1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
; ModuleID = 'new.o'
target datalayout = "e-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-p:32:32:32-v128:32:32"
target triple = "le32-unknown-nacl"
declare i32 @printf(i8* noalias, ...) nounwind
@x = common global [4194304 x i8] zeroinitializer, align 4
@.str = private constant [6 x i8] c"*%d*\0A\00", align 1
define i8* @test_gep(i32 %y) nounwind readnone {
; JavaScript uses double precision 64-bit floating point values, with
; a 53 bit mantissa. The maximum precisely representable integer is
; 9007199254740992. A number close to that limit is constructed here
; for the constant part of the getelementptr instruction:
; 4194304 * 2147483647 == 9007199250546688 == 9007199254740992 - 4194304
; If that number appears in JavaScript source instead of being properly
; limited to 32 bits, the %y parameter can be used to exceed the maximum
; precisely representable integer, and make the computation inexact.
%test_res = getelementptr [4194304 x i8]* @x, i32 2147483647, i32 %y
ret i8* %test_res
}
define i32 @main() {
%res_0 = call i8* (i32)* @test_gep(i32 1000000000)
%res_1 = call i8* (i32)* @test_gep(i32 1000000001)
%res_0_i = ptrtoint i8* %res_0 to i32
%res_1_i = ptrtoint i8* %res_1 to i32
; If getelementptr limited the constant part of the offset to 32 bits,
; result will be 1. Otherwise, it cannot be 1 because the large numbers in
; the calculation cannot be accurately represented by floating point math.
%res_diff = sub i32 %res_1_i, %res_0_i
%printf_res = call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([6 x i8]* @.str, i32 0, i32 0), i32 %res_diff)
ret i32 0
}
|