1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
/*
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <Box2D/Collision/Shapes/b2PolygonShape.h>
#include <new>
b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const
{
void* mem = allocator->Allocate(sizeof(b2PolygonShape));
b2PolygonShape* clone = new (mem) b2PolygonShape;
*clone = *this;
return clone;
}
void b2PolygonShape::SetAsBox(float32 hx, float32 hy)
{
m_vertexCount = 4;
m_vertices[0].Set(-hx, -hy);
m_vertices[1].Set( hx, -hy);
m_vertices[2].Set( hx, hy);
m_vertices[3].Set(-hx, hy);
m_normals[0].Set(0.0f, -1.0f);
m_normals[1].Set(1.0f, 0.0f);
m_normals[2].Set(0.0f, 1.0f);
m_normals[3].Set(-1.0f, 0.0f);
m_centroid.SetZero();
}
void b2PolygonShape::SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle)
{
m_vertexCount = 4;
m_vertices[0].Set(-hx, -hy);
m_vertices[1].Set( hx, -hy);
m_vertices[2].Set( hx, hy);
m_vertices[3].Set(-hx, hy);
m_normals[0].Set(0.0f, -1.0f);
m_normals[1].Set(1.0f, 0.0f);
m_normals[2].Set(0.0f, 1.0f);
m_normals[3].Set(-1.0f, 0.0f);
m_centroid = center;
b2Transform xf;
xf.p = center;
xf.q.Set(angle);
// Transform vertices and normals.
for (int32 i = 0; i < m_vertexCount; ++i)
{
m_vertices[i] = b2Mul(xf, m_vertices[i]);
m_normals[i] = b2Mul(xf.q, m_normals[i]);
}
}
int32 b2PolygonShape::GetChildCount() const
{
return 1;
}
static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count)
{
b2Assert(count >= 3);
b2Vec2 c; c.Set(0.0f, 0.0f);
float32 area = 0.0f;
// pRef is the reference point for forming triangles.
// It's location doesn't change the result (except for rounding error).
b2Vec2 pRef(0.0f, 0.0f);
#if 0
// This code would put the reference point inside the polygon.
for (int32 i = 0; i < count; ++i)
{
pRef += vs[i];
}
pRef *= 1.0f / count;
#endif
const float32 inv3 = 1.0f / 3.0f;
for (int32 i = 0; i < count; ++i)
{
// Triangle vertices.
b2Vec2 p1 = pRef;
b2Vec2 p2 = vs[i];
b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0];
b2Vec2 e1 = p2 - p1;
b2Vec2 e2 = p3 - p1;
float32 D = b2Cross(e1, e2);
float32 triangleArea = 0.5f * D;
area += triangleArea;
// Area weighted centroid
c += triangleArea * inv3 * (p1 + p2 + p3);
}
// Centroid
b2Assert(area > b2_epsilon);
c *= 1.0f / area;
return c;
}
void b2PolygonShape::Set(const b2Vec2* vertices, int32 count)
{
b2Assert(3 <= count && count <= b2_maxPolygonVertices);
m_vertexCount = count;
// Copy vertices.
for (int32 i = 0; i < m_vertexCount; ++i)
{
m_vertices[i] = vertices[i];
}
// Compute normals. Ensure the edges have non-zero length.
for (int32 i = 0; i < m_vertexCount; ++i)
{
int32 i1 = i;
int32 i2 = i + 1 < m_vertexCount ? i + 1 : 0;
b2Vec2 edge = m_vertices[i2] - m_vertices[i1];
b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon);
m_normals[i] = b2Cross(edge, 1.0f);
m_normals[i].Normalize();
}
#ifdef _DEBUG
// Ensure the polygon is convex and the interior
// is to the left of each edge.
for (int32 i = 0; i < m_vertexCount; ++i)
{
int32 i1 = i;
int32 i2 = i + 1 < m_vertexCount ? i + 1 : 0;
b2Vec2 edge = m_vertices[i2] - m_vertices[i1];
for (int32 j = 0; j < m_vertexCount; ++j)
{
// Don't check vertices on the current edge.
if (j == i1 || j == i2)
{
continue;
}
b2Vec2 r = m_vertices[j] - m_vertices[i1];
// If this crashes, your polygon is non-convex, has colinear edges,
// or the winding order is wrong.
float32 s = b2Cross(edge, r);
b2Assert(s > 0.0f && "ERROR: Please ensure your polygon is convex and has a CCW winding order");
}
}
#endif
// Compute the polygon centroid.
m_centroid = ComputeCentroid(m_vertices, m_vertexCount);
}
bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const
{
b2Vec2 pLocal = b2MulT(xf.q, p - xf.p);
for (int32 i = 0; i < m_vertexCount; ++i)
{
float32 dot = b2Dot(m_normals[i], pLocal - m_vertices[i]);
if (dot > 0.0f)
{
return false;
}
}
return true;
}
bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
const b2Transform& xf, int32 childIndex) const
{
B2_NOT_USED(childIndex);
// Put the ray into the polygon's frame of reference.
b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p);
b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p);
b2Vec2 d = p2 - p1;
float32 lower = 0.0f, upper = input.maxFraction;
int32 index = -1;
for (int32 i = 0; i < m_vertexCount; ++i)
{
// p = p1 + a * d
// dot(normal, p - v) = 0
// dot(normal, p1 - v) + a * dot(normal, d) = 0
float32 numerator = b2Dot(m_normals[i], m_vertices[i] - p1);
float32 denominator = b2Dot(m_normals[i], d);
if (denominator == 0.0f)
{
if (numerator < 0.0f)
{
return false;
}
}
else
{
// Note: we want this predicate without division:
// lower < numerator / denominator, where denominator < 0
// Since denominator < 0, we have to flip the inequality:
// lower < numerator / denominator <==> denominator * lower > numerator.
if (denominator < 0.0f && numerator < lower * denominator)
{
// Increase lower.
// The segment enters this half-space.
lower = numerator / denominator;
index = i;
}
else if (denominator > 0.0f && numerator < upper * denominator)
{
// Decrease upper.
// The segment exits this half-space.
upper = numerator / denominator;
}
}
// The use of epsilon here causes the assert on lower to trip
// in some cases. Apparently the use of epsilon was to make edge
// shapes work, but now those are handled separately.
//if (upper < lower - b2_epsilon)
if (upper < lower)
{
return false;
}
}
b2Assert(0.0f <= lower && lower <= input.maxFraction);
if (index >= 0)
{
output->fraction = lower;
output->normal = b2Mul(xf.q, m_normals[index]);
return true;
}
return false;
}
void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const
{
B2_NOT_USED(childIndex);
b2Vec2 lower = b2Mul(xf, m_vertices[0]);
b2Vec2 upper = lower;
for (int32 i = 1; i < m_vertexCount; ++i)
{
b2Vec2 v = b2Mul(xf, m_vertices[i]);
lower = b2Min(lower, v);
upper = b2Max(upper, v);
}
b2Vec2 r(m_radius, m_radius);
aabb->lowerBound = lower - r;
aabb->upperBound = upper + r;
}
void b2PolygonShape::ComputeMass(b2MassData* massData, float32 density) const
{
// Polygon mass, centroid, and inertia.
// Let rho be the polygon density in mass per unit area.
// Then:
// mass = rho * int(dA)
// centroid.x = (1/mass) * rho * int(x * dA)
// centroid.y = (1/mass) * rho * int(y * dA)
// I = rho * int((x*x + y*y) * dA)
//
// We can compute these integrals by summing all the integrals
// for each triangle of the polygon. To evaluate the integral
// for a single triangle, we make a change of variables to
// the (u,v) coordinates of the triangle:
// x = x0 + e1x * u + e2x * v
// y = y0 + e1y * u + e2y * v
// where 0 <= u && 0 <= v && u + v <= 1.
//
// We integrate u from [0,1-v] and then v from [0,1].
// We also need to use the Jacobian of the transformation:
// D = cross(e1, e2)
//
// Simplification: triangle centroid = (1/3) * (p1 + p2 + p3)
//
// The rest of the derivation is handled by computer algebra.
b2Assert(m_vertexCount >= 3);
b2Vec2 center; center.Set(0.0f, 0.0f);
float32 area = 0.0f;
float32 I = 0.0f;
// s is the reference point for forming triangles.
// It's location doesn't change the result (except for rounding error).
b2Vec2 s(0.0f, 0.0f);
// This code would put the reference point inside the polygon.
for (int32 i = 0; i < m_vertexCount; ++i)
{
s += m_vertices[i];
}
s *= 1.0f / m_vertexCount;
const float32 k_inv3 = 1.0f / 3.0f;
for (int32 i = 0; i < m_vertexCount; ++i)
{
// Triangle vertices.
b2Vec2 e1 = m_vertices[i] - s;
b2Vec2 e2 = i + 1 < m_vertexCount ? m_vertices[i+1] - s : m_vertices[0] - s;
float32 D = b2Cross(e1, e2);
float32 triangleArea = 0.5f * D;
area += triangleArea;
// Area weighted centroid
center += triangleArea * k_inv3 * (e1 + e2);
float32 ex1 = e1.x, ey1 = e1.y;
float32 ex2 = e2.x, ey2 = e2.y;
float32 intx2 = ex1*ex1 + ex2*ex1 + ex2*ex2;
float32 inty2 = ey1*ey1 + ey2*ey1 + ey2*ey2;
I += (0.25f * k_inv3 * D) * (intx2 + inty2);
}
// Total mass
massData->mass = density * area;
// Center of mass
b2Assert(area > b2_epsilon);
center *= 1.0f / area;
massData->center = center + s;
// Inertia tensor relative to the local origin (point s).
massData->I = density * I;
// Shift to center of mass then to original body origin.
massData->I += massData->mass * (b2Dot(massData->center, massData->center) - b2Dot(center, center));
}
|