 0; i < stats.length; i++) {
      var curr = stats[i];
      if (curr[0] === 'defun') callback(curr);
    }
  } else if (ast[0] === 'defun') {
    callback(ast);
  }
}

// Walk the ast in a simple way, with an understanding of which JS variables are defined)
function traverseWithVariables(ast, callback) {
  traverse(ast, function(node, type, stack) {
    if (type in FUNCTION) {
      stack.push({ type: 'function', vars: node[2] });
    } else if (type === 'var') {
      // Find our function, add our vars
      var func = stack[stack.length-1];
      if (func) {
        func.vars = func.vars.concat(node[1].map(function(varItem) { return varItem[0] }));
      }
    }
  }, function(node, type, stack) {
    if (type === 'toplevel' || type in FUNCTION) {
      // We know all of the variables that are seen here, proceed to do relevant replacements
      var allVars = stack.map(function(item) { return item ? item.vars : [] }).reduce(concatenator, []); // FIXME dictionary for speed?
      traverse(node, function(node2, type2, stack2) {
        // Be careful not to look into our inner functions. They have already been processed.
        if (sum(stack2) > 1 || (type === 'toplevel' && sum(stack2) === 1)) return;
        if (type2 in FUNCTION) stack2.push(1);
        return callback(node2, type2, allVars);
      }, null, []);
    }
  }, []);
}

function emptyNode() { // XXX do we need to create new nodes here? can't we reuse?
  return ['toplevel', []]
}

function isEmptyNode(node) {
  return node.length === 2 && node[0] === 'toplevel' && node[1].length === 0;
}

function clearEmptyNodes(list) {
  for (var i = 0; i < list.length;) {
    if (isEmptyNode(list[i]) || (list[i][0] === 'stat' && isEmptyNode(list[i][1]))) {
      list.splice(i, 1);
    } else {
      i++;
    }
  }
}

// Passes

// Dump the AST. Useful for debugging. For example,
//  node tools/js-optimizer.js ABSOLUTE_PATH_TO_FILE dumpAst
function dumpAst(ast) {
  printErr(JSON.stringify(ast, null, '  '));
}

function dumpSrc(ast) {
  printErr(astToSrc(ast));
}

// Undos closure's creation of global variables with values true, false,
// undefined, null. These cut down on size, but do not affect gzip size
// and make JS engine's lives slightly harder (?)
function unGlobalize(ast) {

  throw 'this is deprecated!'; // and does not work with parallel compilation

  assert(ast[0] === 'toplevel');
  var values = {};
  // Find global renamings of the relevant values
  ast[1].forEach(function(node, i) {
    if (node[0] != 'var') return;
    node[1] = node[1].filter(function(varItem, j) {
      var ident = varItem[0];
      var value = varItem[1];
      if (!value) return true;
      var possible = false;
      if (jsonCompare(value, NULL_NODE) ||
          jsonCompare(value, UNDEFINED_NODE) ||
          jsonCompare(value, TRUE_NODE) ||
          jsonCompare(value, FALSE_NODE)) {
        possible = true;
      }
      if (!possible) return true;
      // Make sure there are no assignments to this variable. (This isn't fast, we traverse many times..)
      ast[1][i][1][j] = emptyNode();
      var assigned = false;
      traverseWithVariables(ast, function(node, type, allVars) {
        if (type === 'assign' && node[2][0] === 'name' && node[2][1] === ident) assigned = true;
      });
      ast[1][i][1][j] = [ident, value];
      if (!assigned) {
        values[ident] = value;
        return false;
      }
      return true;
    });

    if (node[1].length === 0) {
      ast[1][i] = emptyNode();
    }
  });
  traverseWithVariables(ast, function(node, type, allVars) {
    if (type === 'name') {
      var ident = node[1];
      if (ident in values && allVars.indexOf(ident) < 0) {
        return copy(values[ident]);
      }
    }
  });
}

// Closure compiler, when inlining, will insert assignments to
// undefined for the shared variables. However, in compiled code
// - and in library/shell code too! - we should never rely on
// undefined being assigned. So we can simply remove those assignments.
//
// Note: An inlined function that kept a large value referenced, may
//       keep that references when inlined, if we remove the setting to
//       undefined. This is not dangerous in compiled code, but might be
//       in supporting code (for example, holding on to the HEAP when copying).
//
// This pass assumes that unGlobalize has been run, so undefined
// is now explicit.
function removeAssignsToUndefined(ast) {
  traverse(ast, function(node, type) {
    if (type === 'assign' && jsonCompare(node[3], ['unary-prefix', 'void', ['num', 0]])) {
      return emptyNode();
    } else if (type === 'var') {
      node[1] = node[1].map(function(varItem, j) {
        var ident = varItem[0];
        var value = varItem[1];
        if (jsonCompare(value, UNDEFINED_NODE)) return [ident];
        return [ident, value];
      });
    }
  });
  // cleanup (|x = y = void 0| leaves |x = ;| right now)
  var modified = true;
  while (modified) {
    modified = false;
    traverse(ast, function(node, type) {
      if (type === 'assign' && jsonCompare(node[3], emptyNode())) {
        modified = true;
        return emptyNode();
      } else if (type === 'var') {
        node[1] = node[1].map(function(varItem, j) {
          var ident = varItem[0];
          var value = varItem[1];
          if (value && jsonCompare(value, emptyNode())) return [ident];
          return [ident, value];
        });
      }
    });
  }
}

// XXX This is an invalid optimization
// We sometimes leave some settings to label that are not needed, if later in
// the relooper we realize that we have a single entry, so no checks on label
// are actually necessary. It's easy to clean those up now.
function removeUnneededLabelSettings(ast) {
  traverse(ast, function(node, type) {
    if (type === 'defun') { // all of our compiled code is in defun nodes
      // Find all checks
      var checked = {};
      traverse(node, function(node, type) {
        if (type === 'binary' && node[1] === '==' && node[2][0] === 'name' && node[2][1] === 'label') {
          assert(node[3][0] === 'num');
          checked[node[3][1]] = 1;
        }
      });
      // Remove unneeded sets
      traverse(node, function(node, type) {
        if (type === 'assign' && node[2][0] === 'name' && node[2][1] === 'label') {
          assert(node[3][0] === 'num');
          if (!(node[3][1] in checked)) return emptyNode();
        }
      });
    }
  });
}

// Various expression simplifications. Pre run before closure (where we still have metadata), Post run after.

var USEFUL_BINARY_OPS = set('<<', '>>', '|', '&', '^');
var COMPARE_OPS = set('<', '<=', '>', '>=', '==', '===', '!=', '!==');

function simplifyExpressions(ast) {
  // Simplify common expressions used to perform integer conversion operations
  // in cases where no conversion is needed.
  function simplifyIntegerConversions(ast) {
    traverse(ast, function(node, type) {
      if (type === 'binary'       && node[1]    === '>>' && node[3][0] === 'num' &&
          node[2][0] === 'binary' && node[2][1] === '<<' && node[2][3][0] === 'num' && node[3][1] === node[2][3][1]) {
        // Transform (x&A)<<B>>B to X&A.
        var innerNode = node[2][2];
        var shifts = node[3][1];
        if (innerNode[0] === 'binary' && innerNode[1] === '&' && innerNode[3][0] === 'num') {
          var mask = innerNode[3][1];
          if (mask << shifts >> shifts === mask) {
            return innerNode;
          }
        }
      } else if (type === 'binary' && node[1] === '&' && node[3][0] === 'num') {
        // Rewrite (X < Y) & 1 to (X < Y)|0. (Subsequent passes will eliminate
        // the |0 if possible.)
        var input = node[2];
        var amount = node[3][1];
        if (input[0] === 'binary' && (input[1] in COMPARE_OPS) && amount == 1) {
          node[1] = '|';
          node[3][1] = 0;
        }
      }
    });
  }

  // When there is a bunch of math like (((8+5)|0)+12)|0, only the external |0 is needed, one correction is enough.
  // At each node, ((X|0)+Y)|0 can be transformed into (X+Y): The inner corrections are not needed
  // TODO: Is the same is true for 0xff, 0xffff?
  // Likewise, if we have |0 inside a block that will be >>'d, then the |0 is unnecessary because some
  // 'useful' mathops already |0 anyhow.

  function simplifyBitops(ast) {
    var SAFE_BINARY_OPS;
    if (asm) {
      SAFE_BINARY_OPS = set('+', '-'); // division is unsafe as it creates non-ints in JS; mod is unsafe as signs matter so we can't remove |0's; mul does not nest with +,- in asm
    } else {
      SAFE_BINARY_OPS = set('+', '-', '*');
    }
    var COERCION_REQUIRING_OPS = set('sub', 'unary-prefix'); // ops that in asm must be coerced right away
    var COERCION_REQUIRING_BINARIES = set('*', '/', '%'); // binary ops that in asm must be coerced
    var ZERO = ['num', 0];

    function removeMultipleOrZero() {
      var rerun = true;
      while (rerun) {
        rerun = false;
        traverse(ast, function process(node, type, stack) {
          if (type === 'binary' && node[1] === '|') {
            if (node[2][0] === 'num' && node[3][0] === 'num') {
              node[2][1] |= node[3][1];
              return node[2];
            }
            var go = false;
            if (jsonCompare(node[2], ZERO)) {
              // canonicalize order
              var temp = node[3];
              node[3] = node[2];
              node[2] = temp;
              go = true;
            } else if (jsonCompare(node[3], ZERO)) {
              go = true;
            }
            if (!go) {
              stack.push(1);
              return;
            }
            // We might be able to remove this correction
            for (var i = stack.length-1; i >= 0; i--) {
              if (stack[i] >= 1) {
                if (asm) {
                  if (stack[stack.length-1] < 2 && node[2][0] === 'call') break; // we can only remove multiple |0s on these
                  if (stack[stack.length-1] < 1 && (node[2][0] in COERCION_REQUIRING_OPS ||
                                                    (node[2][0] === 'binary' && node[2][1] in COERCION_REQUIRING_BINARIES))) break; // we can remove |0 or >>2
                }
                // we will replace ourselves with the non-zero side. Recursively process that node.
                var result = jsonCompare(node[2], ZERO) ? node[3] : node[2], other;
                // replace node in-place
                node.length = result.length;
                for (var j = 0; j < result.length; j++) {
                  node[j] = result[j];
                }
                rerun = true;
                return process(result, result[0], stack);
              } else if (stack[i] === -1) {
                break; // Too bad, we can't
              }
            }
            stack.push(2); // From here on up, no need for this kind of correction, it's done at the top
                           // (Add this at the end, so it is only added if we did not remove it)
          } else if (type === 'binary' && node[1] in USEFUL_BINARY_OPS) {
            stack.push(1);
          } else if ((type === 'binary' && node[1] in SAFE_BINARY_OPS) || type === 'num' || type === 'name') {
            stack.push(0); // This node is safe in that it does not interfere with this optimization
          } else if (type === 'unary-prefix' && node[1] === '~') {
            stack.push(1);
          } else {
            stack.push(-1); // This node is dangerous! Give up if you see this before you see '1'
          }
        }, null, []);
      }
    }

    removeMultipleOrZero();

    // & and heap-related optimizations

    var heapBits, heapUnsigned;
    function parseHeap(name) {
      if (name.substr(0, 4) != 'HEAP') return false;
      heapUnsigned = name[4] === 'U';
      heapBits = parseInt(name.substr(heapUnsigned ? 5 : 4));
      return true;
    }

    var hasTempDoublePtr = false, rerunOrZeroPass = false;

    traverse(ast, function(node, type) {
      if (type === 'name') {
        if (node[1] === 'tempDoublePtr') hasTempDoublePtr = true;
      } else if (type === 'binary' && node[1] === '&' && node[3][0] === 'num') {
        if (node[2][0] === 'num') return ['num', node[2][1] & node[3][1]];
        var input = node[2];
        var amount = node[3][1];
        if (input[0] === 'binary' && input[1] === '&' && input[3][0] === 'num') {
          // Collapse X & 255 & 1
          node[3][1] = amount & input[3][1];
          node[2] = input[2];
        } else if (input[0] === 'sub' && input[1][0] === 'name') {
          // HEAP8[..] & 255 => HEAPU8[..]
          var name = input[1][1];
          if (parseHeap(name)) {
            if (amount === Math.pow(2, heapBits)-1) {
              if (!heapUnsigned) {
                input[1][1] = 'HEAPU' + heapBits; // make unsigned
              }
              if (asm) {
                // we cannot return HEAPU8 without a coercion, but at least we do HEAP8 & 255 => HEAPU8 | 0
                node[1] = '|';
                node[3][1] = 0;
                return node;
              }
              return input;
            }
          }
        }
      } else if (type === 'binary' && node[1] === '^') {
        // LLVM represents bitwise not as xor with -1. Translate it back to an actual bitwise not.
        if (node[3][0] === 'unary-prefix' && node[3][1] === '-' && node[3][2][0] === 'num' &&
            node[3][2][1] === 1 &&
            !(node[2][0] == 'unary-prefix' && node[2][1] == '~')) { // avoid creating ~~~ which is confusing for asm given the role of ~~
            return ['unary-prefix', '~', node[2]];
        }
      } else if (type       === 'binary' && node[1]    === '>>' && node[3][0]    === 'num' &&
                 node[2][0] === 'binary' && node[2][1] === '<<' && node[2][3][0] === 'num' &&
                 node[2][2][0] === 'sub' && node[2][2][1][0] === 'name') {
        // collapse HEAPU?8[..] << 24 >> 24 etc. into HEAP8[..] | 0
        var amount = node[3][1];
        var name = node[2][2][1][1];
        if (amount === node[2][3][1] && parseHeap(name)) {
          if (heapBits === 32 - amount) {
            node[2][2][1][1] = 'HEAP' + heapBits;
            node[1] = '|';
            node[2] = node[2][2];
            node[3][1] = 0;
            rerunOrZeroPass = true;
            return node;
          }
        }
      } else if (type === 'assign') {
        // optimizations for assigning into HEAP32 specifically
        if (node[1] === true && node[2][0] === 'sub' && node[2][1][0] === 'name') {
          if (node[2][1][1] === 'HEAP32') {
            // HEAP32[..] = x | 0 does not need the | 0 (unless it is a mandatory |0 of a call)
            if (node[3][0] === 'binary' && node[3][1] === '|') {
              if (node[3][2][0] === 'num' && node[3][2][1] === 0 && node[3][3][0] != 'call') {
                node[3] = node[3][3];
              } else if (node[3][3][0] === 'num' && node[3][3][1] === 0 && node[3][2][0] != 'call') {
                node[3] = node[3][2];
              }
            }
          } else if (node[2][1][1] === 'HEAP8') {
            // HEAP8[..] = x & 0xff does not need the & 0xff
            if (node[3][0] === 'binary' && node[3][1] === '&' && node[3][3][0] == 'num' && node[3][3][1] == 0xff) {
              node[3] = node[3][2];
            }
          } else if (node[2][1][1] === 'HEAP16') {
            // HEAP16[..] = x & 0xffff does not need the & 0xffff
            if (node[3][0] === 'binary' && node[3][1] === '&' && node[3][3][0] == 'num' && node[3][3][1] == 0xffff) {
              node[3] = node[3][2];
            }
          }
        }
        var value = node[3];
        if (value[0] === 'binary' && value[1] === '|') {
          // canonicalize order of |0 to end
          if (value[2][0] === 'num' && value[2][1] === 0) {
            var temp = value[2];
            value[2] = value[3];
            value[3] = temp;
          }
          // if a seq ends in an |0, remove an external |0
          // note that it is only safe to do this in assigns, like we are doing here (return (x, y|0); is not valid)
          if (value[2][0] === 'seq' && value[2][2][0] === 'binary' && value[2][2][1] in USEFUL_BINARY_OPS) {
            node[3] = value[2];
          }
        }
      } else if (type == 'sub' && node[1][0] == 'name' && /^FUNCTION_TABLE.*/.exec(node[1][1])) {
        return null; // do not traverse subchildren here, we should not collapse 55 & 126. TODO: optimize this into a nonvirtual call (also because we lose some other opts here)!
      }
    });

    if (rerunOrZeroPass) removeMultipleOrZero();

    if (asm) {
      if (hasTempDoublePtr) {
        var asmData = normalizeAsm(ast);
        traverse(ast, function(node, type) {
          if (type === 'assign') {
            if (node[1] === true && node[2][0] === 'sub' && node[2][1][0] === 'name' && node[2][1][1] === 'HEAP32') {
              // remove bitcasts that are now obviously pointless, e.g.
              // HEAP32[$45 >> 2] = HEAPF32[tempDoublePtr >> 2] = ($14 < $28 ? $14 : $28) - $42, HEAP32[tempDoublePtr >> 2] | 0;
              var value = node[3];
              if (value[0] === 'seq' && value[1][0] === 'assign' && value[1][2][0] === 'sub' && value[1][2][1][0] === 'name' && value[1][2][1][1] === 'HEAPF32' &&
                  value[1][2][2][0] === 'binary' && value[1][2][2][2][0] === 'name' && value[1][2][2][2][1] === 'tempDoublePtr') {
                // transform to HEAPF32[$45 >> 2] = ($14 < $28 ? $14 : $28) - $42;
                node[2][1][1] = 'HEAPF32';
                node[3] = value[1][3];
              }
            }
          } else if (type === 'seq') {
            // (HEAP32[tempDoublePtr >> 2] = HEAP32[$37 >> 2], +HEAPF32[tempDoublePtr >> 2])
            //   ==>
            // +HEAPF32[$37 >> 2]
            if (node[0] === 'seq' && node[1][0] === 'assign' && node[1][2][0] === 'sub' && node[1][2][1][0] === 'name' &&
                (node[1][2][1][1] === 'HEAP32' || node[1][2][1][1] === 'HEAPF32') &&
                node[1][2][2][0] === 'binary' && node[1][2][2][2][0] === 'name' && node[1][2][2][2][1] === 'tempDoublePtr' &&
                node[1][3][0] === 'sub' && node[1][3][1][0] === 'name' && (node[1][3][1][1] === 'HEAP32' || node[1][3][1][1] === 'HEAPF32') &&
                node[2][0] !== 'seq') { // avoid (x, y, z) which can be used for tempDoublePtr on doubles for alignment fixes
              if (node[1][2][1][1] === 'HEAP32') {
                node[1][3][1][1] = 'HEAPF32';
                return makeAsmCoercion(node[1][3], detectAsmCoercion(node[2]));
              } else {
                node[1][3][1][1] = 'HEAP32';
                return ['binary', '|', node[1][3], ['num', 0]];
              }
            }
          }
        });

        // finally, wipe out remaining ones by finding cases where all assignments to X are bitcasts, and all uses are writes to
        // the other heap type, then eliminate the bitcast
        var bitcastVars = {};
        traverse(ast, function(node, type) {
          if (type === 'assign' && node[1] === true && node[2][0] === 'name') {
            var value = node[3];
            if (value[0] === 'seq' && value[1][0] === 'assign' && value[1][2][0] === 'sub' && value[1][2][1][0] === 'name' &&
                (value[1][2][1][1] === 'HEAP32' || value[1][2][1][1] === 'HEAPF32') &&
                value[1][2][2][0] === 'binary' && value[1][2][2][2][0] === 'name' && value[1][2][2][2][1] === 'tempDoublePtr') {
              var name = node[2][1];
              if (!bitcastVars[name]) bitcastVars[name] = {
                define_HEAP32: 0, define_HEAPF32: 0, use_HEAP32: 0, use_HEAPF32: 0, bad: false, namings: 0, defines: [], uses: []
              };
              bitcastVars[name]['define_' + value[1][2][1][1]]++;
              bitcastVars[name].defines.push(node);
            }
          }
        });
        traverse(ast, function(node, type) {
          if (type === 'name' && bitcastVars[node[1]]) {
            bitcastVars[node[1]].namings++;
          } else if (type === 'assign' && node[1] === true) {
            var value = node[3];
            if (value[0] === 'name') {
              var name = value[1];
              if (bitcastVars[name]) {
                var target = node[2];
                if (target[0] === 'sub' && target[1][0] === 'name' && (target[1][1] === 'HEAP32' || target[1][1] === 'HEAPF32')) {
                  bitcastVars[name]['use_' + target[1][1]]++;
                  bitcastVars[name].uses.push(node);
                }
              }
            }
          }
        });
        for (var v in bitcastVars) {
          var info = bitcastVars[v];
          // good variables define only one type, use only one type, have definitions and uses, and define as a different type than they use
          if (info.define_HEAP32*info.define_HEAPF32 === 0 && info.use_HEAP32*info.use_HEAPF32 === 0 &&
              info.define_HEAP32+info.define_HEAPF32 > 0  && info.use_HEAP32+info.use_HEAPF32 > 0 &&
              info.define_HEAP32*info.use_HEAP32 === 0 && info.define_HEAPF32*info.use_HEAPF32 === 0 &&
              v in asmData.vars && info.namings === info.define_HEAP32+info.define_HEAPF32+info.use_HEAP32+info.use_HEAPF32) {
            var correct = info.use_HEAP32 ? 'HEAPF32' : 'HEAP32';
            info.defines.forEach(function(define) {
              define[3] = define[3][1][3];
              if (correct === 'HEAP32') {
                define[3] = ['binary', '|', define[3], ['num', 0]];
              } else {
                define[3] = ['unary-prefix', '+', define[3]];
              }
              // do we want a simplifybitops on the new values here?
            });
            info.uses.forEach(function(use) {
              use[2][1][1] = correct;
            });
            asmData.vars[v] = 1 - asmData.vars[v];
          }
        }
        denormalizeAsm(ast, asmData);
      }

      // optimize num >> num, in asm we need this here since we do not run optimizeShifts
      traverse(ast, function(node, type) {
        if (type === 'binary' && node[1] === '>>' && node[2][0] === 'num' && node[3][0] === 'num') {
          node[0] = 'num';
          node[1] = node[2][1] >> node[3][1];
          node.length = 2;
        }
      });
    }
  }

  // The most common mathop is addition, e.g. in getelementptr done repeatedly. We can join all of those,
  // by doing (num+num) ==> newnum, and (name+num)+num = name+newnum
  function joinAdditions(ast) {
    var rerun = true;
    while (rerun) {
      rerun = false;
      traverse(ast, function(node, type) {
        if (type === 'binary' && node[1] === '+') {
          if (node[2][0] === 'num' && node[3][0] === 'num') {
            rerun = true;
            node[2][1] += node[3][1];
            return node[2];
          }
          for (var i = 2; i <= 3; i++) {
            var ii = 5-i;
            for (var j = 2; j <= 3; j++) {
              if (node[i][0] === 'num' && node[ii][0] === 'binary' && node[ii][1] === '+' && node[ii][j][0] === 'num') {
                rerun = true;
                node[ii][j][1] += node[i][1];
                return node[ii];
              }
            }
          }
        }
      });
    }
  }

  // if (x === 0) can be if (!x), etc.
  function simplifyZeroComp(ast) {
    traverse(ast, function(node, type) {
      var binary;
      if (type === 'if' && (binary = node[1])[0] === 'binary') {
        if ((binary[1] === '!=' || binary[1] === '!==') && binary[3][0] === 'num' && binary[3][1] === 0) {
          node[1] = binary[2];
          return node;
        } else if ((binary[1] === '==' || binary[1] === '===') && binary[3][0] === 'num' && binary[3][1] === 0) {
          node[1] = ['unary-prefix', '!', binary[2]];
          return node;
        }
      }
    });
  }

  traverseGeneratedFunctions(ast, function(func) {
    simplifyIntegerConversions(func);
    simplifyBitops(func);
    joinAdditions(func);
    // simplifyZeroComp(func); TODO: investigate performance
    simplifyNotComps(func);
  });
}

// In typed arrays mode 2, we can have
//  HEAP[x >> 2]
// very often. We can in some cases do the shift on the variable itself when it is set,
// to greatly reduce the number of shift operations.
// XXX this optimization is deprecated and currently invalid: does not handle overflows
//     or non-aligned (round numbers, x >> 2 is a multiple of 4). Both are ok to assume
//     for pointers (undefined behavior otherwise), but invalid in general, and we do
//     no sufficiently-well distinguish the cases.
function optimizeShiftsInternal(ast, conservative) {
  var MAX_SHIFTS = 3;
  traverseGeneratedFunctions(ast, function(fun) {
    var funMore = true;
    var funFinished = {};
    while (funMore) {
      funMore = false;
      // Recognize variables and parameters
      var vars = {};
      function newVar(name, param, addUse) {
        if (!vars[name]) {
          vars[name] = {
            param: param,
            defs: addUse ? 1 : 0,
            uses: 0,
            timesShifted: [0, 0, 0, 0], // zero shifts of size 0, 1, 2, 3
            benefit: 0,
            primaryShift: -1
          };
        }
      }
      // params
      if (fun[2]) {
        fun[2].forEach(function(arg) {
          newVar(arg, true, true);
        });
      }
      // vars
      // XXX if var has >>=, ignore it here? That means a previous pass already optimized it
      var hasSwitch = traverse(fun, function(node, type) {
        if (type === 'var') {
          node[1].forEach(function(arg) {
            newVar(arg[0], false, arg[1]);
          });
        } else if (type === 'switch') {
          // The relooper can't always optimize functions, and we currently don't work with
          // switch statements when optimizing shifts. Bail.
          return true;
        }
      });
      if (hasSwitch) {
        break;
      }
      // uses and defs TODO: weight uses by being inside a loop (powers). without that, we
      // optimize for code size, not speed.
      traverse(fun, function(node, type, stack) {
        stack.push(node);
        if (type === 'name' && vars[node[1]] && stack[stack.length-2][0] != 'assign') {
          vars[node[1]].uses++;
        } else if (type === 'assign' && node[2][0] === 'name' && vars[node[2][1]]) {
          vars[node[2][1]].defs++;
        }
      }, null, []);
      // First, break up elements inside a shift. This lets us see clearly what to do next.
      traverse(fun, function(node, type) {
        if (type === 'binary' && node[1] === '>>' && node[3][0] === 'num') {
          var shifts = node[3][1];
          if (shifts <= MAX_SHIFTS) {
            // Push the >> inside the value elements
            function addShift(subNode) {
              if (subNode[0] === 'binary' && subNode[1] === '+') {
                subNode[2] = addShift(subNode[2]);
                subNode[3] = addShift(subNode[3]);
                return subNode;
              }
              if (subNode[0] === 'name' && !subNode[2]) { // names are returned with a shift, but we also note their being shifted
                var name = subNode[1];
                if (vars[name]) {
                  vars[name].timesShifted[shifts]++;
                  subNode[2] = true;
                }
              }
              return ['binary', '>>', subNode, ['num', shifts]];
            }
            return addShift(node[2]);
          }
        }
      });
      traverse(fun, function(node, type) {
        if (node[0] === 'name' && node[2]) {
          return node.slice(0, 2); // clean up our notes
        }
      });
      // At this point, shifted expressions are split up, and we know who the vars are and their info, so we can decide
      // TODO: vars that depend on other vars
      for (var name in vars) {
        var data = vars[name];
        var totalTimesShifted = sum(data.timesShifted);
        if (totalTimesShifted === 0) {
          continue;
        }
        if (totalTimesShifted != Math.max.apply(null, data.timesShifted)) {
          // TODO: Handle multiple different shifts
          continue;
        }
        if (funFinished[name]) continue;
        // We have one shift size (and possible unshifted uses). Consider replacing this variable with a shifted clone. If
        // the estimated benefit is >0, we will do it
        if (data.defs === 1) {
          data.benefit = totalTimesShifted - 2*(data.defs + (data.param ? 1 : 0));
        }
        if (conservative) data.benefit = 0;
        if (data.benefit > 0) {
          funMore = true; // We will reprocess this function
          for (var i = 0; i < 4; i++) {
            if (data.timesShifted[i]) {
              data.primaryShift = i;
            }
          }
        }
      }
      //printErr(JSON.stringify(vars));
      function cleanNotes() { // We need to mark 'name' nodes as 'processed' in some passes here; this cleans the notes up
        traverse(fun, function(node, type) {
          if (node[0] === 'name' && node[2]) {
            return node.slice(0, 2);
          }
        });
      }
      cleanNotes();
      // Apply changes
      function needsShift(name) {
        return vars[name] && vars[name].primaryShift >= 0;
      }
      for (var name in vars) { // add shifts for params and var's for all new variables
        var data = vars[name];
        if (needsShift(name)) {
          if (data.param) {
            fun[3].unshift(['var', [[name + '$s' + data.primaryShift, ['binary', '>>', ['name', name], ['num', data.primaryShift]]]]]);
          } else {
            fun[3].unshift(['var', [[name + '$s' + data.primaryShift]]]);
          }
        }
      }
      traverse(fun, function(node, type, stack) { // add shift to assignments
        stack.push(node);
        if (node[0] === 'assign' && node[1] === true && node[2][0] === 'name' && needsShift(node[2][1]) && !node[2][2]) {
          var name = node[2][1];
          var data = vars[name];
          var parent = stack[stack.length-3];
          var statements = getStatements(parent);
          assert(statements, 'Invalid parent for assign-shift: ' + dump(parent));
          var i = statements.indexOf(stack[stack.length-2]);
          statements.splice(i+1, 0, ['stat', ['assign', true, ['name', name + '$s' + data.primaryShift], ['binary', '>>', ['name', name, true], ['num', data.primaryShift]]]]);
        } else if (node[0] === 'var') {
          var args = node[1];
          for (var i = 0; i < args.length; i++) {
            var arg = args[i];
            var name = arg[0];
            var data = vars[name];
            if (arg[1] && needsShift(name)) {
              args.splice(i+1, 0, [name + '$s' + data.primaryShift, ['binary', '>>', ['name', name, true], ['num', data.primaryShift]]]);
            }
          }
          return node;
        }
      }, null, []);
      cleanNotes();
      traverse(fun, function(node, type, stack) { // replace shifted name with new variable
        stack.push(node);
        if (node[0] === 'binary' && node[1] === '>>' && node[2][0] === 'name' && needsShift(node[2][1]) && node[3][0] === 'num') {
          var name = node[2][1];
          var data = vars[name];
          var parent = stack[stack.length-2];
          // Don't modify in |x$sN = x >> 2|, in normal assigns and in var assigns
          if (parent[0] === 'assign' && parent[2][0] === 'name' && parent[2][1] === name + '$s' + data.primaryShift) return;
          if (parent[0] === name + '$s' + data.primaryShift) return;
          if (node[3][1] === data.primaryShift) {
            return ['name', name + '$s' + data.primaryShift];
          }
        }
      }, null, []);
      cleanNotes();
      var SIMPLE_SHIFTS = set('<<', '>>');
      var more = true;
      while (more) { // combine shifts in the same direction as an optimization
        more = false;
        traverse(fun, function(node, type) {
          if (node[0] === 'binary' && node[1] in SIMPLE_SHIFTS && node[2][0] === 'binary' && node[2][1] === node[1] &&
              node[3][0] === 'num' && node[2][3][0] === 'num') { // do not turn a << b << c into a << b + c; while logically identical, it is slower
            more = true;
            return ['binary', node[1], node[2][2], ['num', node[3][1] + node[2][3][1]]];
          }
        });
      }
      // Before recombining, do some additional optimizations
      traverse(fun, function(node, type) {
        // Apply constant shifts onto constants
        if (type === 'binary' && node[1] === '>>' && node[2][0] === 'num' && node[3][0] === 'num' && node[3][1] <= MAX_SHIFTS) {
          var subNode = node[2];
          var shifts = node[3][1];
          var result = subNode[1] / Math.pow(2, shifts);
          if (result % 1 === 0) {
            subNode[1] = result;
            return subNode;
          }
        }
        // Optimize the case of ($a*80)>>2 into ($a*20)|0
        if (type === 'binary' && node[1] in SIMPLE_SHIFTS &&
            node[2][0] === 'binary' && node[2][1] === '*') {
          var mulNode = node[2];
          if (mulNode[2][0] === 'num') {
            var temp = mulNode[2];
            mulNode[2] = mulNode[3];
            mulNode[3] = temp;
          }
          if (mulNode[3][0] === 'num') {
            if (node[1] === '<<') {
              mulNode[3][1] *= Math.pow(2, node[3][1]);
              node[1] = '|';
              node[3][1] = 0;
              return node;
            } else {
              if (mulNode[3][1] % Math.pow(2, node[3][1]) === 0) {
                mulNode[3][1] /= Math.pow(2, node[3][1]);
                node[1] = '|';
                node[3][1] = 0;
                return node;
              }
            }
          }
        }
        /* XXX - theoretically useful optimization(s), but commented out as not helpful in practice
        // Transform (x << 2) >> 2 into x & mask or something even simpler
        if (type === 'binary'       && node[1]    === '>>' && node[3][0] === 'num' &&
            node[2][0] === 'binary' && node[2][1] === '<<' && node[2][3][0] === 'num' && node[3][1] === node[2][3][1]) {
          var subNode = node[2];
          var shifts = node[3][1];
          var mask = ((0xffffffff << shifts) >>> shifts) | 0;
          return ['binary', '&', subNode[2], ['num', mask]];
          //return ['binary', '|', subNode[2], ['num', 0]];
          //return subNode[2];
        }
        */
      });
      // Re-combine remaining shifts, to undo the breaking up we did before. may require reordering inside +'s
      traverse(fun, function(node, type, stack) {
        stack.push(node);
        if (type === 'binary' && node[1] === '+' && (stack[stack.length-2][0] != 'binary' || stack[stack.length-2][1] !== '+')) {
          // 'Flatten' added items
          var addedItems = [];
          function flatten(node) {
            if (node[0] === 'binary' && node[1] === '+') {
              flatten(node[2]);
              flatten(node[3]);
            } else {
              addedItems.push(node);
            }
          }
          flatten(node);
          var originalOrder = addedItems.slice();
          function key(node) { // a unique value for all relevant shifts for recombining, non-unique for stuff we don't need to bother with
            function originalOrderKey(item) {
              return -originalOrder.indexOf(item);
            }
            if (node[0] === 'binary' && node[1] in SIMPLE_SHIFTS) {
              if (node[3][0] === 'num' && node[3][1] <= MAX_SHIFTS) return 2*node[3][1] + (node[1] === '>>' ? 100 : 0); // 0-106
              return (node[1] === '>>' ? 20000 : 10000) + originalOrderKey(node);
            }
            if (node[0] === 'num') return -20000 + node[1];
            return -10000 + originalOrderKey(node); // Don't modify the original order if we don't modify anything
          }
          for (var i = 0; i < addedItems.length; i++) {
            if (addedItems[i][0] === 'string') return; // this node is not relevant for us
          }
          addedItems.sort(function(node1, node2) {
            return key(node1) - key(node2);
          });
          // Regenerate items, now sorted
          var i = 0;
          while (i < addedItems.length-1) { // re-combine inside addedItems
            var k = key(addedItems[i]), k1 = key(addedItems[i+1]);
            if (k === k1 && k >= 0 && k1 <= 106) {
              addedItems[i] = ['binary', addedItems[i][1], ['binary', '+', addedItems[i][2], addedItems[i+1][2]], addedItems[i][3]];
              addedItems.splice(i+1, 1);
            } else {
              i++;
            }
          }
          var num = 0;
          for (i = 0; i < addedItems.length; i++) { // combine all numbers into one
            if (addedItems[i][0] === 'num') {
              num += addedItems[i][1];
              addedItems.splice(i, 1);
              i--;
            }
          }
          if (num != 0) { // add the numbers into an existing shift, we 
                          // prefer (x+5)>>7 over (x>>7)+5 , since >>'s result is known to be 32-bit and is more easily optimized.
                          // Also, in the former we can avoid the parentheses, which saves a little space (the number will be bigger,
                          // so it might take more space, but normally at most one more digit).
            var added = false;
            for (i = 0; i < addedItems.length; i++) {
              if (addedItems[i][0] === 'binary' && addedItems[i][1] === '>>' && addedItems[i][3][0] === 'num' && addedItems[i][3][1] <= MAX_SHIFTS) {
                addedItems[i] = ['binary', '>>', ['binary', '+', addedItems[i][2], ['num', num << addedItems[i][3][1]]], addedItems[i][3]];
                added = true;
              }
            }
            if (!added) {
              addedItems.unshift(['num', num]);
            }
          }
          var ret = addedItems.pop();
          while (addedItems.length > 0) { // re-create AST from addedItems
            ret = ['binary', '+', ret, addedItems.pop()];
          }
          return ret;
        }
      }, null, []);
      // Note finished variables
      for (var name in vars) {
        funFinished[name] = true;
      }
    }
  });
}

function optimizeShiftsConservative(ast) {
  optimizeShiftsInternal(ast, true);
}

function optimizeShiftsAggressive(ast) {
  optimizeShiftsInternal(ast, false);
}

// We often have branchings that are simplified so one end vanishes, and
// we then get
//   if (!(x < 5))
// or such. Simplifying these saves space and time.
function simplifyNotCompsDirect(node) {
  if (node[0] === 'unary-prefix' && node[1] === '!') {
    if (node[2][0] === 'binary') {
      switch(node[2][1]) {
        case '<': return ['binary', '>=', node[2][2], node[2][3]];
        case '>': return ['binary', '<=', node[2][2], node[2][3]];
        case '<=': return ['binary', '>', node[2][2], node[2][3]];
        case '>=': return ['binary', '<', node[2][2], node[2][3]];
        case '==': return ['binary', '!=', node[2][2], node[2][3]];
        case '!=': return ['binary', '==', node[2][2], node[2][3]];
        case '===': return ['binary', '!==', node[2][2], node[2][3]];
        case '!==': return ['binary', '===', node[2][2], node[2][3]];
      }
    } else if (node[2][0] === 'unary-prefix' && node[2][1] === '!') {
      return node[2][2];
    }
  }
  if (!simplifyNotCompsPass) return node;
}

var simplifyNotCompsPass = false;

function simplifyNotComps(ast) {
  simplifyNotCompsPass = true;
  traverse(ast, simplifyNotCompsDirect);
  simplifyNotCompsPass = false;
}

function callHasSideEffects(node) { // checks if the call itself (not the args) has side effects (or is not statically known)
  return !(node[1][0] === 'name' && /^Math_/.test(node[1][1]));
}

function hasSideEffects(node) { // this is 99% incomplete!
  switch (node[0]) {
    case 'num': case 'name': case 'string': return false;
    case 'unary-prefix': return hasSideEffects(node[2]);
    case 'binary': return hasSideEffects(node[2]) || hasSideEffects(node[3]);
    case 'sub': return hasSideEffects(node[1]) || hasSideEffects(node[2]);
    case 'call': {
      if (callHasSideEffects(node)) return true;
      // This is a statically known call, with no side effects. only args can side effect us
      var args = node[2];
      var num = args.length;
      for (var i = 0; i < num; i++) {
        if (hasSideEffects(args[i])) return true;
      }
      return false;
    }
    default: return true;
  }
}

// Clear out empty ifs and blocks, and redundant blocks/stats and so forth
// Operates on generated functions only
function vacuum(ast) {
  function isEmpty(node) {
    if (!node) return true;
    if (node[0] === 'toplevel' && (!node[1] || node[1].length === 0)) return true;
    if (node[0] === 'block' && (!node[1] || (typeof node[1] != 'object') || node[1].length === 0 || (node[1].length === 1 && isEmpty(node[1])))) return true;
    return false;
  }
  function simplifyList(node, si) {
    var changed = false;
    // Merge block items into this list, thus removing unneeded |{ .. }|'s
    var statements = node[si];
    var i = 0;
    while (i < statements.length) {
      var subNode = statements[i];
      if (subNode[0] === 'block') {
        statements.splice.apply(statements, [i, 1].concat(subNode[1] || []));
        changed = true;
      } else {
        i++;
      }
    }
    // Remove empty items
    var pre = node[si].length;
    node[si] = node[si].filter(function(node) { return !isEmpty(node) });
    if (node[si].length < pre) changed = true;
    if (changed) {
      return node;
    }
  }
  function vacuumInternal(node) {
    traverseChildren(node, vacuumInternal);
    var ret;
    switch(node[0]) {
      case 'block': {
        if (node[1] && node[1].length === 1 && node[1][0][0] === 'block') {
          return node[1][0];
        } else if (typeof node[1] === 'object') {
          ret = simplifyList(node, 1);
          if (ret) return ret;
        }
      } break;
      case 'stat': {
        if (node[1][0] === 'block') {
          return node[1];
        }
      } break;
      case 'defun': {
        if (node[3].length === 1 && node[3][0][0] === 'block') {
          node[3] = node[3][0][1];
          return node;
        } else {
          ret = simplifyList(node, 3);
          if (ret) return ret;
        }
      } break;
      case 'do': {
        if (node[1][0] === 'num' && node[2][0] === 'toplevel' && (!node[2][1] || node[2][1].length === 0)) {
          return emptyNode();
        } else if (isEmpty(node[2]) && !hasSideEffects(node[1])) {
          return emptyNode();
        }
      } break;
      case 'label': {
        if (node[2] && node[2][0] === 'toplevel' && (!node[2][1] || node[2][1].length === 0)) {
          return emptyNode();
        }
      } break;
      case 'if': {
        var empty2 = isEmpty(node[2]), empty3 = isEmpty(node[3]), has3 = node.length === 4;
        if (!empty2 && empty3 && has3) { // empty else clauses
          return node.slice(0, 3);
        } else if (empty2 && !empty3) { // empty if blocks
          return ['if', ['unary-prefix', '!', node[1]], node[3]];
        } else if (empty2 && empty3) {
          if (hasSideEffects(node[1])) {
            return ['stat', node[1]];
          } else {
            return emptyNode();
          }
        }
      } break;
    }
  }
  traverseGeneratedFunctions(ast, function(node) {
    vacuumInternal(node);
    simplifyNotComps(node);
  });
}

function getStatements(node) {
  if (node[0] === 'defun') {
    return node[3];
  } else if (node[0] === 'block') {
    return node[1];
  } else {
    return null;
  }
}

// Multiple blocks from the relooper are, in general, implemented by
//   if (label === x) { } else if ..
// and branching into them by
//   if (condition) { label === x } else ..
// We can hoist the multiple block into the condition, thus removing code and one 'if' check
function hoistMultiples(ast) {
  traverseGeneratedFunctions(ast, function(node) {
    traverse(node, function(node, type) {
      var statements = getStatements(node);
      if (!statements) return;
      var modified = false;
      for (var i = 0; i < statements.length-1; i++) {
        var modifiedI = false;
        var pre = statements[i];
        if (pre[0] != 'if') continue;
        var post = statements[i+1];
        // Look into some block types. shell() will then recreate the shell that we looked into
        var postInner = post;
        var shellLabel = false, shellDo = false;
        while (true) {
          if (postInner[0] === 'label') {
            shellLabel = postInner[1];
            postInner = postInner[2];
          } else if (postInner[0] === 'do') {
            shellDo = postInner[1];
            postInner = postInner[2][1][0];
          } else {
            break; // give up
          }
        }
        if (postInner[0] != 'if') continue;
        // Look into this if, and its elseifs
        while (postInner && postInner[0] === 'if') {
          var cond = postInner[1];
          if (cond[0] === 'binary' && cond[1] === '==' && cond[2][0] === 'name' && cond[2][1] === 'label') {
            assert(cond[3][0] === 'num');
            // We have a valid Multiple check here. Try to hoist it, look for the source in |pre| and its else's
            var labelNum = cond[3][1];
            var labelBlock = postInner[2];
            assert(labelBlock[0] === 'block');
            var found = false;
            traverse(pre, function(preNode, preType) {
              if (!found && preType === 'assign' && preNode[2][0] === 'name' && preNode[2][1] === 'label') {
                assert(preNode[3][0] === 'num');
                if (preNode[3][1] === labelNum) {
                  // That's it! Hoist away. We can also throw away the label setting as its goal has already been achieved
                  found = true;
                  modifiedI = true;
                  postInner[2] = ['block', []];
                  return labelBlock;
                }
              }
            });
          }
          postInner = postInner[3]; // Proceed to look in the else clause
        }
        if (modifiedI) {
          if (shellDo) {
            statements[i] = ['do', shellDo, ['block', [statements[i]]]];
          }
          if (shellLabel) {
            statements[i] = ['label', shellLabel, statements[i]];
          }
        }
      }
      if (modified) return node;
    });

    // After hoisting in this function, it is safe to remove { label = x; } blocks, because
    // if they were leading to the next code right after them, they would be hoisted, and if they
    // are going to some other place entirely, they would break or continue. The only risky
    // situation is if the code after us is a multiple, in which case we might be checking for
    // this label inside it (or in a later multiple, even)
    function tryEliminate(node) {
      if (node[0] === 'if') {
        var replaced;
        if (replaced = tryEliminate(node[2])) node[2] = replaced;
        if (node[3] && (replaced = tryEliminate(node[3]))) node[3] = replaced;
      } else {
        if (node[0] === 'block' && node[1] && node[1].length > 0) {
          var subNode = node[1][node[1].length-1];
          if (subNode[0] === 'stat' && subNode[1][0] === 'assign' && subNode[1][2][0] === 'name' &&
              subNode[1][2][1] === 'label' && subNode[1][3][0] === 'num') {
            if (node[1].length === 1) {
              return emptyNode();
            } else {
              node[1].splice(node[1].length-1, 1);
              return node;
            }
          }
        }
      }
      return false;
    }
    function getActualStatement(node) { // find the actual active statement, ignoring a label and one-time do loop
      if (node[0] === 'label') node = node[2];
      if (node[0] === 'do') node = node[2];
      if (node[0] === 'block' && node[1].length === 1) node = node[1][0];
      return node;
    }
    vacuum(node);
    traverse(node, function(node, type) {
      var statements = getStatements(node);
      if (!statements) return;
      for (var i = 0; i < statements.length-1; i++) {
        var curr = getActualStatement(statements[i]);
        var next = statements[i+1];
        if (curr[0] === 'if' && next[0] != 'if' && next[0] != 'label' && next[0] != 'do' && next[0] != 'while') {
          tryEliminate(curr);
        }
      }
    });
  });

  vacuum(ast);

  // Afterpass: Reduce
  //    if (..) { .. break|continue } else { .. }
  // to
  //    if (..) { .. break|continue } ..
  traverseGenerated(ast, function(container, type) {
    var statements = getStatements(container);
    if (!statements) return;
    for (var i = 0; i < statements.length; i++) {
      var node = statements[i];
      if (node[0] === 'if' && node[2][0] === 'block' && node[3] && node[3][0] === 'block') {
        var stat1 = node[2][1], stat2 = node[3][1];
        // If break|continue in the latter and not the former, reverse them
        if (!(stat1[stat1.length-1][0] in LOOP_FLOW) && (stat2[stat2.length-1][0] in LOOP_FLOW)) {
          var temp = node[3];
          node[3] = node[2];
          node[2] = temp;
          node[1] = simplifyNotCompsDirect(['unary-prefix', '!', node[1]]);
          stat1 = node[2][1];
          stat2 = node[3][1];
        }
        if (stat1[stat1.length-1][0] in LOOP_FLOW) {
          statements.splice.apply(statements, [i+1, 0].concat(stat2));
          node[3] = null;
        }
      }
    }
  });
}

// Simplifies loops
// WARNING: This assumes all loops and breaks/continues are labelled
function loopOptimizer(ast) {
  // Remove unneeded labels and one-time (do while(0)) loops. It is convenient to do these both at once.
  function passTwo(ast) {
    var neededDos = [];
    // Find unneeded labels
    traverseGenerated(ast, function(node, type, stack) {
      if (type === 'label' && node[2][0] in LOOP) {
        // this is a labelled loop. we don't know if it's needed yet. Mark its label for removal for now now.
        stack.push(node);
        node[1] = '+' + node[1];
      } else if (type in LOOP) {
        stack.push(node);
      } else if (type in LOOP_FLOW) {
        // Find topmost loop, and its label if there is one
        var lastLabel = null, lastLoop = null, i = stack.length-1;
        while (i >= 0 && !lastLoop) {
          if (stack[i][0] in LOOP) lastLoop = stack[i];
          i--;
        }
        assert(lastLoop, 'Cannot break/continue without a Label');
        while (i >= 0 && !lastLabel) {
          if (stack[i][0] in LOOP) break; // another loop in the middle - no label for lastLoop
          if (stack[i][0] === 'label') lastLabel = stack[i];
          i--;
        }
        var ident = node[1]; // there may not be a label ident if this is a simple break; or continue;
        var plus = '+' + ident;
        if (lastLabel && ident && (ident === lastLabel[1] || plus === lastLabel[1])) {
          // If this is a 'do' loop, this break means we actually need it.
          neededDos.push(lastLoop);
          // We don't need the control flow command to have a label - it's referring to the current loop
          return [node[0]];
        } else {
          if (!ident) {
            // No label on the break/continue, so keep the last loop alive (no need for its label though)
            neededDos.push(lastLoop);
          } else {
            // Find the label node that needs to stay alive
            stack.forEach(function(label) {
              if (!label) return;
              if (label[1] === plus) label[1] = label[1].substr(1); // Remove '+', marking it as needed
            });
          }
        }
      }
    }, null, []);
    // We return whether another pass is necessary
    var more = false;
    // Remove unneeded labels
    traverseGenerated(ast, function(node, type) {
      if (type === 'label' && node[1][0] === '+') {
        more = true;
        var ident = node[1].substr(1);
        // Remove label from loop flow commands
        traverse(node[2], function(node2, type) {
          if (type in LOOP_FLOW && node2[1] === ident) {
            return [node2[0]];
          }
        });
        return node[2]; // Remove the label itself on the loop
      }
    });
    // Remove unneeded one-time loops. We need such loops if (1) they have a label, or (2) they have a direct break so they are in neededDos.
    // First, add all labeled loops of this nature to neededDos
    traverseGenerated(ast, function(node, type) {
      if (type === 'label' && node[2][0] === 'do') {
        neededDos.push(node[2]);
      }
    });
    // Remove unneeded dos, we know who they are now
    traverseGenerated(ast, function(node, type) {
      if (type === 'do' && neededDos.indexOf(node) < 0) {
        assert(jsonCompare(node[1], ['num', 0]), 'Trying to remove a one-time do loop that is not one of our generated ones.;');
        more = true;
        return node[2];
      }
    });
    return more;
  }

  // Go

  // TODO: pass 1: Removal of unneeded continues, breaks if they get us to where we are already going. That will
  //               help the next pass.

  // Multiple pass two runs may be needed, as we remove one-time loops and so forth
  do {
    var more = passTwo(ast);
    vacuum(ast);
  } while (more);

  vacuum(ast);
}

function unVarify(vars, ret) { // transform var x=1, y=2 etc. into (x=1, y=2), i.e., the same assigns, but without a var definition
  ret = ret || [];
  ret[0] = 'stat';
  if (vars.length === 1) {
    ret[1] = ['assign', true, ['name', vars[0][0]], vars[0][1]];
  } else {
    ret[1] = [];
    var curr = ret[1];
    for (var i = 0; i < vars.length-1; i++) {
      curr[0] = 'seq';
      curr[1] = ['assign', true, ['name', vars[i][0]], vars[i][1]];
      if (i != vars.length-2) curr = curr[2] = [];
    }
    curr[2] = ['assign', true, ['name', vars[vars.length-1][0]], vars[vars.length-1][1]];
  }
  return ret;
}

// asm.js support code - normalize (convert asm.js code to 'normal' JS, without
// annotations, plus explicit metadata) and denormalize (vice versa)
var ASM_INT = 0;
var ASM_DOUBLE = 1;
var ASM_FLOAT = 2;

function detectAsmCoercion(node, asmInfo) {
  // for params, +x vs x|0, for vars, 0.0 vs 0
  if (node[0] === 'num' && node[1].toString().indexOf('.') >= 0) return ASM_DOUBLE;
  if (node[0] === 'unary-prefix') return ASM_DOUBLE;
  if (node[0] === 'call' && node[1][0] === 'name' && node[1][1] === 'Math_fround') return ASM_FLOAT;
  if (asmInfo && node[0] == 'name') return getAsmType(node[1], asmInfo);
  return ASM_INT;
}

function makeAsmCoercion(node, type) {
  switch (type) {
    case ASM_INT: return ['binary', '|', node, ['num', 0]];
    case ASM_DOUBLE: return ['unary-prefix', '+', node];
    case ASM_FLOAT: return ['call', ['name', 'Math_fround'], [node]];
    default: throw 'wha? ' + JSON.stringify([node, type]) + new Error().stack;
  }
}

function makeAsmVarDef(v, type) {
  switch (type) {
    case ASM_INT: return [v, ['num', 0]];
    case ASM_DOUBLE: return [v, ['unary-prefix', '+', ['num', 0]]];
    case ASM_FLOAT: return [v, ['call', ['name', 'Math_fround'], [['num', 0]]]];
    default: throw 'wha?';
  }
}

function getAsmType(name, asmInfo) {
  if (name in asmInfo.vars) return asmInfo.vars[name];
  if (name in asmInfo.params) return asmInfo.params[name];
  assert(false, 'unknown var ' + name);
}

function normalizeAsm(func) {
  //printErr('pre-normalize \n\n' + astToSrc(func) + '\n\n');
  var data = {
    params: {}, // ident => ASM_* type
    vars: {}, // ident => ASM_* type
    inlines: [], // list of inline assembly copies
  };
  // process initial params
  var stats = func[3];
  var i = 0;
  while (i < stats.length) {
    var node = stats[i];
    if (node[0] != 'stat' || node[1][0] != 'assign' || node[1][2][0] != 'name') break;
    node = node[1];
    var name = node[2][1];
    if (func[2] && func[2].indexOf(name) < 0) break; // not an assign into a parameter, but a global
    if (name in data.params) break; // already done that param, must be starting function body
    data.params[name] = detectAsmCoercion(node[3]);
    stats[i] = emptyNode();
    i++;
  }
  // process initial variable definitions
  outer:
  while (i < stats.length) {
    var node = stats[i];
    if (node[0] != 'var') break;
    for (var j = 0; j < node[1].length; j++) {
      var v = node[1][j];
      var name = v[0];
      var value = v[1];
      if (!(name in data.vars)) {
        assert(value[0] === 'num' || (value[0] === 'unary-prefix' && value[2][0] === 'num') // must be valid coercion no-op
                                  || (value[0] === 'call' && value[1][0] === 'name' && value[1][1] === 'Math_fround'));
        data.vars[name] = detectAsmCoercion(value);
        v.length = 1; // make an un-assigning var
      } else {
        assert(j === 0, 'cannot break in the middle');
        break outer;
      }
    }
    i++;
  }
  // finally, look for other var definitions and collect them
  while (i < stats.length) {
    traverse(stats[i], function(node, type) {
      if (type === 'var') {
        assert(0, 'should be no vars to fix! ' + func[1] + ' : ' + JSON.stringify(node));
        /*
        for (var j = 0; j < node[1].length; j++) {
          var v = node[1][j];
          var name = v[0];
          var value = v[1];
          if (!(name in data.vars)) {
            if (value[0] != 'name') {
              data.vars[name] = detectAsmCoercion(value); // detect by coercion
            } else {
              var origin = value[1];
              data.vars[name] = data.vars[origin] || ASM_INT; // detect by origin variable, or assume int for non-locals
            }
          }
        }
        unVarify(node[1], node);
        */
      } else if (type === 'call' && node[1][0] === 'function') {
        assert(!node[1][1]); // anonymous functions only
        data.inlines.push(node[1]);
        node[1] = ['name', 'inlinejs']; // empty out body, leave arguments, so they are eliminated/minified properly
      }
    });
    i++;
  }
  //printErr('normalized \n\n' + astToSrc(func) + '\n\nwith: ' + JSON.stringify(data));
  return data;
}

function denormalizeAsm(func, data) {
  //printErr('pre-denormalize \n\n' + astToSrc(func) + '\n\nwith: ' + JSON.stringify(data));
  var stats = func[3];
  // Remove var definitions, if any
  for (var i = 0; i < stats.length; i++) {
    if (stats[i][0] === 'var') {
      stats[i] = emptyNode();
    } else {
      if (!isEmptyNode(stats[i])) break;
    }
  }
  // each param needs a line; reuse emptyNodes as much as we can
  var numParams = 0;
  for (var i in data.params) numParams++;
  var emptyNodes = 0;
  while (emptyNodes < stats.length) {
    if (!isEmptyNode(stats[emptyNodes])) break;
    emptyNodes++;
  }
  var neededEmptyNodes = numParams + 1; // params plus one big var
  if (neededEmptyNodes > emptyNodes) {
    var args = [0, 0];
    for (var i = 0; i < neededEmptyNodes - emptyNodes; i++) args[i+2] = 0;
    stats.splice.apply(stats, args);
  }
  // add param coercions
  var next = 0;
  func[2].forEach(function(param) {
    stats[next++] = ['stat', ['assign', true, ['name', param], makeAsmCoercion(['name', param], data.params[param])]];
  });
  // add variable definitions
  var varDefs = [];
  for (var v in data.vars) {
    varDefs.push(makeAsmVarDef(v, data.vars[v]));
  }
  if (varDefs.length) {
    stats[next] = ['var', varDefs];
  } else {
    stats[next] = emptyNode();
  }
  if (data.inlines.length > 0) {
    var i = 0;
    traverse(func, function(node, type) {
      if (type === 'call' && node[1][0] === 'name' && node[1][1] === 'inlinejs') {
        node[1] = data.inlines[i++]; // swap back in the body
      }
    });
  }
  //printErr('denormalized \n\n' + astToSrc(func) + '\n\n');
}

function getFirstIndexInNormalized(func, data) {
  // In a normalized asm function, return the index of the first element that is not not defs or annotation
  var stats = func[3];
  var i = stats.length-1;
  while (i >= 0) {
    var stat = stats[i];
    if (stat[0] == 'var') break;
    i--;
  }
  return i+1;
}

function getStackBumpNode(ast) {
  var found = null;
  traverse(ast, function(node, type) {
    if (type === 'assign' && node[2][0] === 'name' && node[2][1] === 'STACKTOP') {
      var value = node[3];
      if (value[0] === 'name') return true;
      assert(value[0] == 'binary' && value[1] == '|' && value[2][0] == 'binary' && value[2][1] == '+' && value[2][2][0] == 'name' && value[2][2][1] == 'STACKTOP' && value[2][3][0] == 'num');
      found = node;
      return true;
    }
  });
  return found;
}

function getStackBumpSize(ast) {
  var node = getStackBumpNode(ast);
  return node ? node[3][2][3][1] : 0;
}

// Name minification

var RESERVED = set('do', 'if', 'in', 'for', 'new', 'try', 'var', 'env', 'let');
var VALID_MIN_INITS = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_$';
var VALID_MIN_LATERS = VALID_MIN_INITS + '0123456789';

var minifiedNames = [];
var minifiedState = [0];

function ensureMinifiedNames(n) { // make sure the nth index in minifiedNames exists. done 100% deterministically
  while (minifiedNames.length < n+1) {
    // generate the current name
    var name = VALID_MIN_INITS[minifiedState[0]];
    for (var i = 1; i < minifiedState.length; i++) {
      name += VALID_MIN_LATERS[minifiedState[i]];
    }
    if (!(name in RESERVED)) minifiedNames.push(name);
    // increment the state
    var i = 0;
    while (1) {
      minifiedState[i]++;
      if (minifiedState[i] < (i === 0 ? VALID_MIN_INITS : VALID_MIN_LATERS).length) break;
      // overflow
      minifiedState[i] = 0;
      i++;
      if (i === minifiedState.length) minifiedState.push(-1); // will become 0 after increment in next loop head
    }
  }
}

// Very simple 'registerization', coalescing of variables into a smaller number.
//
// We do not optimize when there are switches, so this pass only makes sense with
// relooping.
// TODO: Consider how this fits in with the rest of the optimization toolchain. Do
//       we still need the eliminator? Closure? And in what order? Perhaps just
//       closure simple?
function registerize(ast) {
  traverseGeneratedFunctions(ast, function(fun) {
    if (asm) var asmData = normalizeAsm(fun);
    if (!asm) {
      var hasFunction = false;
      traverse(fun, function(node, type) {
        if (type === 'function') hasFunction = true;
      });
      if (hasFunction) {
        return; // inline assembly, and not asm (where we protect it in normalize/denormalize), so abort registerize pass
      }
    }
    // Add parameters as a first (fake) var (with assignment), so they get taken into consideration
    var params = {}; // note: params are special, they can never share a register between them (see later)
    if (fun[2] && fun[2].length) {
      var assign = ['num', 0];
      fun[3].unshift(['var', fun[2].map(function(param) {
        params[param] = 1;
        return [param, assign];
      })]);
    }
    if (asm) {
      // copy params into vars
      for (var p in asmData.params) asmData.vars[p] = asmData.params[p];
      //printErr('fake params: \n\n' + astToSrc(fun) + '\n\n');
    }
    // Replace all var definitions with assignments; we will add var definitions at the top after we registerize
    // We also mark local variables - i.e., having a var definition
    var localVars = {};
    var allVars = {};
    var hasSwitch = false; // we cannot optimize variables if there is a switch, unless in asm mode
    traverse(fun, function(node, type) {
      if (type === 'var') {
        node[1].forEach(function(defined) { localVars[defined[0]] = 1 });
        var vars = node[1].filter(function(varr) { return varr[1] });
        if (vars.length >= 1) {
          return unVarify(vars);
        } else {
          return emptyNode();
        }
      } else if (type === 'switch') {
        hasSwitch = true;
      } else if (type === 'name') {
        allVars[node[1]] = 1;
      }
    });
    vacuum(fun);
    var regTypes = {};
    function getNewRegName(num, name) {
      var ret;
      if (!asm) {
        ret = 'r' + num;
      } else {
        var type = asmData.vars[name];
        ret = (type ? 'd' : 'i') + num;
        regTypes[ret] = type;
      }
      if (ret in allVars) {
        assert(ret in localVars, 'register shadows non-local name');
      }
      return ret;
    }
    // Find the # of uses of each variable.
    // While doing so, check if all a variable's uses are dominated in a simple
    // way by a simple assign, if so, then we can assign its register to it
    // just for its definition to its last use, and not to the entire toplevel loop,
    // we call such variables "optimizable"
    var varUses = {};
    var level = 1;
    var levelDominations = {};
    var varLevels = {};
    var possibles = {};
    var unoptimizables = {};
    function purgeLevel() {
      // Invalidate all dominating on this level, further users make it unoptimizable
      for (var name in levelDominations[level]) {
        varLevels[name] = 0;
      }
      levelDominations[level] = null;
      level--;
    }
    traverse(fun, function possibilifier(node, type) {
      if (type === 'name') {
        var name = node[1];
        if (localVars[name]) {
          if (!varUses[name]) varUses[name] = 0;
          varUses[name]++;
          if (possibles[name] && !varLevels[name]) unoptimizables[name] = 1; // used outside of simple domination
        }
      } else if (type === 'assign' && typeof node[1] != 'string') {
        if (node[2] && node[2][0] === 'name') {
          var name = node[2][1];
          // if local and not yet used, this might be optimizable if we dominate
          // all other uses
          if (localVars[name] && !varUses[name] && !varLevels[name]) {
            possibles[name] = 1;
            varLevels[name] = level;
            if (!levelDominations[level]) levelDominations[level] = {};
            levelDominations[level][name] = 1;
          }
        }
      } else if (type in CONTROL_FLOW) {
        // recurse children, in the context of a loop
        switch(type) {
          case 'while': case 'do': {
            traverse(node[1], possibilifier);
            level++;
            traverse(node[2], possibilifier);
            purgeLevel();
            break;
          }
          case 'for': {
            traverse(node[1], possibilifier);
            for (var i = 2; i <= 4; i++) {
              level++;
              traverse(node[i], possibilifier);
              purgeLevel();
            }
            break;
          }
          case 'if': {
            traverse(node[1], possibilifier);
            level++;
            traverse(node[2], possibilifier);
            purgeLevel();
            if (node[3]) {
              level++;
              traverse(node[3], possibilifier);
              purgeLevel();
            }
            break;
          }
          case 'switch': {
            traverse(node[1], possibilifier);
            var cases = node[2];
            for (var i = 0; i < cases.length; i++) {
              level++;
              traverse(cases[i][1], possibilifier);
              purgeLevel();
            }
            break;
          }
          default: throw dumpAst(node);
        }
        return null; // prevent recursion into children, which we already did
      }
    });
    var optimizables = {};
    if (!hasSwitch || asm) {
      for (var possible in possibles) {
        if (!unoptimizables[possible]) optimizables[possible] = 1;
      }
    }

    //printErr('optimizables: ' + JSON.stringify(optimizables));
    //printErr('unoptimizables: ' + JSON.stringify(unoptimizables));

    // Go through the function's code, assigning 'registers'.
    // The only tricky bit is to keep variables locked on a register through loops,
    // since they can potentially be returned to. Optimizable variables lock onto
    // loops that they enter, unoptimizable variables lock in a conservative way
    // into the topmost loop.
    // Note that we cannot lock onto a variable in a loop if it was used and free'd
    // before! (then they could overwrite us in the early part of the loop). For now
    // we just use a fresh register to make sure we avoid this, but it could be
    // optimized to check for safe registers (free, and not used in this loop level).
    var varRegs = {}; // maps variables to the register they will use all their life
    var freeRegsClasses = asm ? [[], [], []] : []; // two classes for asm, one otherwise XXX - hardcoded length
    var nextReg = 1;
    var fullNames = {};
    var loopRegs = {}; // for each loop nesting level, the list of bound variables
    var loops = 0; // 0 is toplevel, 1 is first loop, etc
    var saved = 0;
    var activeOptimizables = {};
    var optimizableLoops = {};
    var paramRegs = {}; // true if the register is used by a parameter (and so needs no def at start of function; also cannot
                        // be shared with another param, each needs its own)
    function decUse(name) {
      if (!varUses[name]) return false; // no uses left, or not a relevant variable
      if (optimizables[name]) activeOptimizables[name] = 1;
      var reg = varRegs[name];
      if (asm) assert(name in asmData.vars, name);
      var freeRegs = asm ? freeRegsClasses[asmData.vars[name]] : freeRegsClasses;
      if (!reg) {
        // acquire register
        if (optimizables[name] && freeRegs.length > 0 &&
            !(params[name] && paramRegs[freeRegs[freeRegs.length-1]])) { // do not share registers between parameters
          reg = freeRegs.pop();
          saved++;
        } else {
          reg = nextReg++;
          fullNames[reg] = getNewRegName(reg, name);
          if (params[name]) paramRegs[reg] = 1;
        }
        varRegs[name] = reg;
      }
      varUses[name]--;
      assert(varUses[name] >= 0);
      if (varUses[name] === 0) {
        if (optimizables[name]) delete activeOptimizables[name];
        // If we are not in a loop, or we are optimizable and not bound to a loop
        // (we might have been in one but left it), we can free the register now.
        if (loops === 0 || (optimizables[name] && !optimizableLoops[name])) {
          // free register
          freeRegs.push(reg);
        } else {
          // when the relevant loop is exited, we will free the register
          var releventLoop = optimizables[name] ? (optimizableLoops[name] || 1) : 1;
          if (!loopRegs[releventLoop]) loopRegs[releventLoop] = [];
          loopRegs[releventLoop].push(reg);
        }
      }
      return true;
    }
    traverse(fun, function(node, type) { // XXX we rely on traversal order being the same as execution order here
      if (type === 'name') {
        var name = node[1];
        if (decUse(name)) {
          node[1] = fullNames[varRegs[name]];
        }
      } else if (type in LOOP) {
        loops++;
        // Active optimizables lock onto this loop, if not locked onto one that encloses this one
        for (var name in activeOptimizables) {
          if (!optimizableLoops[name]) {
            optimizableLoops[name] = loops;
          }
        }
      }
    }, function(node, type) {
      if (type in LOOP) {
        // Free registers that were locked to this loop
        if (loopRegs[loops]) {
          if (asm) {
            loopRegs[loops].forEach(function(loopReg) {
              freeRegsClasses[regTypes[fullNames[loopReg]]].push(loopReg);
            });
          } else {
            freeRegsClasses = freeRegsClasses.concat(loopRegs[loops]);
          }
          loopRegs[loops].length = 0;
        }
        loops--;
      }
    });
    if (fun[2] && fun[2].length) {
      fun[2].length = 0; // clear params, we will fill with registers
      fun[3].shift(); // remove fake initial var
    }
    //printErr('var regs: ' + JSON.stringify(varRegs) + '\n\nparam regs: ' + JSON.stringify(paramRegs));
    if (!asm) {
      if (nextReg > 1) {
        var vars = [];
        for (var i = 1; i < nextReg; i++) {
          var reg = fullNames[i];
          if (!paramRegs[i]) {
            vars.push([reg]);
          } else {
            fun[2].push(reg);
          }
        }
        if (vars.length > 0) getStatements(fun).unshift(['var', vars]);
      }
    } else {
      //printErr('unfake params: \n\n' + astToSrc(fun) + '\n\n');
      var finalAsmData = {
        params: {},
        vars: {},
        inlines: asmData.inlines,
      };
      for (var i = 1; i < nextReg; i++) {
        var reg = fullNames[i];
        var type = regTypes[reg];
        if (!paramRegs[i]) {
          finalAsmData.vars[reg] = type;
        } else {
          finalAsmData.params[reg] = type;
          fun[2].push(reg);
        }
      }
      denormalizeAsm(fun, finalAsmData);
    }
  });
}


// Assign variables to 'registers', coalescing them onto a smaller number of shared
// variables.
//
// This does the same job as 'registerize' above, but burns a lot more cycles trying
// to reduce the total number of register variables.  Key points about the operation:
//
//   * we decompose the AST into a flow graph and perform a full liveness
//     analysis, to determine which variables are live at each point.
//
//   * variables that are live concurrently are assigned to different registers.
//
//   * variables that are linked via 'x=y' style statements are assigned the same
//     register if possible, so that the redundant assignment can be removed.
//     (e.g. assignments used to pass state around through loops).
//
//   * any code that cannot be reached through the flow-graph is removed.
//     (e.g. redundant break statements like 'break L123; break;').
//
//   * any assignments that we can prove are not subsequently used are removed.
//     (e.g. unnecessary assignments to the 'label' variable).
//
function registerizeHarder(ast) {
  assert(asm);

  traverseGeneratedFunctions(ast, function(fun) {

    var asmData = normalizeAsm(fun);

    var localVars = asmData.vars;
    for (var name in asmData.params) {
      localVars[name] = asmData.params[name];
    }

    // Utilities for allocating register variables.
    // We need distinct register pools for each type of variable.

    var allRegsByType = [{}, {}, {}];
    var regPrefixByType = ['i', 'd', 'f'];
    var nextReg = 1;

    function createReg(forName) {
      // Create a new register of type suitable for the given variable name.
      var allRegs = allRegsByType[localVars[forName]];
      reg = nextReg++;
      allRegs[reg] = regPrefixByType[localVars[forName]] + reg;
      return reg;
    }

    // Traverse the tree in execution order and synthesize a basic flow-graph.
    // It's convenient to build a kind of "dual" graph where the nodes identify
    // the junctions between blocks  at which control-flow may branch, and each
    // basic block is an edge connecting two such junctions.
    // For each junction we store:
    //    * set of blocks that originate at the junction
    //    * set of blocks that terminate at the junction
    // For each block we store:
    //    * a single entry junction
    //    * a single exit junction
    //    * any preconditions satisfied at entry to the block
    //    * a 'use' and 'kill' set of names for the block
    //    * full sequence of 'name' and 'assign' nodes in the block
    //    * whether each such node appears as part of a larger expression
    //      (and therefore cannot be safely eliminated)

    var junctions = [];
    var blocks = [];
    var currEntryJunction = null;
    var nextBasicBlock = null;
    var isInExpr = 0;
    var activeLabels = [{}];
    var nextLoopLabel = null;

    var ENTRY_JUNCTION = 0;
    var EXIT_JUNCTION = 1;
    var ENTRY_BLOCK = 0;

    function addJunction() {
      // Create a new junction, without inserting it into the graph.
      // This is useful for e.g. pre-allocating an exit node.
      var id = junctions.length;
      junctions[id] = {id: id, inblocks: {}, outblocks: {}};
      return id;
    }

    function markJunction(id) {
      // Mark current traversal location as a junction.
      // This makes a new basic block exiting at this position.
      if (id === undefined || id === null) {
        id = addJunction();
      }
      joinJunction(id);
      return id;
    }

    function setJunction(id) {
      // Set the next entry junction to the given id.
      // This can be used to enter at a previously-declared point.
      assert(nextBasicBlock.nodes.length === 0, 'refusing to abandon an in-progress basic block')
      currEntryJunction = id;
    }

    function joinJunction(id) {
      // Complete the pending basic block by exiting at this position.
      // This can be used to exit at a previously-declared point.
      if (currEntryJunction !== null) {
        nextBasicBlock.id = blocks.length;
        nextBasicBlock.entry = currEntryJunction;
        nextBasicBlock.exit = id;
        junctions[currEntryJunction].outblocks[nextBasicBlock.id] = 1;
        junctions[id].inblocks[nextBasicBlock.id] = 1;
        blocks.push(nextBasicBlock);
      } 
      nextBasicBlock = { id: null, entry: null, exit: null, pre: {}, nodes: [], isexpr: [], use: {}, kill: {} };
      currEntryJunction = id;
      return id;
    }

    function pushActiveLabels(onContinue, onBreak) {
      // Push the target junctions for continuing/breaking a loop.
      // This should be called before traversing into a loop.
      var newLabels = copy(activeLabels[activeLabels.length-1]);
      newLabels[null] = [onContinue, onBreak];
      if (nextLoopLabel) {
        newLabels[nextLoopLabel] = [onContinue, onBreak];
        nextLoopLabel = null;
      }
      activeLabels.push(newLabels);
    }

    function popActiveLabels() {
      // Pop the target junctions for continuing/breaking a loop.
      // This should be called after traversing into a loop.
      activeLabels.pop();
    }

    function markNonLocalJump(type, label) {
      // Complete a block via  'return', 'break' or 'continue'.
      // This joins the targetted junction and then sets the current junction to null.
      // Any code traversed before we get back an existing junction is dead code.
      if (type === 'return') {
        joinJunction(EXIT_JUNCTION);
      } else {
        label = label ? label : null;
        var targets = activeLabels[activeLabels.length-1][label];
        assert(targets, 'jump to unknown label');
        if (type === 'continue') {
          joinJunction(targets[0]);
        } else if (type === 'break') {
          joinJunction(targets[1]);
        } else {
          assert(false, 'unknown jump node type');
        }
      }
      setJunction(null);
    }

    function addUseNode(node) {
      // Mark a use of the given name node in the current basic block.
      assert(node[0] === 'name', 'not a use node');
      var name = node[1];
      if (name in localVars) {
        nextBasicBlock.nodes.push(node);
        nextBasicBlock.isexpr.push(isInExpr);
        if (!nextBasicBlock.kill[name]) {
          nextBasicBlock.use[name] = 1;
        }
      }
    }

    function addKillNode(node) {
      // Mark an assignment to the given name node in the current basic block.
      assert(node[0] === 'assign', 'not a kill node');
      assert(node[1] === true, 'not a kill node');
      assert(node[2][0] === 'name', 'not a kill node');
      var name = node[2][1];
      if (name in localVars) {
        nextBasicBlock.nodes.push(node);
        nextBasicBlock.isexpr.push(isInExpr);
        nextBasicBlock.kill[name] = 1;
      }
    }

    function lookThroughCasts(node) {
      // Look through value-preserving casts, like "x | 0" => "x"
      if (node[0] === 'binary' && node[1] === '|') {
        if (node[3][0] === 'num' && node[3][1] === 0) {
            return lookThroughCasts(node[2]);
        }
      }
      return node;
    }

    function addPreCondTrue(node) {
      // Add pre-conditions implied by truth of the
      // given node to the current basic block.
      assert(nextBasicBlock.nodes.length === 0, 'cant add preconditions to an in-progress basic block')
      if (node[0] === 'binary' && node[1] === '==') {
        var lhs = lookThroughCasts(node[2]);
        var rhs = lookThroughCasts(node[3]);
        if (lhs[0] === 'name' && rhs[0] === 'num') {
          nextBasicBlock.pre[lhs[1]] = ['==', rhs[1]];
        }
      }
    }

    function addPreCondFalse(node) {
      // Add pre-conditions implied by falsehood of the
      // given node to the current basic block.
      assert(nextBasicBlock.nodes.length === 0, 'cant add preconditions to an in-progress basic block')
      if (node[0] === 'binary' && node[1] === '==') {
        var lhs = lookThroughCasts(node[2]);
        var rhs = lookThroughCasts(node[3]);
        if (lhs[0] === 'name' && rhs[0] === 'num') {
          nextBasicBlock.pre[lhs[1]] = ['!=', rhs[1]];
        }
      }
    }

    function isTrueNode(node) {
      // Check if the given node is statically truthy.
      return (node[0] === 'num' && node[1] != 0);
    }

    function isFalseNode(node) {
      // Check if the given node is statically falsy.
      return (node[0] === 'num' && node[1] == 0);
    }

    function morphNode(node, newNode) {
      // In-place morph a node into some other type of node.
      var i = 0;
      while (i < node.length && i < newNode.length) {
        node[i] = newNode[i];
        i++;
      }
      while (i < newNode.length) {
        node.push(newNode[i]);
        i++;
      }
      if (node.length > newNode.length) {
        node.length = newNode.length;
      }
    }

    function buildFlowGraph(node) {
      // Recursive function to build up the flow-graph.
      // It walks the tree in execution order, calling the above state-management
      // functions at appropriate points in the traversal.
      var type = node[0];
  
      // Any code traversed without an active entry junction must be dead,
      // as the resulting block could never be entered. Let's remove it.
      if (currEntryJunction === null && junctions.length > 0) {
        morphNode(node, ['block', []]);
        return;
      }
 
      // Traverse each node type according to its particular control-flow semantics.
      switch (type) {
        case 'defun':
          var jEntry = markJunction();
          assert(jEntry === ENTRY_JUNCTION);
          var jExit = addJunction();
          assert(jExit === EXIT_JUNCTION);
          for (var i = 0; i < node[3].length; i++) {
            buildFlowGraph(node[3][i]);
          }
          joinJunction(jExit);
          break;
        case 'if':
          isInExpr++;
          buildFlowGraph(node[1]);
          isInExpr--;
          var jEnter = markJunction();
          addPreCondTrue(node[1]);
          if (node[2]) {
            buildFlowGraph(node[2]);
          }
          var jExit = markJunction();
          setJunction(jEnter);
          addPreCondFalse(node[1]);
          if (node[3]) {
            buildFlowGraph(node[3]);
          }
          joinJunction(jExit);
          break;
        case 'conditional':
          isInExpr++;
          buildFlowGraph(node[1]);
          var jEnter = markJunction();
          addPreCondTrue(node[1]);
          if (node[2]) {
            buildFlowGraph(node[2]);
          }
          var jExit = markJunction();
          setJunction(jEnter);
          addPreCondFalse(node[1]);
          if (node[3]) {
            buildFlowGraph(node[3]);
          }
          joinJunction(jExit);
          isInExpr--;
          break;
        case 'while':
          // Special-case "while (1) {}" to use fewer junctions,
          // since emscripten generates a lot of these.
          if (isTrueNode(node[1])) {
            var jLoop = markJunction();
            var jExit = addJunction();
            pushActiveLabels(jLoop, jExit);
            buildFlowGraph(node[2]);
            popActiveLabels();
            joinJunction(jLoop);
            setJunction(jExit);
          } else {
            var jCond = markJunction();
            var jLoop = addJunction();
            var jExit = addJunction();
            isInExpr++;
            buildFlowGraph(node[1]);
            isInExpr--;
            joinJunction(jLoop);
            pushActiveLabels(jCond, jExit);
            addPreCondTrue(node[1]);
            buildFlowGraph(node[2]);
            popActiveLabels();
            joinJunction(jCond);
            // An empty basic-block linking condition exit to loop exit.
            setJunction(jLoop);
            joinJunction(jExit);
          }
          break;
        case 'do':
          // Special-case "do {} while (1)" and "do {} while (0)" to use
          // fewer junctions, since emscripten generates a lot of these.
          if (isFalseNode(node[1])) {
            var jExit = addJunction();
            pushActiveLabels(jExit, jExit);
            buildFlowGraph(node[2]);
            popActiveLabels();
            joinJunction(jExit);
          } else if (isTrueNode(node[1])) {
            var jLoop = markJunction();
            var jExit = addJunction();
            pushActiveLabels(jLoop, jExit);
            buildFlowGraph(node[2]);
            popActiveLabels();
            joinJunction(jLoop);
            setJunction(jExit);
          } else {
            var jLoop = markJunction();
            var jCond = addJunction();
            var jCondExit = addJunction();
            var jExit = addJunction();
            pushActiveLabels(jCond, jExit);
            buildFlowGraph(node[2]);
            popActiveLabels();
            joinJunction(jCond);
            isInExpr++;
            buildFlowGraph(node[1]);
            isInExpr--;
            joinJunction(jCondExit);
            joinJunction(jLoop);
            setJunction(jCondExit);
            joinJunction(jExit)
          }
          break;
        case 'for':
          var jTest = addJunction();
          var jBody = addJunction();
          var jStep = addJunction();
          var jExit = addJunction();
          buildFlowGraph(node[1]);
          joinJunction(jTest);
          isInExpr++;
          buildFlowGraph(node[2]);
          isInExpr--;
          joinJunction(jBody);
          pushActiveLabels(jStep, jExit);
          buildFlowGraph(node[4]);
          popActiveLabels();
          joinJunction(jStep);
          buildFlowGraph(node[3]);
          joinJunction(jTest);
          setJunction(jBody);
          joinJunction(jExit);
          break;
        case 'label':
          assert(node[2][0] in BREAK_CAPTURERS, 'label on non-loop, non-switch statement')
          nextLoopLabel = node[1];
          buildFlowGraph(node[2]);
          break;
        case 'switch':
          // Emscripten generates switch statements of a very limited
          // form: all case clauses are numeric literals, and all
          // case bodies end with a break.  So it's basically equivalent
          // to a multi-way 'if' statement.
          isInExpr++;
          buildFlowGraph(node[1]);
          isInExpr--;
          var jCheckExit = markJunction();
          var jExit = addJunction();
          pushActiveLabels(null, jExit);
          var hasDefault = false;
          for (var i=0; i<node[2].length; i++) {
            setJunction(jCheckExit);
            if (!node[2][i][0]) {
              hasDefault = true;
            } else {
              if (node[2][i][0][0] !== 'num') {
                if (node[2][i][0][0] !== 'unary-prefix' || node[2][i][0][2][0] !== 'num') {
                  assert(false, 'non-numeric switch case clause');
                }
              }
              addPreCondTrue(['binary', '==', node[1], node[2][i][0]]);
            }
            for (var j = 0; j < node[2][i][1].length; j++) {
              buildFlowGraph(node[2][i][1][j]);
            }
            if (currEntryJunction !== null, 'switch case body did not break');
          }
          // If there was no default case, we also need an empty block
          // linking straight from the test evaluation to the exit.
          if (!hasDefault) {
            setJunction(jCheckExit);
          }
          markJunction(jExit);
          popActiveLabels()
          break;
        case 'return':
          if (node[1]) {
            isInExpr++;
            buildFlowGraph(node[1]);
            isInExpr--;
          }
          markNonLocalJump(type);
          break;
        case 'break':
        case 'continue':
          markNonLocalJump(type, node[1]);
          break;
        case 'assign':
          isInExpr++;
          buildFlowGraph(node[3]);
          isInExpr--;
          if (node[1] === true && node[2][0] === 'name') {
            addKillNode(node);
          } else {
            buildFlowGraph(node[2]);
          }
          break;
        case 'name':
          addUseNode(node);
          break;
        case 'block':
        case 'toplevel':
          if (node[1]) {
            for (var i = 0; i < node[1].length; i++) {
              buildFlowGraph(node[1][i]);
            }
          }
          break;
        case 'stat':
          buildFlowGraph(node[1]);
          break;
        case 'unary-prefix':
        case 'unary-postfix':
          isInExpr++;
          buildFlowGraph(node[2]);
          isInExpr--;
          break;
        case 'binary':
          isInExpr++;
          buildFlowGraph(node[2]);
          buildFlowGraph(node[3]);
          isInExpr--;
          break;
        case 'call':
          isInExpr++;
          buildFlowGraph(node[1]);
          if (node[2]) {
            for (var i = 0; i < node[2].length; i++) {
              buildFlowGraph(node[2][i]);
            }
          }
          isInExpr--;
          break;
        case 'seq':
        case 'sub':
          isInExpr++;
          buildFlowGraph(node[1]);
          buildFlowGraph(node[2]);
          isInExpr--;
          break;
        case 'dot':
        case 'throw':
          isInExpr++;
          buildFlowGraph(node[1]);
          isInExpr--;
          break;
        case 'num':
        case 'string':
        case 'var':
          break;
        default:
          printErr(JSON.stringify(node));
          assert(false, 'unsupported node type: ' + type);
      }
    }
    buildFlowGraph(fun);

    assert(setSize(junctions[ENTRY_JUNCTION].inblocks) === 0, 'function entry must have no incoming blocks');
    assert(setSize(junctions[EXIT_JUNCTION].outblocks) === 0, 'function exit must have no outgoing blocks');
    assert(blocks[ENTRY_BLOCK].entry === ENTRY_JUNCTION, 'block zero must be the initial block');

    // Fix up implicit jumps done by assigning to the 'label' variable.
    // If a block ends with an assignment to 'label' and there's another block
    // with that value of 'label' as precondition, we tweak the flow graph so
    // that the former jumps straight to the later.

    var labelledBlocks = {};
    var labelledJumps = [];
    FINDLABELLEDBLOCKS:
    for (var i = 0; i < blocks.length; i++) {
      var block = blocks[i];
      // Does it have a specific label value as precondition?
      var labelCond = block.pre['label'];
      if (labelCond && labelCond[0] === '==') {
        // If there are multiple blocks with the same label, all bets are off.
        // This seems to happen sometimes for short blocks that end with a return.
        // TODO: it should be safe to merge the duplicates if they're identical.
        if (labelCond[1] in labelledBlocks) {
          labelledBlocks = {};
          labelledJumps = [];
          break FINDLABELLEDBLOCKS;
        }
        labelledBlocks[labelCond[1]] = block;
      }
      // Does it assign a specific label value at exit?
      if ('label' in block.kill) {
        var finalNode = block.nodes[block.nodes.length - 1];
        if (finalNode[0] === 'assign' && finalNode[2][1] === 'label') {
          // If labels are computed dynamically then all bets are off.
          // This can happen due to indirect branching in llvm output.
          if (finalNode[3][0] !== 'num') {
            labelledBlocks = {};
            labelledJumps = [];
            break FINDLABELLEDBLOCKS;
          }
          labelledJumps.push([finalNode[3][1], block]);
        } else { 
          // If label is assigned a non-zero value elsewhere in the block
          // then all bets are off.  This can happen e.g. due to outlining
          // saving/restoring label to the stack.
          for (var j = 0; j < block.nodes.length - 1; j++) {
            if (block.nodes[j][0] === 'assign' && block.nodes[j][2][1] === 'label') {
              if (block.nodes[j][3][0] !== 'num' && block.nodes[j][3][1] !== 0) {
                labelledBlocks = {};
                labelledJumps = [];
                break FINDLABELLEDBLOCKS;
              }
            }
          }
        }
      }
    }
    for (var labelVal in labelledBlocks) {
      var block = labelledBlocks[labelVal];
      // Disconnect it from the graph, and create a
      // new junction for jumps targetting this label.
      delete junctions[block.entry].outblocks[block.id];
      block.entry = addJunction();
      junctions[block.entry].outblocks[block.id] = 1;
      // Add a fake use of 'label' to keep it alive in predecessor.
      block.use['label'] = 1;
      block.nodes.unshift(['name', 'label']);
      block.isexpr.unshift(1);
    }
    for (var i = 0; i < labelledJumps.length; i++) {
      var labelVal = labelledJumps[i][0];
      var block = labelledJumps[i][1];
      var targetBlock = labelledBlocks[labelVal];
      if (targetBlock) {
        // Redirect its exit to entry of the target block.
        delete junctions[block.exit].inblocks[block.id];
        block.exit = targetBlock.entry;
        junctions[block.exit].inblocks[block.id] = 1;
      }
    }
    labelledBlocks = null;
    labelledJumps = null;

    // Do a backwards data-flow analysis to determine the set of live
    // variables at each junction, and to use this information to eliminate
    // any unused assignments.
    // We run two nested phases.  The inner phase builds the live set for each
    // junction.  The outer phase uses this to try to eliminate redundant
    // stores in each basic block, which might in turn affect liveness info.

    function analyzeJunction(junc) {
      // Update the live set for this junction.
      var live = {};
      for (var b in junc.outblocks) {
        var block = blocks[b];
        var liveSucc = junctions[block.exit].live || {};
        for (var name in liveSucc) {
          if (!(name in block.kill)) {
            live[name] = 1;
          }
        }
        for (var name in block.use) {
          live[name] = 1;
        }
      }
      junc.live = live;
    }

    function analyzeBlock(block) {
      // Update information about the behaviour of the block.
      // This includes the standard 'use' and 'kill' information,
      // plus a 'link' set naming values that flow through from entry
      // to exit, possibly changing names via simple 'x=y' assignments.
      // As we go, we eliminate assignments if the variable is not
      // subsequently used.
      var live = copy(junctions[block.exit].live);
      var use = {};
      var kill = {};
      var link = {};
      var lastUseLoc = {};
      var firstDeadLoc = {};
      var firstKillLoc = {};
      var lastKillLoc = {};
      for (var name in live) {
        link[name] = name;
        lastUseLoc[name] = block.nodes.length;
        firstDeadLoc[name] = block.nodes.length;
      }
      for (var j = block.nodes.length - 1; j >=0 ; j--) {
        var node = block.nodes[j];
        if (node[0] === 'name') {
          var name = node[1];
          live[name] = 1;
          use[name] = j;
          if (lastUseLoc[name] === undefined) {
            lastUseLoc[name] = j;
            firstDeadLoc[name] = j;
          }
        } else {
          var name = node[2][1];
          // We only keep assignments if they will be subsequently used.
          if (name in live) {
            kill[name] = 1;
            delete use[name];
            delete live[name];
            firstDeadLoc[name] = j;
            firstKillLoc[name] = j;
            if (lastUseLoc[name] === undefined) {
              lastUseLoc[name] = j;
            }
            if (lastKillLoc[name] === undefined) {
              lastKillLoc[name] = j;
            }
            // If it's an "x=y" and "y" is not live, then we can create a
            // flow-through link from "y" to "x".  If not then there's no
            // flow-through link for "x".
            var oldLink = link[name];
            if (oldLink) {
              delete link[name];
              if (node[3][0] === 'name') {
                if (node[3][1] in localVars) {
                  link[node[3][1]] = oldLink;
                }
              }
            }
          } else {
            // The result of this assignment is never used, so delete it.
            // We may need to keep the RHS for its value or its side-effects.
            function removeUnusedNodes(j, n) {
              for (var name in lastUseLoc) {
                lastUseLoc[name] -= n;
              }
              for (var name in firstKillLoc) {
                firstKillLoc[name] -= n;
              }
              for (var name in lastKillLoc) {
                lastKillLoc[name] -= n;
              }
              for (var name in firstDeadLoc) {
                firstDeadLoc[name] -= n;
              }
              block.nodes.splice(j, n);
              block.isexpr.splice(j, n);
            }
            if (block.isexpr[j] || hasSideEffects(node[3])) {
              morphNode(node, node[3]);
              removeUnusedNodes(j, 1);
            } else {
              var numUsesInExpr = 0;
              traverse(node[3], function(node, type) {
                if (type === 'name' && node[1] in localVars) {
                  numUsesInExpr++;
                }
              });
              morphNode(node, ['block', []]);
              j = j - numUsesInExpr;
              removeUnusedNodes(j, 1 + numUsesInExpr);
            }
          }
        }
      }
      block.use = use;
      block.kill = kill;
      block.link = link;
      block.lastUseLoc = lastUseLoc;
      block.firstDeadLoc = firstDeadLoc;
      block.firstKillLoc = firstKillLoc;
      block.lastKillLoc = lastKillLoc;
    }

    var jWorklistMap = { EXIT_JUNCTION: 1 };
    var jWorklist = [EXIT_JUNCTION];
    var bWorklistMap = {};
    var bWorklist = [];

    // Be sure to visit every junction at least once.
    // This avoids missing some vars because we disconnected them
    // when processing the labelled jumps.
    for (var i = junctions.length - 1; i >= EXIT_JUNCTION; i--) {
      jWorklistMap[i] = 1;
      jWorklist.push(i);
    }

    while (jWorklist.length > 0) {
      // Iterate on just the junctions until we get stable live sets.
      // The first run of this loop will grow the live sets to their maximal size.
      // Subsequent runs will shrink them based on eliminated in-block uses.
      while (jWorklist.length > 0) {
        var junc = junctions[jWorklist.pop()];
        delete jWorklistMap[junc.id];
        var oldLive = junc.live || null;
        analyzeJunction(junc);
        if (!sortedJsonCompare(oldLive, junc.live)) {
          // Live set changed, updated predecessor blocks and junctions.
          for (var b in junc.inblocks) {
            if (!(b in bWorklistMap)) {
              bWorklistMap[b] = 1;
              bWorklist.push(b);
            }
            var jPred = blocks[b].entry;
            if (!(jPred in jWorklistMap)) {
              jWorklistMap[jPred] = 1;
              jWorklist.push(jPred);
            }
          }
        }
      }
      // Now update the blocks based on the calculated live sets.
      while (bWorklist.length > 0) {
        var block = blocks[bWorklist.pop()];
        delete bWorklistMap[block.id];
        var oldUse = block.use;
        analyzeBlock(block);
        if (!sortedJsonCompare(oldUse, block.use)) {
          // The use set changed, re-process the entry junction.
          if (!(block.entry in jWorklistMap)) {
            jWorklistMap[block.entry] = 1;
            jWorklist.push(block.entry);
          }
        }
      }
    }

    // Insist that all function parameters are alive at function entry.
    // This ensures they will be assigned independent registers, even
    // if they happen to be unused.

    for (var name in asmData.params) {
      junctions[ENTRY_JUNCTION].live[name] = 1;
    }

    // For variables that are live at one or more junctions, we assign them
    // a consistent register for the entire scope of the function.  Find pairs
    // of variable that cannot use the same register (the "conflicts") as well
    // as pairs of variables that we'd like to have share the same register
    // (the "links").

    var junctionVariables = {};

    function initializeJunctionVariable(name) {
      junctionVariables[name] = { conf: {}, link: {}, excl: {}, reg: null };
    }

    for (var i = 0; i < junctions.length; i++) {
      var junc = junctions[i];
      for (var name in junc.live) {
        if (!junctionVariables[name]) initializeJunctionVariable(name);
        // It conflicts with all other names live at this junction.
        for (var otherName in junc.live) {
          if (otherName == name) continue;
          junctionVariables[name].conf[otherName] = 1;
        }
        for (var b in junc.outblocks) {
          // It conflits with any output vars of successor blocks,
          // if they're assigned before it goes dead in that block.
          block = blocks[b];
          var jSucc = junctions[block.exit];
          for (var otherName in jSucc.live) {
            if (junc.live[otherName]) continue;
            if (block.lastKillLoc[otherName] < block.firstDeadLoc[name]) {
              if (!junctionVariables[otherName]) initializeJunctionVariable(otherName);
              junctionVariables[name].conf[otherName] = 1;
              junctionVariables[otherName].conf[name] = 1;
            }
          }
          // It links with any linkages in the outgoing blocks.
          var linkName = block.link[name];
          if (linkName && linkName !== name) {
            if (!junctionVariables[linkName]) initializeJunctionVariable(linkName);
            junctionVariables[name].link[linkName] = 1;
            junctionVariables[linkName].link[name] = 1;
          }
        }
      }
    }

    // Attempt to sort the junction variables to heuristically reduce conflicts.
    // Simple starting point: handle the most-conflicted variables first.
    // This seems to work pretty well.

    var sortedJunctionVariables = keys(junctionVariables);
    sortedJunctionVariables.sort(function(name1, name2) {
      var jv1 = junctionVariables[name1];
      var jv2 = junctionVariables[name2];
      if (jv1.numConfs === undefined) {
        jv1.numConfs = setSize(jv1.conf);
      }
      if (jv2.numConfs === undefined) {
        jv2.numConfs = setSize(jv2.conf);
      }
      return jv2.numConfs - jv1.numConfs;
    });

    // We can now assign a register to each junction variable.
    // Process them in order, trying available registers until we find
    // one that works, and propagating the choice to linked/conflicted
    // variables as we go.

    function tryAssignRegister(name, reg) {
      // Try to assign the given register to the given variable,
      // and propagate that choice throughout the graph.
      // Returns true if successful, false if there was a conflict.
      var jv = junctionVariables[name];
      if (jv.reg !== null) {
        return jv.reg === reg;
      }
      if (jv.excl[reg]) {
        return false;
      }
      jv.reg = reg;
      // Exclude use of this register at all conflicting variables.
      for (var confName in jv.conf) {
        junctionVariables[confName].excl[reg] = 1;
      }
      // Try to propagate it into linked variables.
      // It's not an error if we can't.
      for (var linkName in jv.link) {
        tryAssignRegister(linkName, reg);
      }
      return true;
    }

    NEXTVARIABLE:
    for (var i = 0; i < sortedJunctionVariables.length; i++) {
      var name = sortedJunctionVariables[i];
      // It may already be assigned due to linked-variable propagation.
      if (junctionVariables[name].reg !== null) {
        continue NEXTVARIABLE;
      }
      // Try to use existing registers first.
      var allRegs = allRegsByType[localVars[name]];
      for (var reg in allRegs) {
        if (tryAssignRegister(name, reg)) {
          continue NEXTVARIABLE;
        }
      }
      // They're all taken, create a new one.
      tryAssignRegister(name, createReg(name));
    }

    // Each basic block can now be processed in turn.
    // There may be internal-use-only variables that still need a register
    // assigned, but they can be treated just for this block.  We know
    // that all inter-block variables are in a good state thanks to
    // junction variable consistency.

    for (var i = 0; i < blocks.length; i++) {
      var block = blocks[i];
      if (block.nodes.length === 0) continue;
      var jEnter = junctions[block.entry];
      var jExit = junctions[block.exit];
      // Mark the point at which each input reg becomes dead.
      // Variables alive before this point must not be assigned
      // to that register.
      var inputVars = {}
      var inputDeadLoc = {};
      var inputVarsByReg = {};
      for (var name in jExit.live) {
        if (!(name in block.kill)) {
          inputVars[name] = 1;
          var reg = junctionVariables[name].reg;
          assert(reg !== null, 'input variable doesnt have a register');
          inputDeadLoc[reg] = block.firstDeadLoc[name];
          inputVarsByReg[reg] = name;
        }
      }
      for (var name in block.use) {
        if (!(name in inputVars)) {
          inputVars[name] = 1;
          var reg = junctionVariables[name].reg;
          assert(reg !== null, 'input variable doesnt have a register');
          inputDeadLoc[reg] = block.firstDeadLoc[name];
          inputVarsByReg[reg] = name;
        }
      }
      assert(setSize(setSub(inputVars, jEnter.live)) == 0);
      // Scan through backwards, allocating registers on demand.
      // Be careful to avoid conflicts with the input registers.
      // We consume free registers in last-used order, which helps to
      // eliminate "x=y" assignments that are the last use of "y".
      var assignedRegs = {};
      var freeRegsByType = copy(allRegsByType);
      // Begin with all live vars assigned per the exit junction.
      for (var name in jExit.live) {
        var reg = junctionVariables[name].reg;
        assert(reg !== null, 'output variable doesnt have a register');
        assignedRegs[name] = reg;
        delete freeRegsByType[localVars[name]][reg];
      }
      for (var j = 0; j < freeRegsByType.length; j++) {
        freeRegsByType[j] = keys(freeRegsByType[j]);
      }
      // Scan through the nodes in sequence, modifying each node in-place
      // and grabbing/freeing registers as needed.
      var maybeRemoveNodes = [];
      for (var j = block.nodes.length - 1; j >= 0; j--) {
        var node = block.nodes[j];
        var name = node[0] === 'assign' ? node[2][1] : node[1];
        var allRegs = allRegsByType[localVars[name]];
        var freeRegs = freeRegsByType[localVars[name]];
        var reg = assignedRegs[name];
        if (node[0] === 'name') {
          // A use.  Grab a register if it doesn't have one.
          if (!reg) {
            if (name in inputVars && j <= block.firstDeadLoc[name]) {
              // Assignment to an input variable, must use pre-assigned reg.
              reg = junctionVariables[name].reg;
              assignedRegs[name] = reg;
              for (var k = freeRegs.length - 1; k >= 0; k--) {
                if (freeRegs[k] === reg) {
                  freeRegs.splice(k, 1);
                  break;
                }
              }
            } else {
              // Try to use one of the existing free registers.
              // It must not conflict with an input register.
              for (var k = freeRegs.length - 1; k >= 0; k--) {
                reg = freeRegs[k];
                // Check for conflict with input registers.
                if (block.firstKillLoc[name] <= inputDeadLoc[reg]) {
                  if (name !== inputVarsByReg[reg]) {
                    continue;
                  }
                }
                // Found one!
                assignedRegs[name] = reg;
                freeRegs.splice(k, 1);
                break;
              }
              // If we didn't find a suitable register, create a new one.
              if (!assignedRegs[name]) {
                reg = createReg(name);
                assignedRegs[name] = reg;
              }
            }
          }
          node[1] = allRegs[reg];
        } else {
          // A kill. This frees the assigned register.
          assert(reg, 'live variable doesnt have a reg?')
          node[2][1] = allRegs[reg];
          freeRegs.push(reg);
          delete assignedRegs[name];
          if (node[3][0] === 'name' && node[3][1] in localVars) {
            maybeRemoveNodes.push([j, node]);
          }
        }
      }
      // If we managed to create an "x=x" assignments, remove them.
      for (var j = 0; j < maybeRemoveNodes.length; j++) {
        var node = maybeRemoveNodes[j][1];
        if (node[2][1] === node[3][1]) {
          if (block.isexpr[maybeRemoveNodes[j][0]]) {
            morphNode(node, node[2]);
          } else {
            morphNode(node, ['block', []]);
          }
        }
      }
    }

    // Assign registers to function params based on entry junction

    var paramRegs = {}
    if (fun[2]) {
      for (var i = 0; i < fun[2].length; i++) {
        var allRegs = allRegsByType[localVars[fun[2][i]]];
        fun[2][i] = allRegs[junctionVariables[fun[2][i]].reg];
        paramRegs[fun[2][i]] = 1;
      }
    }

    // That's it!
    // Re-construct the function with appropriate variable definitions.
 
    var finalAsmData = {
      params: {},
      vars: {},
      inlines: asmData.inlines,
    };
    for (var i = 1; i < nextReg; i++) {
      var reg;
      for (var type=0; type<allRegsByType.length; type++) {
        reg = allRegsByType[type][i];
        if (reg) break;
      }
      if (!paramRegs[reg]) {
        finalAsmData.vars[reg] = type;
      } else {
        finalAsmData.params[reg] = type;
      }
    }
    denormalizeAsm(fun, finalAsmData);

    vacuum(fun);

  });
}


// Eliminator aka Expressionizer
//
// The goal of this pass is to eliminate unneeded variables (which represent one of the infinite registers in the LLVM
// model) and thus to generate complex expressions where possible, for example
//
//  var x = a(10);
//  var y = HEAP[20];
//  print(x+y);
//
// can be transformed into
//
//  print(a(10)+HEAP[20]);
//
// The basic principle is to scan along the code in the order of parsing/execution, and keep a list of tracked
// variables that are current contenders for elimination. We must untrack when we see something that we cannot
// cross, for example, a write to memory means we must invalidate variables that depend on reading from
// memory, since if we change the order then we do not preserve the computation.
//
// We rely on some assumptions about emscripten-generated code here, which means we can do a lot more than
// a general JS optimization can. For example, we assume that 'sub' nodes (indexing like HEAP[..]) are
// memory accesses or FUNCTION_TABLE accesses, and in both cases that the symbol cannot be replaced although
// the contents can. So we assume FUNCTION_TABLE might have its contents changed but not be pointed to
// a different object, which allows
//
//  var x = f();
//  FUNCTION_TABLE[x]();
//
// to be optimized (f could replace FUNCTION_TABLE, so in general JS eliminating x is not valid).
//
// In memSafe mode, we are more careful and assume functions can replace HEAP and FUNCTION_TABLE, which
// can happen in ALLOW_MEMORY_GROWTH mode

var ELIMINATION_SAFE_NODES = set('var', 'assign', 'call', 'if', 'toplevel', 'do', 'return', 'label', 'switch', 'binary', 'unary-prefix'); // do is checked carefully, however
var IGNORABLE_ELIMINATOR_SCAN_NODES = set('num', 'toplevel', 'string', 'break', 'continue', 'dot'); // dot can only be STRING_TABLE.*
var ABORTING_ELIMINATOR_SCAN_NODES = set('new', 'object', 'function', 'defun', 'for', 'while', 'array', 'throw'); // we could handle some of these, TODO, but nontrivial (e.g. for while, the condition is hit multiple times after the body)

function isTempDoublePtrAccess(node) { // these are used in bitcasts; they are not really affecting memory, and should cause no invalidation
  assert(node[0] === 'sub');
  return (node[2][0] === 'name' && node[2][1] === 'tempDoublePtr') ||
         (node[2][0] === 'binary' && ((node[2][2][0] === 'name' && node[2][2][1] === 'tempDoublePtr') ||
                                     (node[2][3][0] === 'name' && node[2][3][1] === 'tempDoublePtr')));
}

function eliminate(ast, memSafe) {
  // Find variables that have a single use, and if they can be eliminated, do so
  traverseGeneratedFunctions(ast, function(func, type) {
    if (asm) var asmData = normalizeAsm(func);
    //printErr('eliminate in ' + func[1]);

    // First, find the potentially eliminatable functions: that have one definition and one use
    var definitions = {};
    var uses = {};
    var namings = {};
    var values = {};
    var locals = {};
    var varsToRemove = {}; // variables being removed, that we can eliminate all 'var x;' of (this refers to 'var' nodes we should remove)
                           // 1 means we should remove it, 2 means we successfully removed it
    var varsToTryToRemove = {}; // variables that have 0 uses, but have side effects - when we scan we can try to remove them
    // add arguments as locals
    if (func[2]) {
      for (var i = 0; i < func[2].length; i++) {
        locals[func[2][i]] = true;
      }
    }
    // examine body and note locals
    var hasSwitch = false;
    traverse(func, function(node, type) {
      if (type === 'var') {
        var node1 = node[1];
        for (var i = 0; i < node1.length; i++) {
          var node1i = node1[i];
          var name = node1i[0];
          var value = node1i[1];
          if (value) {
            if (!(name in definitions)) definitions[name] = 0;
            definitions[name]++;
            if (!values[name]) values[name] = value;
          }
          if (!uses[name]) uses[name] = 0;
          locals[name] = true;
        }
      } else if (type === 'name') {
        var name = node[1];
        if (!uses[name]) uses[name] = 0;
        uses[name]++;
      } else if (type === 'assign') {
        var target = node[2];
        if (target[0] === 'name') {
          var name = target[1];
          if (!(name in definitions)) definitions[name] = 0;
          definitions[name]++;
          if (!uses[name]) uses[name] = 0;
          if (!values[name]) values[name] = node[3];
          if (node[1] === true) { // not +=, -= etc., just =
            uses[name]--; // because the name node will show up by itself in the previous case
            if (!namings[name]) namings[name] = 0;
            namings[name]++; // offset it here, this tracks the total times we are named
          }
        }
      } else if (type === 'switch') {
        hasSwitch = true;
      }
    });

    for (var used in uses) {
      namings[used] = (namings[used] || 0) + uses[used];
    }

    // we cannot eliminate variables if there is a switch
    if (hasSwitch && !asm) return;

    var potentials = {}; // local variables with 1 definition and 1 use
    var sideEffectFree = {}; // whether a local variable has no side effects in its definition. Only relevant when there are no uses

    function unprocessVariable(name) {
      if (name in potentials) delete potentials[name];
      if (name in varsToRemove) delete varsToRemove[name];
      if (name in sideEffectFree) delete sideEffectFree[name];
      if (name in varsToTryToRemove) delete varsToTryToRemove[name];
    }
    function processVariable(name) {
      if (definitions[name] === 1 && uses[name] === 1) {
        potentials[name] = 1;
      } else if (uses[name] === 0 && (!definitions[name] || definitions[name] <= 1)) { // no uses, no def or 1 def (cannot operate on phis, and the llvm optimizer will remove unneeded phis anyhow) (no definition means it is a function parameter, or a local with just |var x;| but no defining assignment)
        var sideEffects = false;
        var value = values[name];
        if (value) {
          // TODO: merge with other side effect code
          // First, pattern-match
          //  (HEAP32[((tempDoublePtr)>>2)]=((HEAP32[(($_sroa_0_0__idx1)>>2)])|0),HEAP32[(((tempDoublePtr)+(4))>>2)]=((HEAP32[((($_sroa_0_0__idx1)+(4))>>2)])|0),(+(HEAPF64[(tempDoublePtr)>>3])))
          // which has no side effects and is the special form of converting double to i64.
          if (!(value[0] === 'seq' && value[1][0] === 'assign' && value[1][2][0] === 'sub' && value[1][2][2][0] === 'binary' && value[1][2][2][1] === '>>' &&
                value[1][2][2][2][0] === 'name' && value[1][2][2][2][1] === 'tempDoublePtr')) {
            // If not that, then traverse and scan normally.
            sideEffects = hasSideEffects(value);
          }
        }
        if (!sideEffects) {
          varsToRemove[name] = !definitions[name] ? 2 : 1; // remove it normally
          sideEffectFree[name] = true;
          // Each time we remove a variable with 0 uses, if its value has no
          // side effects and vanishes too, then we can remove a use from variables
          // appearing in it, and possibly eliminate again
          if (value) {
            traverse(value, function(node, type) {
              if (type === 'name') {
                var name = node[1];
                node[1] = ''; // we can remove this - it will never be shown, and should not be left to confuse us as we traverse
                if (name in locals) {
                  uses[name]--; // cannot be infinite recursion since we descend an energy function
                  assert(uses[name] >= 0);
                  unprocessVariable(name);
                  processVariable(name);
                }
              }
            });
          }
        } else {
          varsToTryToRemove[name] = 1; // try to remove it later during scanning
        }
      }
    }
    for (var name in locals) {
      processVariable(name);
    }

    //printErr('defs: ' + JSON.stringify(definitions));
    //printErr('uses: ' + JSON.stringify(uses));
    //printErr('values: ' + JSON.stringify(values));
    //printErr('locals: ' + JSON.stringify(locals));
    //printErr('varsToRemove: ' + JSON.stringify(varsToRemove));
    //printErr('varsToTryToRemove: ' + JSON.stringify(varsToTryToRemove));
    values = null;
    //printErr('potentials: ' + JSON.stringify(potentials));
    // We can now proceed through the function. In each list of statements, we try to eliminate
    var tracked = {};
    var globalsInvalidated = false; // do not repeat invalidations, until we track something new
    var memoryInvalidated = false;
    var callsInvalidated = false;
    function track(name, value, defNode) { // add a potential that has just been defined to the tracked list, we hope to eliminate it
      var usesGlobals = false, usesMemory = false, deps = {}, doesCall = false, hasDeps = false;
      var ignoreName = false; // one-time ignorings of names, as first op in sub and call
      traverse(value, function(node, type) {
        if (type === 'name') {
          if (!ignoreName) {
            var name = node[1];
            if (!(name in locals)) {
              usesGlobals = true;
            }
            if (!(name in potentials)) { // deps do not matter for potentials - they are defined once, so no complexity
              deps[name] = 1;
              hasDeps = true;
            }
          } else {
            ignoreName = false;
          }
        } else if (type === 'sub') {
          usesMemory = true;
          ignoreName = true;
        } else if (type === 'call') {
          usesGlobals = true;
          usesMemory = true;
          doesCall = true;        
          ignoreName = true;
        } else {
          ignoreName = false;
        }
      });
      tracked[name] = {
        usesGlobals: usesGlobals,
        usesMemory: usesMemory,
        defNode: defNode,
        deps: deps,
        hasDeps: hasDeps,
        doesCall: doesCall
      };
      globalsInvalidated = false;
      memoryInvalidated = false;
      callsInvalidated = false;
      //printErr('track ' + [name, JSON.stringify(tracked[name])]);
    }
    var temp = [];
    // TODO: invalidate using a sequence number for each type (if you were tracked before the last invalidation, you are cancelled). remove for.in loops
    function invalidateGlobals() {
      //printErr('invalidate globals');
      temp.length = 0;
      for (var name in tracked) {
        var info = tracked[name];
        if (info.usesGlobals) {
          temp.push(name);
        }
      }
      for (var i = 0; i < temp.length; i++) {
        delete tracked[temp[i]];
      }
    }
    function invalidateMemory() {
      //printErr('invalidate memory');
      temp.length = 0;
      for (var name in tracked) {
        var info = tracked[name];
        if (info.usesMemory) {
          temp.push(name);
        }
      }
      for (var i = 0; i < temp.length; i++) {
        delete tracked[temp[i]];
      }
    }
    function invalidateByDep(dep) {
      //printErr('invalidate by dep ' + dep);
      temp.length = 0;
      for (var name in tracked) {
        var info = tracked[name];
        if (info.deps[dep]) {
          temp.push(name);
        }
      }
      for (var i = 0; i < temp.length; i++) {
        delete tracked[temp[i]];
      }
    }
    function invalidateCalls() {
      //printErr('invalidate calls');
      temp.length = 0;
      for (var name in tracked) {
        var info = tracked[name];
        if (info.doesCall) {
          temp.push(name);
        }
      }
      for (var i = 0; i < temp.length; i++) {
        delete tracked[temp[i]];
      }
    }

    // Generate the sequence of execution. This determines what is executed before what, so we know what can be reordered. Using
    // that, performs invalidations and eliminations
    function scan(node) {
      //printErr('scan: ' + JSON.stringify(node).substr(0, 50) + ' : ' + keys(tracked));
      var abort = false;
      var allowTracking = true; // false inside an if; also prevents recursing in an if
      //var nesting = 1; // printErr-related
      function traverseInOrder(node, ignoreSub, ignoreName) {
        if (abort) return;
        //nesting++; // printErr-related
        //printErr(JSON.stringify(node).substr(0, 50) + ' : ' + keys(tracked) + ' : ' + [allowTracking, ignoreSub, ignoreName]);
        var type = node[0];
        if (type === 'assign') {
          var target = node[2];
          var value = node[3];
          var nameTarget = target[0] === 'name';
          traverseInOrder(target, true, nameTarget); // evaluate left
          traverseInOrder(value); // evaluate right
          // do the actual assignment
          if (nameTarget) {
            var name = target[1];
            if (!(name in potentials)) {
              if (!(name in varsToTryToRemove)) {
                // expensive check for invalidating specific tracked vars. This list is generally quite short though, because of
                // how we just eliminate in short spans and abort when control flow happens TODO: history numbers instead
                invalidateByDep(name); // can happen more than once per dep..
                if (!(name in locals) && !globalsInvalidated) {
                  invalidateGlobals();
                  globalsInvalidated = true;
                }
                // if we can track this name (that we assign into), and it has 0 uses and we want to remove its 'var'
                // definition - then remove it right now, there is no later chance
                if (allowTracking && (name in varsToRemove) && uses[name] === 0) {
                  track(name, node[3], node);
                  doEliminate(name, node);
                }
              } else {
                // replace it in-place
                node.length = value.length;
                for (var i = 0; i < value.length; i++) {
                  node[i] = value[i];
                }
                varsToRemove[name] = 2;
              }
            } else {
              if (allowTracking) track(name, node[3], node);
            }
          } else if (target[0] === 'sub') {
            if (isTempDoublePtrAccess(target)) {
              if (!globalsInvalidated) {
                invalidateGlobals();
                globalsInvalidated = true;
              }
            } else if (!memoryInvalidated) {
              invalidateMemory();
              memoryInvalidated = true;
            }
          }
        } else if (type === 'sub') {
          traverseInOrder(node[1], false, !memSafe); // evaluate inner
          traverseInOrder(node[2]); // evaluate outer
          // ignoreSub means we are a write (happening later), not a read
          if (!ignoreSub && !isTempDoublePtrAccess(node)) {
            // do the memory access
            if (!callsInvalidated) {
              invalidateCalls();
              callsInvalidated = true;
            }
          }
        } else if (type === 'var') {
          var vars = node[1];
          for (var i = 0; i < vars.length; i++) {
            var name = vars[i][0];
            var value = vars[i][1];
            if (value) {
              traverseInOrder(value);
              if (name in potentials && allowTracking) {
                track(name, value, node);
              } else {
                invalidateByDep(name);
              }
              if (vars.length === 1 && name in varsToTryToRemove && value) {
                // replace it in-place
                value = ['stat', value];
                node.length = value.length;
                for (var i = 0; i < value.length; i++) {
                  node[i] = value[i];
                }
                varsToRemove[name] = 2;
              }
            }
          }
        } else if (type === 'binary') {
          var flipped = false;
          if (node[1] in ASSOCIATIVE_BINARIES && !(node[2][0] in NAME_OR_NUM) && node[3][0] in NAME_OR_NUM) { // TODO recurse here?
            // associatives like + and * can be reordered in the simple case of one of the sides being a name, since we assume they are all just numbers
            var temp = node[2];
            node[2] = node[3];
            node[3] = temp;
            flipped = true;
          }
          traverseInOrder(node[2]);
          traverseInOrder(node[3]);
          if (flipped && node[2][0] in NAME_OR_NUM) { // dunno if we optimized, but safe to flip back - and keeps the code closer to the original and more readable
            var temp = node[2];
            node[2] = node[3];
            node[3] = temp;
          }
        } else if (type === 'name') {
          if (!ignoreName) { // ignoreName means we are the name of something like a call or a sub - irrelevant for us
            var name = node[1];
            if (name in tracked) {
              doEliminate(name, node);
            } else if (!(name in locals) && !callsInvalidated) {
              invalidateCalls();
              callsInvalidated = true;
            }
          }
        } else if (type === 'unary-prefix' || type === 'unary-postfix') {
          traverseInOrder(node[2]);
        } else if (type in IGNORABLE_ELIMINATOR_SCAN_NODES) {
        } else if (type === 'call') {
          traverseInOrder(node[1], false, true);
          var args = node[2];
          for (var i = 0; i < args.length; i++) {
            traverseInOrder(args[i]);
          }
          if (callHasSideEffects(node)) {
            // these two invalidations will also invalidate calls
            if (!globalsInvalidated) {
              invalidateGlobals();
              globalsInvalidated = true;
            }
            if (!memoryInvalidated) {
              invalidateMemory();
              memoryInvalidated = true;
            }
          }
        } else if (type === 'if') {
          if (allowTracking) {
            traverseInOrder(node[1]); // can eliminate into condition, but nowhere else
            if (!callsInvalidated) { // invalidate calls, since we cannot eliminate them into an if that may not execute!
              invalidateCalls();
              callsInvalidated = true;
            }

            allowTracking = false;
            traverseInOrder(node[2]); // 2 and 3 could be 'parallel', really..
            if (node[3]) traverseInOrder(node[3]);
            allowTracking = true;

          } else {
            tracked = {};
          }
        } else if (type === 'block') {
          var stats = node[1];
          if (stats) {
            for (var i = 0; i < stats.length; i++) {
              traverseInOrder(stats[i]);
            }
          }
        } else if (type === 'stat') {
          traverseInOrder(node[1]);
        } else if (type === 'label') {
          traverseInOrder(node[2]);
        } else if (type === 'seq') {
          traverseInOrder(node[1]);
          traverseInOrder(node[2]);
        } else if (type === 'do') {
          if (node[1][0] === 'num' && node[1][1] === 0) { // one-time loop
            traverseInOrder(node[2]);
          } else {
            tracked = {};
          }
        } else if (type === 'return') {
          if (node[1]) traverseInOrder(node[1]);
        } else if (type === 'conditional') {
          if (!callsInvalidated) { // invalidate calls, since we cannot eliminate them into a branch of an LLVM select/JS conditional that does not execute
            invalidateCalls();
            callsInvalidated = true;
          }
          traverseInOrder(node[1]);
          traverseInOrder(node[2]);
          traverseInOrder(node[3]);
        } else if (type === 'switch') {
          traverseInOrder(node[1]);
          var originalTracked = {};
          for (var o in tracked) originalTracked[o] = 1;
          var cases = node[2];
          for (var i = 0; i < cases.length; i++) {
            var c = cases[i];
            assert(c[0] === null || c[0][0] === 'num' || (c[0][0] === 'unary-prefix' && c[0][2][0] === 'num'));
            var stats = c[1];
            for (var j = 0; j < stats.length; j++) {
              traverseInOrder(stats[j]);
            }
            // We cannot track from one switch case into another, undo all new trackings TODO: general framework here, use in if-else as well
            for (var t in tracked) {
              if (!(t in originalTracked)) {
                var info = tracked[t];
                if (info.usesGlobals || info.usesMemory || info.hasDeps) {
                  delete tracked[t];
                }
              }
            }
          }
        } else {
          if (!(type in ABORTING_ELIMINATOR_SCAN_NODES)) {
            printErr('unfamiliar eliminator scan node: ' + JSON.stringify(node));
          }
          tracked = {};
          abort = true;
        }
        //nesting--; // printErr-related
      }
      traverseInOrder(node);
    }
    //var eliminationLimit = 0; // used to debugging purposes
    function doEliminate(name, node) {
      //if (eliminationLimit === 0) return;
      //eliminationLimit--;
      //printErr('elim!!!!! ' + name);
      // yes, eliminate!
      varsToRemove[name] = 2; // both assign and var definitions can have other vars we must clean up
      var info = tracked[name];
      delete tracked[name];
      var defNode = info.defNode;
      if (!sideEffectFree[name]) {
        if (defNode[0] === 'var') {
          defNode[1].forEach(function(pair) {
            if (pair[0] === name) {
              value = pair[1];
            }
          });
          assert(value);
        } else { // assign
          value = defNode[3];
          // wipe out the assign
          defNode[0] = 'toplevel';
          defNode[1] = [];
          defNode.length = 2;
        }
        // replace this node in-place
        node.length = 0;
        for (var i = 0; i < value.length; i++) {
          node[i] = value[i];
        }
      } else {
        // This has no side effects and no uses, empty it out in-place
        node.length = 0;
        node[0] = 'toplevel';
        node[1] = [];
      }
    }
    traverse(func, function(block) {
      // Look for statements, including while-switch pattern
      var stats = getStatements(block) || (block[0] === 'while' && block[2][0] === 'switch' ? [block[2]] : stats);
      if (!stats) return;
      //printErr('Stats: ' + JSON.stringify(stats).substr(0,100));
      tracked = {};
      //printErr('new StatBlock');
      for (var i = 0; i < stats.length; i++) {
        var node = stats[i];
        //printErr('StatBlock[' + i + '] => ' + JSON.stringify(node).substr(0,100));
        var type = node[0];
        if (type === 'stat') {
          node = node[1];
          type = node[0];
        } else if (type == 'return' && i < stats.length-1) {
          stats.length = i+1; // remove any code after a return
        }
        // Check for things that affect elimination
        if (type in ELIMINATION_SAFE_NODES) {
          scan(node);
        } else {
          tracked = {}; // not a var or assign, break all potential elimination so far
        }
      }
      //printErr('delete StatBlock');
    });

    var seenUses = {}, helperReplacements = {}; // for looper-helper optimization

    // clean up vars, and loop variable elimination
    traverse(func, function(node, type) {
      // pre
      if (type === 'var') {
        node[1] = node[1].filter(function(pair) { return !varsToRemove[pair[0]] });
        if (node[1].length === 0) {
          // wipe out an empty |var;|
          node[0] = 'toplevel';
          node[1] = [];
        }
      }
    }, function(node, type) {
      // post
      if (type === 'name') {
        var name = node[1];
        if (name in helperReplacements) {
          node[1] = helperReplacements[name];
          return; // no need to track this anymore, we can't loop-optimize more than once
        }
        // track how many uses we saw. we need to know when a variable is no longer used (hence we run this in the post)
        if (!(name in seenUses)) {
          seenUses[name] = 1;
        } else {
          seenUses[name]++;
        }
      } else if (type === 'while') {
        // try to remove loop helper variables specifically
        var stats = node[2][1];
        var last = stats[stats.length-1];
        if (last && last[0] === 'if' && last[2][0] === 'block' && last[3] && last[3][0] === 'block') {
          var ifTrue = last[2];
          var ifFalse = last[3];
          var flip = false;
          if (ifFalse[1][0] && ifFalse[1][0][0] === 'break') { // canonicalize break in the if
            var temp = ifFalse;
            ifFalse = ifTrue;
            ifTrue = temp;
            flip = true;
          }
          if (ifTrue[1][0] && ifTrue[1][0][0] === 'break') {
            var assigns = ifFalse[1];
            clearEmptyNodes(assigns);
            var loopers = [], helpers = [];
            for (var i = 0; i < assigns.length; i++) {
              if (assigns[i][0] === 'stat' && assigns[i][1][0] === 'assign') {
                var assign = assigns[i][1];
                if (assign[1] === true && assign[2][0] === 'name' && assign[3][0] === 'name') {
                  var looper = assign[2][1];
                  var helper = assign[3][1];
                  if (definitions[helper] === 1 && seenUses[looper] === namings[looper] &&
                      !helperReplacements[helper] && !helperReplacements[looper]) {
                    loopers.push(looper);
                    helpers.push(helper);
                  }
                }
              }
            }
            if (loopers.length < assigns.length) return; // TODO: handle the case where can can just eliminate one. (we can't optimize the break, but we can remove the var at least)
            for (var l = 0; l < loopers.length; l++) {
              var looper = loopers[l];
              var helper = helpers[l];
              // the remaining issue is whether loopers are used after the assignment to helper and before the last line (where we assign to it)
              var found = -1;
              for (var i = stats.length-2; i >= 0; i--) {
                var curr = stats[i];
                if (curr[0] === 'stat' && curr[1][0] === 'assign') {
                  var currAssign = curr[1];
                  if (currAssign[1] === true && currAssign[2][0] === 'name') {
                    var to = currAssign[2][1];
                    if (to === helper) {
                      found = i;
                      break;
                    }
                  }
                }
              }
              if (found < 0) return;
              var looperUsed = false;
              for (var i = found+1; i < stats.length && !looperUsed; i++) {
                var curr = i < stats.length-1 ? stats[i] : last[1]; // on the last line, just look in the condition
                traverse(curr, function(node, type) {
                  if (type === 'name' && node[1] === looper) {
                    looperUsed = true;
                    return true;
                  }
                });
              }
              if (looperUsed) return;
            }
            for (var l = 0; l < helpers.length; l++) {
              for (var k = 0; k < helpers.length; k++) {
                if (l != k && helpers[l] === helpers[k]) return; // it is complicated to handle a shared helper, abort
              }
            }
            // hurrah! this is safe to do
            //printErr("ELIM LOOP VAR " + JSON.stringify(loopers) + ' :: ' + JSON.stringify(helpers));
            for (var l = 0; l < loopers.length; l++) {
              var looper = loopers[l];
              var helper = helpers[l];
              varsToRemove[helper] = 2;
              traverse(node, function(node, type) { // replace all appearances of helper with looper
                if (type === 'name' && node[1] === helper) node[1] = looper;
              });
              helperReplacements[helper] = looper; // replace all future appearances of helper with looper
              helperReplacements[looper] = looper; // avoid any further attempts to optimize looper in this manner (seenUses is wrong anyhow, too)
            }
            // simplify the if. we remove the if branch, leaving only the else
            if (flip) {
              last[1] = simplifyNotCompsDirect(['unary-prefix', '!', last[1]]);
              last[2] = last[3];
            }
            last.pop();
          }
        }
      }
    });

    if (asm) {
      for (var v in varsToRemove) {
        if (varsToRemove[v] === 2) delete asmData.vars[v];
      }
      denormalizeAsm(func, asmData);
    }
  });

  if (!asm) { // TODO: deprecate in non-asm too
    // A class for optimizing expressions. We know that it is legitimate to collapse
    // 5+7 in the generated code, as it will always be numerical, for example. XXX do we need this? here?
    function ExpressionOptimizer(node) {
      this.node = node;

      this.run = function() {
        traverse(this.node, function(node, type) {
          if (type === 'binary' && node[1] === '+') {
            var names = [];
            var num = 0;
            var has_num = false;
            var fail = false;
            traverse(node, function(subNode, subType) {
              if (subType === 'binary') {
                if (subNode[1] !== '+') {
                  fail = true;
                  return false;
                }
              } else if (subType === 'name') {
                names.push(subNode[1]);
                return;
              } else if (subType === 'num') {
                num += subNode[1];
                has_num = true;
                return;
              } else {
                fail = true;
                return false;
              }
            });
            if (!fail && has_num) {
              var ret = ['num', num];
              for (var i = 0; i < names.length; i++) {
                ret = ['binary', '+', ['name', names[i]], ret];
              }
              return ret;
            }
          }
        });
      };
    }
    new ExpressionOptimizer(ast).run();
  }
}

function eliminateMemSafe(ast) {
  eliminate(ast, true);
}

function minifyGlobals(ast) {
  var minified = {};
  var next = 0;
  var first = true; // do not minify initial 'var asm ='
  // find the globals
  traverse(ast, function(node, type) {
    if (type === 'var') {
      if (first) {
        first = false;
        return;
      }
      var vars = node[1];
      for (var i = 0; i < vars.length; i++) {
        var name = vars[i][0];
        ensureMinifiedNames(next);
        vars[i][0] = minified[name] = minifiedNames[next++];
      }
    }
  });
  // add all globals in function chunks, i.e. not here but passed to us
  for (var i = 0; i < extraInfo.globals.length; i++) {
    name = extraInfo.globals[i];
    ensureMinifiedNames(next);
    minified[name] = minifiedNames[next++];
  }
  // apply minification
  traverse(ast, function(node, type) {
    if (type === 'name') {
      var name = node[1];
      if (name in minified) {
        node[1] = minified[name];
      }
    }
  });
  suffix = '// EXTRA_INFO:' + JSON.stringify(minified);
}


function minifyLocals(ast) {
  assert(asm)
  assert(extraInfo && extraInfo.globals)

  traverseGeneratedFunctions(ast, function(fun, type) {

    // Analyse the asmjs to figure out local variable names,
    // but operate on the original source tree so that we don't
    // miss any global names in e.g. variable initializers.
    var asmData = normalizeAsm(fun); denormalizeAsm(fun, asmData); // TODO: we can avoid modifying at all here - we just need a list of local vars+params
    var newNames = {};
    var usedNames = {};

    // Find all the globals that we need to minify using
    // pre-assigned names.  Don't actually minify them yet
    // as that might interfere with local variable names.
    function isLocalName(name) {
      return name in asmData.vars || name in asmData.params;
    }
    traverse(fun, function(node, type) {
      if (type === 'name') {
        var name = node[1];
        if (!isLocalName(name)) {
          var minified = extraInfo.globals[name];
          if (minified){
            newNames[name] = minified;
            usedNames[minified] = 1;
          }
        }
      }
    });

    // The first time we encounter a local name, we assign it a
    // minified name that's not currently in use.  Allocating on
    // demand means they're processed in a predicatable order,
    // which is very handy for testing/debugging purposes.
    var nextMinifiedName = 0;
    function getNextMinifiedName() {
      var minified;
      while (1) {
        ensureMinifiedNames(nextMinifiedName);
        minified = minifiedNames[nextMinifiedName++];
        // TODO: we can probably remove !isLocalName here
        if (!usedNames[minified] && !isLocalName(minified)) {
          return minified;
        }
      }
    }

    // We can also minify loop labels, using a separate namespace
    // to the variable declarations.
    var newLabels = {};
    var nextMinifiedLabel = 0;
    function getNextMinifiedLabel() {
      ensureMinifiedNames(nextMinifiedLabel);
      return minifiedNames[nextMinifiedLabel++];
    }

    // Traverse and minify all names.
    if (fun[1] in extraInfo.globals) {
      fun[1] = extraInfo.globals[fun[1]];
      assert(fun[1]);
    }
    if (fun[2]) {
      for (var i = 0; i < fun[2].length; i++) {
        var minified = getNextMinifiedName();
        newNames[fun[2][i]] = minified;
        fun[2][i] = minified;
      }
    }
    traverse(fun[3], function(node, type) {
      if (type === 'name') {
        var name = node[1];
        var minified = newNames[name];
        if (minified) {
          node[1] = minified;
        } else if (isLocalName(name)) {
          minified = getNextMinifiedName();
          newNames[name] = minified;
          node[1] = minified;
        }
      } else if (type === 'var') {
        node[1].forEach(function(defn) {
          var name = defn[0];
          if (!(name in newNames)) {
            newNames[name] = getNextMinifiedName();
          }
          defn[0] = newNames[name];
        });
      } else if (type === 'label') {
        if (!newLabels[node[1]]) {
          newLabels[node[1]] = getNextMinifiedLabel();
        }
        node[1] = newLabels[node[1]];
      } else if (type === 'break' || type === 'continue') {
        if (node[1]) {
          node[1] = newLabels[node[1]];
        }
      }
    });

  });
}

// Relocation pass for a shared module (for the functions part of the module)
//
// 1. Replace function names with alternate names as defined (to avoid colliding with
// names in the main module we are being linked to)
// 2. Hardcode function table offsets from F_BASE+x to const+x if x is a variable, or
//    the constant sum of the base + offset
// 3. Hardcode heap offsets from H_BASE as well
function relocate(ast) {
  assert(asm); // we also assume we are normalized

  var replacements = extraInfo.replacements;
  var fBases = extraInfo.fBases;
  var hBase = extraInfo.hBase;
  var m;

  traverse(ast, function(node, type) {
    switch(type) {
      case 'name': case 'defun': {
        var rep = replacements[node[1]];
        if (rep) node[1] = rep;
        break;
      }
      case 'binary': {
        if (node[1] == '+' && node[2][0] == 'name') {
          var base = null;
          if (node[2][1] == 'H_BASE') {
            base = hBase;
          } else if (m = /^F_BASE_(\w+)$/.exec(node[2][1])) {
            base = fBases[m[1]] || 0; // 0 if the parent has no function table for this, but the child does. so no relocation needed
          }
          if (base !== null) {
            var other = node[3];
            if (base === 0) return other;
            if (other[0] == 'num') {
              other[1] = (other[1] + base)|0;
              return other;
            } else {
              node[2] = ['num', base];
            }
          }
        }
        break;
      }
      case 'var': {
        var vars = node[1];
        for (var i = 0; i < vars.length; i++) {
          var name = vars[i][0];
          assert(!(name in replacements)); // cannot shadow functions we are replacing TODO: fix that
        }
        break;
      }
    }
  });
}

// Break up very large functions

var NODES_WITHOUT_ELIMINATION_SENSITIVITY = set('name', 'num', 'binary', 'unary-prefix');
var FAST_ELIMINATION_BINARIES = setUnion(setUnion(USEFUL_BINARY_OPS, COMPARE_OPS), set('+'));

function measureSize(ast) {
  var size = 0;
  traverse(ast, function() {
    size++;
  });
  return size;
}

function aggressiveVariableEliminationInternal(func, asmData) {
  // This removes as many variables as possible. This is often not the best thing because it increases
  // code size, but it is far preferable to the risk of split functions needing to do more spilling, so
  // we use it when outlining.
  // Specifically, this finds 'trivial' variables: ones with 1 definition, and that definition is not sensitive to any changes: it
  // only depends on constants and local variables that are themselves trivial. We can unquestionably eliminate
  // such variables in a trivial manner.

  var assignments = {};
  var appearances = {};
  var defs = {};
  var considered = {};

  traverse(func, function(node, type) {
    if (type == 'assign' && node[2][0] == 'name') {
      var name = node[2][1];
      if (name in asmData.vars) {
        assignments[name] = (assignments[name] || 0) + 1;
        appearances[name] = (appearances[name] || 0) - 1; // this appearance is a definition, offset the counting later
        defs[name] = node;
      } else {
        if (name in asmData.params) {
          assignments[name] = (assignments[name] || 1) + 1; // init to 1 for initial parameter assignment
          considered[name] = true; // this parameter is not ssa, it must be in a hand-optimized function, so it is not trivial
        }
      }
    } else if (type == 'name') {
      var name = node[1];
      if (name in asmData.vars) {
        appearances[name] = (appearances[name] || 0) + 1;
      }
    }
  });

  var allTrivials = {}; // key of a trivial var => size of its (expanded) value, at least 1

  // three levels of variables:
  // 1. trivial: 1 def (or less), uses nothing sensitive, can be eliminated
  // 2. safe: 1 def (or less), can be used in a trivial, but cannot itself be eliminated
  // 3. sensitive: uses a global or memory or something else that prevents trivial elimination.

  function assessTriviality(name) {
    // only care about vars with 0-1 assignments of (0 for parameters), and can ignore label (which is not explicitly initialized, but cannot be eliminated ever anyhow)
    if (assignments[name] > 1 || (!(name in asmData.vars) && !(name in asmData.params)) || name == 'label') return false;
    if (considered[name]) return allTrivials[name];
    considered[name] = true;
    var sensitive = false;
    var size = 0, originalSize = 0;
    var def = defs[name];
    if (def) {
      var value = def[3];
      originalSize = measureSize(value);
      if (value) {
        traverse(value, function recurseValue(node, type) {
          var one = node[1];
          if (!(type in NODES_WITHOUT_ELIMINATION_SENSITIVITY)) { // || (type == 'binary' && !(one in FAST_ELIMINATION_BINARIES))) {
            sensitive = true;
            return true;
          }
          if (type == 'name' && !assessTriviality(one)) {
            if (assignments[one] > 1 || (!(one in asmData.vars) && !(one in asmData.params))) {
              sensitive = true; // directly using something sensitive
              return true;
            } // otherwise, not trivial, but at least safe.
          }
          // if this is a name, it must be a trivial variable (or a safe one) and we know its size
          size += ((type == 'name') ? allTrivials[one] : 1) || 1;
        });
      }
    }
    if (!sensitive) {
      size = size || 1;
      originalSize = originalSize || 1;
      var factor = ((appearances[name] - 1) || 0) * (size - originalSize); // If no size change or just one appearance, always ok to trivially eliminate. otherwise, tradeoff
      if (factor <= 12) {
        allTrivials[name] = size; // trivial!
        return true;
      }
    }
    return false;
  }
  for (var name in asmData.vars) {
    assessTriviality(name);
  }
  var trivials = {};

  for (var name in allTrivials) { // from now on, ignore parameters
    if (name in asmData.vars) trivials[name] = true;
  }

  allTrivials = {};

  var values = {}, recursives = {};

  function evaluate(name) {
    var node = values[name];
    if (node) return node;
    values[name] = null; // prevent infinite recursion
    var def = defs[name];
    if (def) {
      node = def[3];
      if (node[0] == 'name') {
        var name2 = node[1];
        assert(name2 !== name);
        if (name2 in trivials) {
          node = evaluate(name2);
        }
      } else {
        traverse(node, function(node, type) {
          if (type == 'name') {
            var name2 = node[1];
            if (name2 === name) {
              recursives[name] = 1;
              return false;
            }
            if (name2 in trivials) {
              return evaluate(name2);
            }
          }
        });
      }
      values[name] = node;
    }
    return node;
  }

  for (var name in trivials) {
    evaluate(name);
  }
  for (var name in recursives) {
    delete trivials[name];
  }

  for (var name in trivials) {
    var def = defs[name];
    if (def) {
      def.length = 0;
      def[0] = 'toplevel';
      def[1] = [];
    }
    delete asmData.vars[name];
  }

  // Perform replacements TODO: save list of uses objects before, replace directly, avoid extra traverse
  traverse(func, function(node, type) {
    if (type == 'name') {
      var name = node[1];
      if (name in trivials) {
        var value = values[name];
        if (value) return copy(value); // must copy, or else the same object can be used multiple times
        else return emptyNode();
      }
    }
  });
}

function aggressiveVariableElimination(ast) {
  assert(asm, 'need ASM_JS for aggressive variable elimination');
  traverseGeneratedFunctions(ast, function(func, type) {
    var asmData = normalizeAsm(func);
    aggressiveVariableEliminationInternal(func, asmData);
    denormalizeAsm(func, asmData);
  });
}

function outline(ast) {
  // Try to flatten out code as much as possible, to make outlining more feasible.
  function flatten(func, asmData) {
    var minSize = extraInfo.sizeToOutline/4;
    var helperId = 0;
    function getHelper() {
      while (1) {
        var ret = 'helper$' + (helperId++);
        if (!(ret in asmData.vars) && !(ret in asmData.params)) {
          asmData.vars[ret] = ASM_INT;
          return ret;
        }
      }
    }
    var ignore = [];
    traverse(func, function(node) {
      if (node[0] === 'while' && node[2][0] !== 'block') {
        node[2] = ['block', [node[2]]]; // so we have a list of statements and can flatten  while(1) switch
      }
      var stats = getStatements(node);
      if (stats) {
        for (var i = 0; i < stats.length; i++) {
          var node = stats[i]; // step over param
          if (ignore.indexOf(node) >= 0) continue;
          if (node[0] == 'stat') node = node[1];
          if (ignore.indexOf(node) >= 0) continue;
          var type = node[0];
          if (measureSize(node) >= minSize) {
            if ((type === 'if' && node[3]) || type === 'switch') {
              var isIf = type === 'if';
              var reps = [];
              var helper = getHelper();
              // clear helper
              reps.push(['stat', ['assign', true, ['name', helper], ['num', 1]]]); // 1 means continue in ifs
              // gather parts
              var parts;
              if (isIf) {
                parts = [];
                var curr = node;
                while (1) {
                  if (!curr[3]) {
                    // we normally expect ..if (cond) { .. } else [if (nextCond) {] (in [] is what we hope to see)
                    // but are now seeing ..if (cond) { .. } with no else. This might be
                    //                    ..if (cond) if (nextCond) {
                    // which vacuum can generate from       if (cond) {} else if (nextCond), making it
                    //                                      if (!cond) if (nextCond)
                    // so we undo that, in hopes of making it more flattenable
                    curr[3] = curr[2];
                    curr[2] = ['block', []];
                    curr[1] = simplifyNotCompsDirect(['unary-prefix', '!', curr[1]]);
                  }
                  parts.push({ condition: curr[1], body: curr[2] });
                  curr = curr[3];
                  if (!curr) break;
                  if (curr[0] != 'if') {
                    parts.push({ condition: null, body: curr });
                    break;
                  }
                }
              } else { // switch
                var switchVar = getHelper(); // switch var could be an expression
                reps.push(['stat', ['assign', true, ['name', switchVar], node[1]]]);
                parts = node[2].map(function(case_) {
                  return { condition: case_[0], body: case_[1] };
                });
              }
              // chunkify. Each chunk is a chain of if-elses, with the new overhead just on entry and exit
              var chunks = [];
              var currSize = 0;
              var currChunk = [];
              var force = false; // when we hit a case X: that falls through, we force inclusion of everything until a full case
              parts.forEach(function(part) {
                var size = (part.condition ? measureSize(part.condition) : 0) + measureSize(part.body) + 5; // add constant for overhead of extra code
                assert(size > 0);
                if (size + currSize >= minSize && currSize && !force) {
                  chunks.push(currChunk);
                  currChunk = [];
                  currSize = 0;
                }
                currChunk.push(part);
                currSize += size;
                if (!isIf) {
                  var last = part.body;
                  last = last[last.length-1];
                  if (last && last[0] === 'block') last = last[1][last[1].length-1];
                  if (last && last[0] === 'stat') last = last[1];
                  force = !last || !(last[0] in ALTER_FLOW);
                }
              });
              assert(currSize);
              chunks.push(currChunk);
              // generate flattened code
              chunks.forEach(function(chunk) {
                var pre = ['stat', ['assign', true, ['name', helper], ['num', 0]]];
                if (isIf) {
                  var chain = null, tail = null;
                  chunk.forEach(function(part) {
                    // add to chain
                    var contents = makeIf(part.condition || ['num', 1], part.body[1]);
                    if (chain) {
                      tail[3] = contents;
                    } else {
                      chain = contents;
                      ignore.push(contents);
                    }
                    tail = contents;
                  });
                  // if none of the ifs were entered, in the final else note that we need to continue
                  tail[3] = ['block', [['stat', ['assign', true, ['name', helper], ['num', 1]]]]];
                  reps.push(makeIf(['name', helper], [pre, chain]));
                } else { // switch
                  var hasDefault;
                  var s = makeSwitch(['binary', '|', ['name', switchVar], ['num', 0]], chunk.map(function(part) {
                    hasDefault = hasDefault || part.condition === null;
                    return [part.condition, part.body];
                  }));
                  // if no default, add one where we note that we need to continue
                  if (!hasDefault) {
                    s[2].push([null, [['block', [['stat', ['assign', true, ['name', helper], ['num', 1]]]]]]]);
                  }
                  ignore.push(s);
                  reps.push(makeIf(['name', helper], [pre, s]));
                }
              });
              // replace code and update i
              stats.splice.apply(stats, [i, 1].concat(reps));
              i--; // negate loop increment
              i += reps.length;
              continue;
            }
          }
        }
      }
    });
  }

  var maxTotalOutlinings = Infinity; // debugging tool

  // Prepares information for spilling of local variables
  function analyzeFunction(func, asmData) {
    var stack = []; // list of variables, each gets 8 bytes
    for (var name in asmData.params) {
      stack.push(name);
    }
    for (var name in asmData.vars) {
      stack.push(name);
    }
    asmData.stackPos = {};
    var stackSize = getStackBumpSize(func);
    if (stackSize % 8 === 0) stackSize += 8 - (stackSize % 8);
    for (var i = 0; i < stack.length; i++) {
      asmData.stackPos[stack[i]] = stackSize + i*8;
    }
    // Reserve an extra two spots per possible outlining: one for control flow var, the other for control flow data
    // The control variables are zeroed out when calling an outlined function, and after using
    // the value after they return.
    var size = measureSize(func);
    asmData.maxOutlinings = Math.min(Math.round(3*size/extraInfo.sizeToOutline), maxTotalOutlinings);
    asmData.intendedPieces = Math.ceil(size/extraInfo.sizeToOutline);
    asmData.totalStackSize = stackSize + (stack.length + 2*asmData.maxOutlinings)*8;
    asmData.controlStackPos = function(i) { return stackSize + (stack.length + i)*8 };
    asmData.controlDataStackPos = function(i) { return stackSize + (stack.length + i)*8 + 4 };
    asmData.splitCounter = 0;
  }

  // Analyze uses - reads and writes - of variables in part of the AST of a function
  function analyzeCode(func, asmData, ast) {
    var labels = {}; // labels defined in this code
    var labelCounter = 1; // 0 means no label

    traverse(ast, function(node, type) {
      if (type == 'label' && !(node[1] in labels)) {
        labels[node[1]] = labelCounter++;
      }
    });

    var writes = {};
    var namings = {};
    var hasReturn = false, hasReturnType = {}, hasBreak = false, hasContinue = false;
    var breaks = {};    // set of labels we break or continue
    var continues = {}; // to (name -> id, just like labels)
    var breakCapturers = 0;
    var continueCapturers = 0;

    traverse(ast, function(node, type) {
      if (type == 'assign' && node[2][0] == 'name') {
        var name = node[2][1];
        if (name in asmData.vars || name in asmData.params) {
          writes[name] = (writes[name] || 0) + 1;
        }
      } else if (type == 'name') {
        var name = node[1];
        if (name in asmData.vars || name in asmData.params) {
          namings[name] = (namings[name] || 0) + 1;
        }
      } else if (type == 'return') {
        if (!node[1]) {
          hasReturn = true;
        } else {
          hasReturnType[detectAsmCoercion(node[1])] = true;
        }
      } else if (type == 'break') {
        var label = node[1] || 0;
        if (!label && breakCapturers > 0) return; // no label, and captured
        if (label && (label in labels)) return; // label, and defined in this code, so captured
        if (label) breaks[label] = labelCounter++;
        hasBreak = true;
      } else if (type == 'continue') {
        var label = node[1] || 0;
        if (!label && continueCapturers > 0) return; // no label, and captured
        if (label && (label in labels)) return; // label, and defined in this code, so captured
        if (label) continues[label] = labelCounter++;
        hasContinue = true;
      } else {
        if (type in BREAK_CAPTURERS) {
          breakCapturers++;
        }
        if (type in CONTINUE_CAPTURERS) {
          continueCapturers++;
        }
      }
    }, function(node, type) {
      if (type in BREAK_CAPTURERS) {
        breakCapturers--;
      }
      if (type in CONTINUE_CAPTURERS) {
        continueCapturers--;
      }
    });

    var reads = {};
    for (var v in namings) {
      var actualReads = namings[v] - (writes[v] || 0);
      if (actualReads > 0) reads[v] = actualReads;
    }

    return { writes: writes, reads: reads, hasReturn: hasReturn, hasReturnType: hasReturnType, hasBreak: hasBreak, hasContinue: hasContinue, breaks: breaks, continues: continues, labels: labels };
  }

  function makeAssign(dst, src) {
    return ['assign', true, dst, src];
  }
  function makeStackAccess(type, pos) { // TODO: float64, not 32
    return ['sub', ['name', type == ASM_INT ? 'HEAP32' : 'HEAPF32'], ['binary', '>>', ['binary', '+', ['name', 'sp'], ['num', pos]], ['num', '2']]];
  }
  function makeIf(cond, then, else_) {
    var ret = ['if', cond, ['block', then]];
    if (else_) ret.push(['block', else_]);
    return ret;
  }
  function makeComparison(left, comp, right) {
    return ['binary', comp, left, right];
  }
  function makeSwitch(value, cases) {
    return ['switch', value, cases];
  }

  var CONTROL_BREAK = 1, CONTROL_BREAK_LABEL = 2, CONTROL_CONTINUE = 3, CONTROL_CONTINUE_LABEL = 4, CONTROL_RETURN_VOID = 5, CONTROL_RETURN_INT = 6, CONTROL_RETURN_DOUBLE = 7, CONTROL_RETURN_FLOAT = 8;
  function controlFromAsmType(asmType) {
    return CONTROL_RETURN_INT + (asmType | 0); // assumes ASM_INT starts at 0, and order of these two is identical!
  }

  var sizeToOutline = null; // customized per function and as we make progress
  function calculateThreshold(func, asmData) {
    var size = measureSize(func);
    if (size <= extraInfo.sizeToOutline) {
      sizeToOutline = Infinity;
      printErr('  no point in trying to reduce the size of ' + func[1] + ' which is ' + size + ' <= ' + extraInfo.sizeToOutline);
    } else {
      sizeToOutline = Math.round(size/Math.max(2, asmData.intendedPieces--));
      printErr('trying to reduce the size of ' + func[1] + ' which is ' + size + ' (>=? ' + extraInfo.sizeToOutline + '), aim for ' + sizeToOutline);
    }
  }

  var level = 0, loops = 0;
  var outliningParents = {}; // function name => parent it was outlined from

  function doOutline(func, asmData, stats, start, end) {
    if (asmData.splitCounter === asmData.maxOutlinings) return [];
    if (!extraInfo.allowCostlyOutlines) var originalStats = copy(stats);
    var code = stats.slice(start, end+1);
    var originalCodeSize =  measureSize(code);
    var funcSize = measureSize(func);
    var outlineIndex = asmData.splitCounter++;
    var newIdent = func[1] + '$' + outlineIndex;
    // analyze variables, and find 'owned' variables - that only appear in the outlined code, and do not need any spill support
    var codeInfo = analyzeCode(func, asmData, code);
    var allCodeInfo = analyzeCode(func, asmData, func);
    var owned = { sp: 1 }; // sp is always owned, each has its own
    keys(setUnion(codeInfo.reads, codeInfo.writes)).forEach(function(v) {
      if (allCodeInfo.reads[v] === codeInfo.reads[v] && allCodeInfo.writes[v] === codeInfo.writes[v] && !(v in asmData.params)) {
        owned[v] = 1;
      }
    });
    var reps = [];
    // add spills
    function orderFunc(x, y) {
      return (asmData.stackPos[x] - asmData.stackPos[y]) || x.localeCompare(y);
    }
    var sortedReadsAndWrites = keys(setUnion(codeInfo.reads, codeInfo.writes)).sort(orderFunc);
    var sortedWrites = keys(codeInfo.writes).sort(orderFunc);
    sortedReadsAndWrites.forEach(function(v) {
      if (!(v in owned)) {
        reps.push(['stat', ['assign', true, ['sub', ['name', getAsmType(v, asmData) == ASM_INT ? 'HEAP32' : 'HEAPF32'], ['binary', '>>', ['binary', '+', ['name', 'sp'], ['num', asmData.stackPos[v]]], ['num', '2']]], ['name', v]]]);
      }
    });
    // wipe out control variable
    reps.push(['stat', makeAssign(makeStackAccess(ASM_INT, asmData.controlStackPos(outlineIndex)), ['num', 0])]);
    reps.push(['stat', makeAssign(makeStackAccess(ASM_INT, asmData.controlDataStackPos(outlineIndex)), ['num', 0])]); // XXX not really needed
    // do the call
    reps.push(['stat', ['call', ['name', newIdent], [['name', 'sp']]]]);
    // add unspills
    sortedWrites.forEach(function(v) {
      if (!(v in owned)) {
        reps.push(['stat', ['assign', true, ['name', v], makeAsmCoercion(['sub', ['name', getAsmType(v, asmData) == ASM_INT ? 'HEAP32' : 'HEAPF32'], ['binary', '>>', ['binary', '+', ['name', 'sp'], ['num', asmData.stackPos[v]]], ['num', '2']]], getAsmType(v, asmData))]]);
      }
    });

    // Generate new function
    if (codeInfo.hasReturn || codeInfo.hasReturnType[ASM_INT] || codeInfo.hasReturnType[ASM_DOUBLE] || codeInfo.hasReturnType[ASM_FLOAT] || codeInfo.hasBreak || codeInfo.hasContinue) {
      // we need to capture all control flow using a top-level labeled one-time loop in the outlined function
      var breakCapturers = 0;
      var continueCapturers = 0;
      traverse(['block', code], function(node, type) { // traverse on dummy block, so we get the toplevel statements
        // replace all break/continue/returns with code to break out of the main one-time loop, and set the control data
        if (type in BREAK_CAPTURERS) {
          breakCapturers++;
        }
        if (type in CONTINUE_CAPTURERS) {
          continueCapturers++;
        }
        var stats = node === code ? node : getStatements(node);
        if (stats) {
          for (var i = 0; i < stats.length; i++) {
            var node = stats[i]; // step all over node and type here, for convenience
            if (node[0] == 'stat') node = node[1];
            var type = node[0];
            var ret = null;
            if (type == 'return') {
              ret = [];
              if (!node[1]) {
                ret.push(['stat', makeAssign(makeStackAccess(ASM_INT, asmData.controlStackPos(outlineIndex)), ['num', CONTROL_RETURN_VOID])]);
              } else {
                var type = detectAsmCoercion(node[1], asmData);
                ret.push(['stat', makeAssign(makeStackAccess(ASM_INT, asmData.controlStackPos(outlineIndex)), ['num', controlFromAsmType(type)])]);
                ret.push(['stat', makeAssign(makeStackAccess(type, asmData.controlDataStackPos(outlineIndex)), node[1])]);
              }
              ret.push(['stat', ['break', 'OL']]);
            } else if (type == 'break') {
              var label = node[1] || 0;
              if (label == 'OL') continue; // this was just added before us, it is new replacement code
              if (!label && breakCapturers > 0) continue; // no label, and captured
              if (label && (label in codeInfo.labels)) continue; // label, and defined in this code, so captured
              ret = [['stat', makeAssign(makeStackAccess(ASM_INT, asmData.controlStackPos(outlineIndex)), ['num', label ? CONTROL_BREAK_LABEL : CONTROL_BREAK])]];
              if (label) {
                assert(label in codeInfo.breaks);
                ret.push(['stat', makeAssign(makeStackAccess(ASM_INT, asmData.controlDataStackPos(outlineIndex)), ['num', codeInfo.breaks[label]])]);
              }
              ret.push(['stat', ['break', 'OL']]);
            } else if (type == 'continue') {
              var label = node[1] || 0;
              if (!label && continueCapturers > 0) continue; // no label, and captured
              if (label && (label in codeInfo.labels)) continue; // label, and defined in this code, so captured
              ret = [['stat', makeAssign(makeStackAccess(ASM_INT, asmData.controlStackPos(outlineIndex)), ['num', label ? CONTROL_CONTINUE_LABEL : CONTROL_CONTINUE])]];
              if (label) {
                assert(label in codeInfo.continues);
                ret.push(['stat', makeAssign(makeStackAccess(ASM_INT, asmData.controlDataStackPos(outlineIndex)), ['num', codeInfo.continues[label]])]);
              }
              ret.push(['stat', ['break', 'OL']]);
            }
            if (ret) {
              stats.splice.apply(stats, [i, 1].concat(ret));
              i += ret.length-1;
            }
          }
        }
      }, function(node, type) {
        if (type in BREAK_CAPTURERS) {
          breakCapturers--;
        }
        if (type in CONTINUE_CAPTURERS) {
          continueCapturers--;
        }
      });
      code = [['label', 'OL', ['do', ['num', 0], ['block', code]]]]; // do this after processing, to not confuse breakCapturers etc.
      // read the control data at the callsite to the outlined function, and clear the control values
      reps.push(['stat', makeAssign(
        ['name', 'tempValue'],
        makeAsmCoercion(makeStackAccess(ASM_INT, asmData.controlStackPos(outlineIndex)), ASM_INT)
      )]);
      reps.push(['stat', makeAssign(
        ['name', 'tempInt'],
        makeAsmCoercion(makeStackAccess(ASM_INT, asmData.controlDataStackPos(outlineIndex)), ASM_INT)
      )]);
      reps.push(['stat', makeAssign(
        ['name', 'tempDouble'],
        makeAsmCoercion(makeStackAccess(ASM_DOUBLE, asmData.controlDataStackPos(outlineIndex)), ASM_DOUBLE)
      )]);
      reps.push(['stat', makeAssign(makeStackAccess(ASM_INT, asmData.controlStackPos(outlineIndex)), ['num', 0])]);
      reps.push(['stat', makeAssign(makeStackAccess(ASM_INT, asmData.controlDataStackPos(outlineIndex)), ['num', 0])]); // XXX not really needed
      // use the control data information
      if (codeInfo.hasReturn) {
        reps.push(makeIf(
          makeComparison(makeAsmCoercion(['name', 'tempValue'], ASM_INT), '==', ['num', CONTROL_RETURN_VOID]),
          [['stat', ['return']]]
        ));
      }
      for (var returnType in codeInfo.hasReturnType) {
        reps.push(makeIf(
          makeComparison(makeAsmCoercion(['name', 'tempValue'], ASM_INT), '==', ['num', controlFromAsmType(returnType)]),
          [['stat', ['return', makeAsmCoercion(['name', 'tempInt'], returnType | 0)]]]
        ));
      }
      if (codeInfo.hasBreak) {
        reps.push(makeIf(
          makeComparison(makeAsmCoercion(['name', 'tempValue'], ASM_INT), '==', ['num', CONTROL_BREAK]),
          [['stat', ['break']]]
        ));
        if (keys(codeInfo.breaks).length > 0) {
          reps.push(makeIf(
            makeComparison(makeAsmCoercion(['name', 'tempValue'], ASM_INT), '==', ['num', CONTROL_BREAK_LABEL]),
            [makeSwitch(makeAsmCoercion(['name', 'tempInt'], ASM_INT), keys(codeInfo.breaks).map(function(key) {
              var id = codeInfo.breaks[key];
              return [['num', id], [['block', [['stat', ['break', key]]]]]];
            }))]
          ));
        }
      }
      if (codeInfo.hasContinue) {
        reps.push(makeIf(
          makeComparison(makeAsmCoercion(['name', 'tempValue'], ASM_INT), '==', ['num', CONTROL_CONTINUE]),
          [['stat', ['continue']]]
        ));
        if (keys(codeInfo.continues).length > 0) {
          reps.push(makeIf(
            makeComparison(makeAsmCoercion(['name', 'tempValue'], ASM_INT), '==', ['num', CONTROL_CONTINUE_LABEL]),
            [makeSwitch(makeAsmCoercion(['name', 'tempInt'], ASM_INT), keys(codeInfo.continues).map(function(key) {
              var id = codeInfo.continues[key];
              return [['num', id], [['block', [['stat', ['continue', key]]]]]];
            }))]
          ));
        }
      }
    }
    // add spills and unspills in outlined code outside the OL loop
    sortedReadsAndWrites.reverse();
    sortedReadsAndWrites.forEach(function(v) {
      if (!(v in owned)) {
        code.unshift(['stat', ['assign', true, ['name', v], makeAsmCoercion(['sub', ['name', getAsmType(v, asmData) == ASM_INT ? 'HEAP32' : 'HEAPF32'], ['binary', '>>', ['binary', '+', ['name', 'sp'], ['num', asmData.stackPos[v]]], ['num', '2']]], getAsmType(v, asmData))]]);
      }
    });
    sortedWrites.forEach(function(v) {
      if (!(v in owned)) {
        code.push(['stat', ['assign', true, ['sub', ['name', getAsmType(v, asmData) == ASM_INT ? 'HEAP32' : 'HEAPF32'], ['binary', '>>', ['binary', '+', ['name', 'sp'], ['num', asmData.stackPos[v]]], ['num', '2']]], ['name', v]]]);
      }
    });
    // finalize
    var newFunc = ['defun', newIdent, ['sp'], code];
    var newAsmData = { params: { sp: ASM_INT }, vars: {}, inlines: asmData.inlines };
    for (var v in codeInfo.reads) {
      if (v != 'sp') newAsmData.vars[v] = getAsmType(v, asmData);
    }
    for (var v in codeInfo.writes) {
      assert(v != 'sp'); // we send sp as a read-only parameter, cannot be written to in outlined code
      newAsmData.vars[v] = getAsmType(v, asmData);
    }
    denormalizeAsm(newFunc, newAsmData);
    // add outline call markers (we cannot do later outlinings that cut through an outlining call)
    reps.unshift(['begin-outline-call', newIdent]);
    reps.push(['end-outline-call', newIdent]);
    // replace in stats
    stats.splice.apply(stats, [start, end-start+1].concat(reps));
    // final evaluation and processing
    if (!extraInfo.allowCostlyOutlines && (measureSize(func) >= funcSize || measureSize(newFunc) >= funcSize)) {
      //printErr('aborted outline attempt ' + [measureSize(func), measureSize(newFunc), ' one of which >= ', funcSize]);
      // abort, this was pointless
      stats.length = originalStats.length;
      for (var i = 0; i < stats.length; i++) stats[i] = originalStats[i];
      asmData.splitCounter--;
      return [];
    }
    maxTotalOutlinings--;
    for (var v in owned) {
      if (v != 'sp') delete asmData.vars[v]; // parent does not need these anymore
    }
    // if we just removed a final return from the original function, add one
    var last = getStatements(func)[getStatements(func).length-1];
    if (last[0] === 'stat') last = last[1];
    if (last[0] !== 'return') {
      for (var returnType in codeInfo.hasReturnType) {
        getStatements(func).push(['stat', ['return', makeAsmCoercion(['num', 0], returnType | 0)]]);
        break;
      }
    }
    outliningParents[newIdent] = func[1];
    printErr('performed outline ' + [func[1], newIdent, 'pre size', originalCodeSize, 'resulting size', measureSize(code), 'overhead (w/r):', setSize(setSub(codeInfo.writes, owned)), setSize(setSub(codeInfo.reads, owned)), ' owned: ', setSize(owned), ' left: ', setSize(asmData.vars), setSize(asmData.params), ' loopsDepth: ', loops]);
    calculateThreshold(func, asmData);
    return [newFunc];
  }

  function outlineStatements(func, asmData, stats, maxSize) {
    level++;
    //printErr('outlineStatements: ' + [func[1], level, measureSize(func)]);
    var lastSize = measureSize(stats);
    if (lastSize < sizeToOutline) { level--; return }
    var ret = [];
    var sizeSeen = 0;
    var end = stats.length-1;
    var i = stats.length;
    var canRestart = false;
    var minIndex = 0;
    function calcMinIndex() {
      if (stats == getStatements(func)) {
        minIndex = getFirstIndexInNormalized(func, asmData);
        for (var i = minIndex; i < stats.length; i++) {
          var stat = stats[i];
          if (stat[0] == 'stat') stat = stat[1];
          if (stat[0] == 'assign' && stat[2][0] == 'name' && stat[2][1] == 'sp') minIndex = i+1; // cannot outline |sp = |
        }
      }
    }
    function done() {
      return asmData.splitCounter >= asmData.maxOutlinings || measureSize(func) <= extraInfo.sizeToOutline;
    }
    while (1) {
      i--;
      calcMinIndex(); // TODO: optimize
      if (i < minIndex) {
        // we might be done. but, if we have just outlined, do a further attempt from the beginning.
        // (but only if the total costs are not extravagant)
        var currSize = measureSize(stats);
        var outlinedSize = measureSize(ret);
        if (canRestart && currSize > 1.2*sizeToOutline && lastSize - currSize >= 0.75*sizeToOutline) {
          //printErr('restarting ' + func[1] + ' since ' + [currSize, outlinedSize, lastSize] + ' in level ' + level);
          lastSize = currSize;
          i = stats.length;
          end = stats.length-1;
          sizeSeen = 0;
          canRestart = false;
          continue;
        } else {
          break;
        }
      }

      var stat = stats[i];
      while (stat[0] === 'end-outline-call') {
        // we cannot outline through an outline call, so include all of it
        while (stats[--i][0] !== 'begin-outline-call') {
          assert(i >= minIndex+1);
          assert(stats[i][0] !== 'end-outline-call');
        }
        stat = stats[i];
      }

      var size = measureSize(stat);
      //printErr(level + ' size          ' + [i, size]);
      if (size >= sizeToOutline) {
        // this by itself is big enough to inline, recurse into it and find statements to split on
        var subStatements = null;
        var pre = ret.length;
        traverse(stat, function(node, type) {
          if (type == 'block') {
            if (measureSize(node) >= sizeToOutline) {
              var subRet = outlineStatements(func, asmData, node[1], maxSize);
              if (subRet && subRet.length > 0) ret.push.apply(ret, subRet);
            }
            return null; // do not recurse into children, outlineStatements will do so if necessary
          } else if (type == 'while') {
            loops++;
          }
        }, function(node, type) {
          if (type == 'while') {
            loops--;
          }
        });
        if (ret.length > pre) {
          // we outlined recursively, reset our state here
          //printErr('successful outline in recursion ' + func[1] + ' due to recursive in level ' + level);
          if (done()) break;
          end = i-1;
          sizeSeen = 0;
          canRestart = true;
          continue;
        }
      }
      sizeSeen += size;
      // If this is big enough to outline, but not too big (if very close to the size of the full function,
      // outlining is pointless; remove stats from the end to try to achieve the good case), then outline.
      // Also, try to reduce the size if it is much larger than the hoped-for size
      while ((sizeSeen > maxSize || sizeSeen > 2*sizeToOutline) && end > i && stats[end][0] !== 'begin-outline-call' && stats[end][0] !== 'end-outline-call') {
        sizeSeen -= measureSize(stats[end]);
        if (sizeSeen >= sizeToOutline) {
          end--;
        } else {
          sizeSeen += measureSize(stats[end]); // abort, this took away too much
          break;
        }
      }
      // verify we are not outlining through an outline call
      var sum = 0;
      stats.slice(i, end+1).forEach(function(stat) {
        if (stat[0] == 'begin-outline-call') {
          assert(sum == 0);
          sum++;
        } else if (stat[0] == 'end-outline-call') {
          assert(sum == 1);
          sum--;
        }
      });
      assert(sum == 0);
      // final decision and action
      //printErr(' will try done working on sizeSeen due to ' + [(sizeSeen > maxSize || sizeSeen > 2*sizeToOutline), end > i , stats[end][0] !== 'begin-outline-call' , stats[end][0] !== 'end-outline-call'] + '  ...  ' + [sizeSeen, sizeToOutline, maxSize, sizeSeen >= sizeToOutline, sizeSeen <= maxSize]);
      if (sizeSeen >= sizeToOutline && sizeSeen <= maxSize) {
        assert(i >= minIndex);
        var newFuncs = doOutline(func, asmData, stats, i, end); // outline [i, .. ,end] inclusive
        if (newFuncs.length) {
          ret.push.apply(ret, newFuncs);
        }
        if (done()) break;
        sizeSeen = 0;
        end = i-1;
        canRestart = true;
        continue;
      }
    }
    level--;
    return ret;
  }

  //

  if (ast[0] !== 'toplevel') {
    assert(ast[0] == 'defun');
    ast = ['toplevel', [ast]];
  }

  var funcs = ast[1];

  var maxTotalFunctions = Infinity; // debugging tool

  printErr('\n');

  var more = true;
  while (more) {
    more = false;

    var newFuncs = [];

    funcs.forEach(function(func) {
      vacuum(func); // clear out empty nodes that affect code size
      var asmData = normalizeAsm(func);
      var size = measureSize(func);
      if (size >= extraInfo.sizeToOutline && maxTotalFunctions > 0) {
        maxTotalFunctions--;
        aggressiveVariableEliminationInternal(func, asmData);
        flatten(func, asmData);
        analyzeFunction(func, asmData);
        calculateThreshold(func, asmData);
        var stats = getStatements(func);
        var ret = outlineStatements(func, asmData, stats, 0.9*size);
        assert(level == 0);
        if (ret && ret.length > 0) {
          newFuncs.push.apply(newFuncs, ret);
          // We have outlined. Add stack support
          if ('sp' in asmData.vars) {
            // find stack bump (STACKTOP = STACKTOP + X | 0) and add the extra space
            var stackBumpNode = getStackBumpNode(stats);
            if (stackBumpNode) stackBumpNode[3][2][3][1] = asmData.totalStackSize;
          } else if (!('sp' in asmData.params)) { // if sp is a param, then we are an outlined function, no need to add stack support for us
            // add sp variable and stack bump
            var index = getFirstIndexInNormalized(func, asmData);
            stats.splice(index, 0,
              ['stat', makeAssign(['name', 'sp'], ['name', 'STACKTOP'])],
              ['stat', makeAssign(['name', 'STACKTOP'], ['binary', '|', ['binary', '+', ['name', 'STACKTOP'], ['num', asmData.totalStackSize]], ['num', 0]])]
            );
            asmData.vars.sp = ASM_INT; // no need to add to vars, we are about to denormalize anyhow
            // we added sp, so we must add stack popping
            function makePop() {
              return ['stat', makeAssign(['name', 'STACKTOP'], ['name', 'sp'])];
            }
            traverse(func, function(node, type) {
              var stats = getStatements(node);
              if (!stats) return;
              for (var i = 0; i < stats.length; i++) {
                var subNode = stats[i];
                if (subNode[0] === 'stat') subNode = subNode[1];
                if (subNode[0] == 'return') {
                  stats.splice(i, 0, makePop());
                  i++;
                }
              }
            });
            // pop the stack at the end if there is not a return
            var last = stats[stats.length-1];
            if (last[0] === 'stat') last = last[1];
            if (last[0] !== 'return') {
              stats.push(makePop());
            }
          }
        }
        if (ret) {
          ret.push(func);
          printErr('... resulting sizes of ' + func[1] + ' is ' + ret.map(measureSize) + '\n');
        }
      }
      denormalizeAsm(func, asmData);
    });

    funcs = null;

    // TODO: control flow: route returns and breaks. outlined code should have all breaks/continues/returns break into the outermost scope,
    //       after setting a state variable, etc.

    if (newFuncs.length > 0) {
      // add new functions to the toplevel, or create a toplevel if there isn't one
      ast[1].push.apply(ast[1], newFuncs);

      // TODO: check if in some cases we do need to outline new functions
      //funcs = newFuncs.filter(function(newFunc) {
      //  // recursively outline if we have a large new function that did not come at a high cost
      //  return measureSize(newFunc) > sizeToOutline && costs[newFunc[1]] < 0.1*sizeToOutline;
      //});
      //more = funcs.length > 0;
    }
  }

  // clear out markers
  traverse(ast, function(node, type) {
    if (type === 'begin-outline-call' || type === 'end-outline-call') return emptyNode();
  });
}

function safeHeap(ast) {
  function fixPtr(ptr, heap) {
    switch (heap) {
      case 'HEAP8':   case 'HEAPU8': break;
      case 'HEAP16':  case 'HEAPU16': {
        if (ptr[0] === 'binary') {
          assert(ptr[1] === '>>' && ptr[3][0] === 'num' && ptr[3][1] === 1);
          ptr = ptr[2]; // skip the shift
        } else {
          ptr = ['binary', '*', ptr, ['num', 2]]; // was unshifted, convert to absolute address
        }
        break;
      }
      case 'HEAP32':  case 'HEAPU32': {
        if (ptr[0] === 'binary') {
          assert(ptr[1] === '>>' && ptr[3][0] === 'num' && ptr[3][1] === 2);
          ptr = ptr[2]; // skip the shift
        } else {
          ptr = ['binary', '*', ptr, ['num', 4]]; // was unshifted, convert to absolute address
        }
        break;
      }
      case 'HEAPF32': {
        if (ptr[0] === 'binary') {
          assert(ptr[1] === '>>' && ptr[3][0] === 'num' && ptr[3][1] === 2);
          ptr = ptr[2]; // skip the shift
        } else {
          ptr = ['binary', '*', ptr, ['num', 4]]; // was unshifted, convert to absolute address
        }
        break;
      }
      case 'HEAPF64': {
        if (ptr[0] === 'binary') {
          assert(ptr[1] === '>>' && ptr[3][0] === 'num' && ptr[3][1] === 3);
          ptr = ptr[2]; // skip the shift
        } else {
          ptr = ['binary', '*', ptr, ['num', 8]]; // was unshifted, convert to absolute address
        }
        break;
      }
      default: throw 'bad heap ' + heap;
    }
    ptr = ['binary', '|', ptr, ['num', 0]];
    return ptr;
  }
  traverseGenerated(ast, function(node, type) {
    if (type === 'assign') {
      if (node[1] === true && node[2][0] === 'sub') {
        var heap = node[2][1][1];
        var ptr = fixPtr(node[2][2], heap);
        var value = node[3];
        // SAFE_HEAP_STORE(ptr, value, bytes, isFloat) 
        switch (heap) {
          case 'HEAP8':   case 'HEAPU8': {
            return ['call', ['name', 'SAFE_HEAP_STORE'], [ptr, makeAsmCoercion(value, ASM_INT), ['num', 1], ['num', '0']]];
          }
          case 'HEAP16':  case 'HEAPU16': {
            return ['call', ['name', 'SAFE_HEAP_STORE'], [ptr, makeAsmCoercion(value, ASM_INT), ['num', 2], ['num', '0']]];
          }
          case 'HEAP32':  case 'HEAPU32': {
            return ['call', ['name', 'SAFE_HEAP_STORE'], [ptr, makeAsmCoercion(value, ASM_INT), ['num', 4], ['num', '0']]];
          }
          case 'HEAPF32': {
            return ['call', ['name', 'SAFE_HEAP_STORE'], [ptr, makeAsmCoercion(value, ASM_DOUBLE), ['num', 4], ['num', '1']]];
          }
          case 'HEAPF64': {
            return ['call', ['name', 'SAFE_HEAP_STORE'], [ptr, makeAsmCoercion(value, ASM_DOUBLE), ['num', 8], ['num', '1']]];
          }
          default: throw 'bad heap ' + heap;
        }
      }
    } else if (type === 'sub') {
      var heap = node[1][1];
      if (heap[0] !== 'H') return;
      var ptr = fixPtr(node[2], heap);
      // SAFE_HEAP_LOAD(ptr, bytes, isFloat) 
      switch (heap) {
        case 'HEAP8': {
          return makeAsmCoercion(['call', ['name', 'SAFE_HEAP_LOAD'], [ptr, ['num', 1], ['num', '0'], ['num', '0']]], ASM_INT);
        }
        case 'HEAPU8': {
          return makeAsmCoercion(['call', ['name', 'SAFE_HEAP_LOAD'], [ptr, ['num', 1], ['num', '0'], ['num', '1']]], ASM_INT);
        }
        case 'HEAP16': {
          return makeAsmCoercion(['call', ['name', 'SAFE_HEAP_LOAD'], [ptr, ['num', 2], ['num', '0'], ['num', '0']]], ASM_INT);
        }
        case 'HEAPU16': {
          return makeAsmCoercion(['call', ['name', 'SAFE_HEAP_LOAD'], [ptr, ['num', 2], ['num', '0'], ['num', '1']]], ASM_INT);
        }
        case 'HEAP32': {
          return makeAsmCoercion(['call', ['name', 'SAFE_HEAP_LOAD'], [ptr, ['num', 4], ['num', '0'], ['num', '0']]], ASM_INT);
        }
        case 'HEAPU32': {
          return makeAsmCoercion(['call', ['name', 'SAFE_HEAP_LOAD'], [ptr, ['num', 4], ['num', '0'], ['num', '1']]], ASM_INT);
        }
        case 'HEAPF32': {
          return makeAsmCoercion(['call', ['name', 'SAFE_HEAP_LOAD'], [ptr, ['num', 4], ['num', '1'], ['num', '0']]], ASM_DOUBLE);
        }
        case 'HEAPF64': {
          return makeAsmCoercion(['call', ['name', 'SAFE_HEAP_LOAD'], [ptr, ['num', 8], ['num', '1'], ['num', '0']]], ASM_DOUBLE);
        }
        default: throw 'bad heap ' + heap;
      }
    }
  });
}

// Last pass utilities

// Change +5 to DOT$ZERO(5). We then textually change 5 to 5.0 (uglify's ast cannot differentiate between 5 and 5.0 directly)
function prepDotZero(ast) {
  traverse(ast, function(node, type) {
    if (type === 'unary-prefix' && node[1] === '+') {
      if (node[2][0] === 'num' ||
          (node[2][0] === 'unary-prefix' && node[2][1] === '-' && node[2][2][0] === 'num')) {
        return ['call', ['name', 'DOT$ZERO'], [node[2]]];
      }
    }
  });
}
function fixDotZero(js) {
  return js.replace(/DOT\$ZERO\(([-+]?(0x)?[0-9a-f]*\.?[0-9]+([eE][-+]?[0-9]+)?)\)/g, function(m, num) {
    if (num.substr(0, 2) === '0x' || num.substr(0, 3) === '-0x') {
      return eval(num) + '.0';
    }
    if (num.indexOf('.') >= 0) return num;
    var e = num.indexOf('e');
    if (e < 0) return num + '.0';
    return num.substr(0, e) + '.0' + num.substr(e);
  });
}

function asmLastOpts(ast) {
  traverseGeneratedFunctions(ast, function(fun) {
    traverse(fun, function(node, type) {
      if (type === 'while' && node[1][0] === 'num' && node[1][1] === 1 && node[2][0] === 'block') {
        // This is at the end of the pipeline, we can assume all other optimizations are done, and we modify loops
        // into shapes that might confuse other passes

        // while (1) { .. if (..) { break } } ==> do { .. } while(..)
        var stats = node[2][1];
        var last = stats[stats.length-1];
        if (last && last[0] === 'if' && !last[3] && last[2][0] === 'block' && last[2][1][0] && last[2][1][0][0] === 'break' && !last[2][1][0][1]) {
          var abort = false;
          var stack = 0;
          traverse(stats, function(node, type) {
            if (type == 'continue') {
              if (stack == 0 || node[1]) { // abort if labeled (we do not analyze labels here yet), or a continue directly on us
                abort = true;
                return true;
              }
            } else if (type in LOOP) {
              stack++;
            }
          }, function(node, type) {
            if (type in LOOP) {
              stack--;
            }
          });
          if (abort) return;
          var conditionToBreak = last[1];
          stats.pop();
          node[0] = 'do';
          node[1] = simplifyNotCompsDirect(['unary-prefix', '!', conditionToBreak]);
          return node;
        }
      } else if (type == 'binary') {
        if (node[1] === '&') {
          if (node[3][0] === 'unary-prefix' && node[3][1] === '-' && node[3][2][0] === 'num' && node[3][2][1] === 1) {
            // Change &-1 into |0, at this point the hint is no longer needed
            node[1] = '|';
            node[3] = node[3][2];
            node[3][1] = 0;
          }
        } else if (node[1] === '-' && node[3][0] === 'unary-prefix') {
          // avoid X - (-Y) because some minifiers buggily emit X--Y which is invalid as -- can be a unary. Transform to
         //        X + Y
          if (node[3][1] === '-') { // integer
            node[1] = '+';
            node[3] = node[3][2];
          } else if (node[3][1] === '+') { // float
            if (node[3][2][0] === 'unary-prefix' && node[3][2][1] === '-') {
              node[1] = '+';
              node[3][2] = node[3][2][2];
            }
          }
        }
      }
    });
  });
}

// Passes table

var minifyWhitespace = false, printMetadata = true, asm = false, last = false;

var passes = {
  // passes
  dumpAst: dumpAst,
  dumpSrc: dumpSrc,
  unGlobalize: unGlobalize,
  removeAssignsToUndefined: removeAssignsToUndefined,
  //removeUnneededLabelSettings: removeUnneededLabelSettings,
  simplifyExpressions: simplifyExpressions,
  optimizeShiftsConservative: optimizeShiftsConservative,
  optimizeShiftsAggressive: optimizeShiftsAggressive,
  hoistMultiples: hoistMultiples,
  loopOptimizer: loopOptimizer,
  registerize: registerize,
  registerizeHarder: registerizeHarder,
  eliminate: eliminate,
  eliminateMemSafe: eliminateMemSafe,
  aggressiveVariableElimination: aggressiveVariableElimination,
  minifyGlobals: minifyGlobals,
  minifyLocals: minifyLocals,
  relocate: relocate,
  outline: outline,
  safeHeap: safeHeap,

  // flags
  minifyWhitespace: function() { minifyWhitespace = true },
  noPrintMetadata: function() { printMetadata = false },
  asm: function() { asm = true },
  last: function() { last = true },
};

// Main

var suffix = '';

arguments_ = arguments_.filter(function (arg) {
  if (!/^--/.test(arg)) return true;

  if (arg === '--debug') debug = true;
  else throw new Error('Unrecognized flag: ' + arg);
});


var src = read(arguments_[0]);
var ast = srcToAst(src);
//printErr(JSON.stringify(ast)); throw 1;
generatedFunctions = src.lastIndexOf(GENERATED_FUNCTIONS_MARKER) >= 0;
var extraInfoStart = src.lastIndexOf('// EXTRA_INFO:')
if (extraInfoStart > 0) extraInfo = JSON.parse(src.substr(extraInfoStart + 14));
//printErr(JSON.stringify(extraInfo));


arguments_.slice(1).forEach(function(arg) {
  passes[arg](ast);
});
if (asm && last) {
  asmLastOpts(ast); // TODO: move out of last, to make last faster when done later (as in side modules)
  prepDotZero(ast);
}
var js = astToSrc(ast, minifyWhitespace), old;
if (asm && last) {
  js = fixDotZero(js);
}

// remove unneeded newlines+spaces, and print
do {
  old = js;
  js = js.replace(/\n *\n/g, '\n');
} while (js != old);
print(js);
print('\n');
print(suffix);