aboutsummaryrefslogtreecommitdiff
path: root/tests/box2d/Box2D/Dynamics/Joints/b2GearJoint.cpp
blob: 201f01233c65ff387cc58f30ea1a4541dbe4ae03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/*
* Copyright (c) 2007-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

#include <Box2D/Dynamics/Joints/b2GearJoint.h>
#include <Box2D/Dynamics/Joints/b2RevoluteJoint.h>
#include <Box2D/Dynamics/Joints/b2PrismaticJoint.h>
#include <Box2D/Dynamics/b2Body.h>
#include <Box2D/Dynamics/b2TimeStep.h>

// Gear Joint:
// C0 = (coordinate1 + ratio * coordinate2)_initial
// C = (coordinate1 + ratio * coordinate2) - C0 = 0
// J = [J1 ratio * J2]
// K = J * invM * JT
//   = J1 * invM1 * J1T + ratio * ratio * J2 * invM2 * J2T
//
// Revolute:
// coordinate = rotation
// Cdot = angularVelocity
// J = [0 0 1]
// K = J * invM * JT = invI
//
// Prismatic:
// coordinate = dot(p - pg, ug)
// Cdot = dot(v + cross(w, r), ug)
// J = [ug cross(r, ug)]
// K = J * invM * JT = invMass + invI * cross(r, ug)^2

b2GearJoint::b2GearJoint(const b2GearJointDef* def)
: b2Joint(def)
{
	m_joint1 = def->joint1;
	m_joint2 = def->joint2;

	m_typeA = m_joint1->GetType();
	m_typeB = m_joint2->GetType();

	b2Assert(m_typeA == e_revoluteJoint || m_typeA == e_prismaticJoint);
	b2Assert(m_typeB == e_revoluteJoint || m_typeB == e_prismaticJoint);

	float32 coordinateA, coordinateB;

	// TODO_ERIN there might be some problem with the joint edges in b2Joint.

	m_bodyC = m_joint1->GetBodyA();
	m_bodyA = m_joint1->GetBodyB();

	// Get geometry of joint1
	b2Transform xfA = m_bodyA->m_xf;
	float32 aA = m_bodyA->m_sweep.a;
	b2Transform xfC = m_bodyC->m_xf;
	float32 aC = m_bodyC->m_sweep.a;

	if (m_typeA == e_revoluteJoint)
	{
		b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint1;
		m_localAnchorC = revolute->m_localAnchorA;
		m_localAnchorA = revolute->m_localAnchorB;
		m_referenceAngleA = revolute->m_referenceAngle;
		m_localAxisC.SetZero();

		coordinateA = aA - aC - m_referenceAngleA;
	}
	else
	{
		b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint1;
		m_localAnchorC = prismatic->m_localAnchorA;
		m_localAnchorA = prismatic->m_localAnchorB;
		m_referenceAngleA = prismatic->m_referenceAngle;
		m_localAxisC = prismatic->m_localXAxisA;

		b2Vec2 pC = m_localAnchorC;
		b2Vec2 pA = b2MulT(xfC.q, b2Mul(xfA.q, m_localAnchorA) + (xfA.p - xfC.p));
		coordinateA = b2Dot(pA - pC, m_localAxisC);
	}

	m_bodyD = m_joint2->GetBodyA();
	m_bodyB = m_joint2->GetBodyB();

	// Get geometry of joint2
	b2Transform xfB = m_bodyB->m_xf;
	float32 aB = m_bodyB->m_sweep.a;
	b2Transform xfD = m_bodyD->m_xf;
	float32 aD = m_bodyD->m_sweep.a;

	if (m_typeB == e_revoluteJoint)
	{
		b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint2;
		m_localAnchorD = revolute->m_localAnchorA;
		m_localAnchorB = revolute->m_localAnchorB;
		m_referenceAngleB = revolute->m_referenceAngle;
		m_localAxisD.SetZero();

		coordinateB = aB - aD - m_referenceAngleB;
	}
	else
	{
		b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint2;
		m_localAnchorD = prismatic->m_localAnchorA;
		m_localAnchorB = prismatic->m_localAnchorB;
		m_referenceAngleB = prismatic->m_referenceAngle;
		m_localAxisD = prismatic->m_localXAxisA;

		b2Vec2 pD = m_localAnchorD;
		b2Vec2 pB = b2MulT(xfD.q, b2Mul(xfB.q, m_localAnchorB) + (xfB.p - xfD.p));
		coordinateB = b2Dot(pB - pD, m_localAxisD);
	}

	m_ratio = def->ratio;

	m_constant = coordinateA + m_ratio * coordinateB;

	m_impulse = 0.0f;
}

void b2GearJoint::InitVelocityConstraints(const b2SolverData& data)
{
	m_indexA = m_bodyA->m_islandIndex;
	m_indexB = m_bodyB->m_islandIndex;
	m_indexC = m_bodyC->m_islandIndex;
	m_indexD = m_bodyD->m_islandIndex;
	m_lcA = m_bodyA->m_sweep.localCenter;
	m_lcB = m_bodyB->m_sweep.localCenter;
	m_lcC = m_bodyC->m_sweep.localCenter;
	m_lcD = m_bodyD->m_sweep.localCenter;
	m_mA = m_bodyA->m_invMass;
	m_mB = m_bodyB->m_invMass;
	m_mC = m_bodyC->m_invMass;
	m_mD = m_bodyD->m_invMass;
	m_iA = m_bodyA->m_invI;
	m_iB = m_bodyB->m_invI;
	m_iC = m_bodyC->m_invI;
	m_iD = m_bodyD->m_invI;

	b2Vec2 cA = data.positions[m_indexA].c;
	float32 aA = data.positions[m_indexA].a;
	b2Vec2 vA = data.velocities[m_indexA].v;
	float32 wA = data.velocities[m_indexA].w;

	b2Vec2 cB = data.positions[m_indexB].c;
	float32 aB = data.positions[m_indexB].a;
	b2Vec2 vB = data.velocities[m_indexB].v;
	float32 wB = data.velocities[m_indexB].w;

	b2Vec2 cC = data.positions[m_indexC].c;
	float32 aC = data.positions[m_indexC].a;
	b2Vec2 vC = data.velocities[m_indexC].v;
	float32 wC = data.velocities[m_indexC].w;

	b2Vec2 cD = data.positions[m_indexD].c;
	float32 aD = data.positions[m_indexD].a;
	b2Vec2 vD = data.velocities[m_indexD].v;
	float32 wD = data.velocities[m_indexD].w;

	b2Rot qA(aA), qB(aB), qC(aC), qD(aD);

	m_mass = 0.0f;

	if (m_typeA == e_revoluteJoint)
	{
		m_JvAC.SetZero();
		m_JwA = 1.0f;
		m_JwC = 1.0f;
		m_mass += m_iA + m_iC;
	}
	else
	{
		b2Vec2 u = b2Mul(qC, m_localAxisC);
		b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC);
		b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA);
		m_JvAC = u;
		m_JwC = b2Cross(rC, u);
		m_JwA = b2Cross(rA, u);
		m_mass += m_mC + m_mA + m_iC * m_JwC * m_JwC + m_iA * m_JwA * m_JwA;
	}

	if (m_typeB == e_revoluteJoint)
	{
		m_JvBD.SetZero();
		m_JwB = m_ratio;
		m_JwD = m_ratio;
		m_mass += m_ratio * m_ratio * (m_iB + m_iD);
	}
	else
	{
		b2Vec2 u = b2Mul(qD, m_localAxisD);
		b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD);
		b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB);
		m_JvBD = m_ratio * u;
		m_JwD = m_ratio * b2Cross(rD, u);
		m_JwB = m_ratio * b2Cross(rB, u);
		m_mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * m_JwD * m_JwD + m_iB * m_JwB * m_JwB;
	}

	// Compute effective mass.
	m_mass = m_mass > 0.0f ? 1.0f / m_mass : 0.0f;

	if (data.step.warmStarting)
	{
		vA += (m_mA * m_impulse) * m_JvAC;
		wA += m_iA * m_impulse * m_JwA;
		vB += (m_mB * m_impulse) * m_JvBD;
		wB += m_iB * m_impulse * m_JwB;
		vC -= (m_mC * m_impulse) * m_JvAC;
		wC -= m_iC * m_impulse * m_JwC;
		vD -= (m_mD * m_impulse) * m_JvBD;
		wD -= m_iD * m_impulse * m_JwD;
	}
	else
	{
		m_impulse = 0.0f;
	}

	data.velocities[m_indexA].v = vA;
	data.velocities[m_indexA].w = wA;
	data.velocities[m_indexB].v = vB;
	data.velocities[m_indexB].w = wB;
	data.velocities[m_indexC].v = vC;
	data.velocities[m_indexC].w = wC;
	data.velocities[m_indexD].v = vD;
	data.velocities[m_indexD].w = wD;
}

void b2GearJoint::SolveVelocityConstraints(const b2SolverData& data)
{
	b2Vec2 vA = data.velocities[m_indexA].v;
	float32 wA = data.velocities[m_indexA].w;
	b2Vec2 vB = data.velocities[m_indexB].v;
	float32 wB = data.velocities[m_indexB].w;
	b2Vec2 vC = data.velocities[m_indexC].v;
	float32 wC = data.velocities[m_indexC].w;
	b2Vec2 vD = data.velocities[m_indexD].v;
	float32 wD = data.velocities[m_indexD].w;

	float32 Cdot = b2Dot(m_JvAC, vA - vC) + b2Dot(m_JvBD, vB - vD);
	Cdot += (m_JwA * wA - m_JwC * wC) + (m_JwB * wB - m_JwD * wD);

	float32 impulse = -m_mass * Cdot;
	m_impulse += impulse;

	vA += (m_mA * impulse) * m_JvAC;
	wA += m_iA * impulse * m_JwA;
	vB += (m_mB * impulse) * m_JvBD;
	wB += m_iB * impulse * m_JwB;
	vC -= (m_mC * impulse) * m_JvAC;
	wC -= m_iC * impulse * m_JwC;
	vD -= (m_mD * impulse) * m_JvBD;
	wD -= m_iD * impulse * m_JwD;

	data.velocities[m_indexA].v = vA;
	data.velocities[m_indexA].w = wA;
	data.velocities[m_indexB].v = vB;
	data.velocities[m_indexB].w = wB;
	data.velocities[m_indexC].v = vC;
	data.velocities[m_indexC].w = wC;
	data.velocities[m_indexD].v = vD;
	data.velocities[m_indexD].w = wD;
}

bool b2GearJoint::SolvePositionConstraints(const b2SolverData& data)
{
	b2Vec2 cA = data.positions[m_indexA].c;
	float32 aA = data.positions[m_indexA].a;
	b2Vec2 cB = data.positions[m_indexB].c;
	float32 aB = data.positions[m_indexB].a;
	b2Vec2 cC = data.positions[m_indexC].c;
	float32 aC = data.positions[m_indexC].a;
	b2Vec2 cD = data.positions[m_indexD].c;
	float32 aD = data.positions[m_indexD].a;

	b2Rot qA(aA), qB(aB), qC(aC), qD(aD);

	float32 linearError = 0.0f;

	float32 coordinateA, coordinateB;

	b2Vec2 JvAC, JvBD;
	float32 JwA, JwB, JwC, JwD;
	float32 mass = 0.0f;

	if (m_typeA == e_revoluteJoint)
	{
		JvAC.SetZero();
		JwA = 1.0f;
		JwC = 1.0f;
		mass += m_iA + m_iC;

		coordinateA = aA - aC - m_referenceAngleA;
	}
	else
	{
		b2Vec2 u = b2Mul(qC, m_localAxisC);
		b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC);
		b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA);
		JvAC = u;
		JwC = b2Cross(rC, u);
		JwA = b2Cross(rA, u);
		mass += m_mC + m_mA + m_iC * JwC * JwC + m_iA * JwA * JwA;

		b2Vec2 pC = m_localAnchorC - m_lcC;
		b2Vec2 pA = b2MulT(qC, rA + (cA - cC));
		coordinateA = b2Dot(pA - pC, m_localAxisC);
	}

	if (m_typeB == e_revoluteJoint)
	{
		JvBD.SetZero();
		JwB = m_ratio;
		JwD = m_ratio;
		mass += m_ratio * m_ratio * (m_iB + m_iD);

		coordinateB = aB - aD - m_referenceAngleB;
	}
	else
	{
		b2Vec2 u = b2Mul(qD, m_localAxisD);
		b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD);
		b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB);
		JvBD = m_ratio * u;
		JwD = m_ratio * b2Cross(rD, u);
		JwB = m_ratio * b2Cross(rB, u);
		mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * JwD * JwD + m_iB * JwB * JwB;

		b2Vec2 pD = m_localAnchorD - m_lcD;
		b2Vec2 pB = b2MulT(qD, rB + (cB - cD));
		coordinateB = b2Dot(pB - pD, m_localAxisD);
	}

	float32 C = (coordinateA + m_ratio * coordinateB) - m_constant;

	float32 impulse = 0.0f;
	if (mass > 0.0f)
	{
		impulse = -C / mass;
	}

	cA += m_mA * impulse * JvAC;
	aA += m_iA * impulse * JwA;
	cB += m_mB * impulse * JvBD;
	aB += m_iB * impulse * JwB;
	cC -= m_mC * impulse * JvAC;
	aC -= m_iC * impulse * JwC;
	cD -= m_mD * impulse * JvBD;
	aD -= m_iD * impulse * JwD;

	data.positions[m_indexA].c = cA;
	data.positions[m_indexA].a = aA;
	data.positions[m_indexB].c = cB;
	data.positions[m_indexB].a = aB;
	data.positions[m_indexC].c = cC;
	data.positions[m_indexC].a = aC;
	data.positions[m_indexD].c = cD;
	data.positions[m_indexD].a = aD;

	// TODO_ERIN not implemented
	return linearError < b2_linearSlop;
}

b2Vec2 b2GearJoint::GetAnchorA() const
{
	return m_bodyA->GetWorldPoint(m_localAnchorA);
}

b2Vec2 b2GearJoint::GetAnchorB() const
{
	return m_bodyB->GetWorldPoint(m_localAnchorB);
}

b2Vec2 b2GearJoint::GetReactionForce(float32 inv_dt) const
{
	b2Vec2 P = m_impulse * m_JvAC;
	return inv_dt * P;
}

float32 b2GearJoint::GetReactionTorque(float32 inv_dt) const
{
	float32 L = m_impulse * m_JwA;
	return inv_dt * L;
}

void b2GearJoint::SetRatio(float32 ratio)
{
	b2Assert(b2IsValid(ratio));
	m_ratio = ratio;
}

float32 b2GearJoint::GetRatio() const
{
	return m_ratio;
}

void b2GearJoint::Dump()
{
	int32 indexA = m_bodyA->m_islandIndex;
	int32 indexB = m_bodyB->m_islandIndex;

	int32 index1 = m_joint1->m_index;
	int32 index2 = m_joint2->m_index;

	b2Log("  b2GearJointDef jd;\n");
	b2Log("  jd.bodyA = bodies[%d];\n", indexA);
	b2Log("  jd.bodyB = bodies[%d];\n", indexB);
	b2Log("  jd.collideConnected = bool(%d);\n", m_collideConnected);
	b2Log("  jd.joint1 = joints[%d];\n", index1);
	b2Log("  jd.joint2 = joints[%d];\n", index2);
	b2Log("  jd.ratio = %.15lef;\n", m_ratio);
	b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
}