1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
/*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_WELD_JOINT_H
#define B2_WELD_JOINT_H
#include <Box2D/Dynamics/Joints/b2Joint.h>
/// Weld joint definition. You need to specify local anchor points
/// where they are attached and the relative body angle. The position
/// of the anchor points is important for computing the reaction torque.
// emscripten - b2WeldJointDef: add functions to set/get base class members
struct b2WeldJointDef : public b2JointDef
{
b2WeldJointDef()
{
type = e_weldJoint;
localAnchorA.Set(0.0f, 0.0f);
localAnchorB.Set(0.0f, 0.0f);
referenceAngle = 0.0f;
frequencyHz = 0.0f;
dampingRatio = 0.0f;
}
/// Initialize the bodies, anchors, and reference angle using a world
/// anchor point.
void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor);
/// The local anchor point relative to bodyA's origin.
b2Vec2 localAnchorA;
/// The local anchor point relative to bodyB's origin.
b2Vec2 localAnchorB;
/// The bodyB angle minus bodyA angle in the reference state (radians).
float32 referenceAngle;
/// The mass-spring-damper frequency in Hertz. Rotation only.
/// Disable softness with a value of 0.
float32 frequencyHz;
/// The damping ratio. 0 = no damping, 1 = critical damping.
float32 dampingRatio;
// to generate javascript bindings
void set_bodyA(b2Body* b) { bodyA = b; }
void set_bodyB(b2Body* b) { bodyB = b; }
void set_collideConnected(bool b) { collideConnected = b; }
b2Body* get_bodyA(b2Body* b) { return bodyA; }
b2Body* get_bodyB(b2Body* b) { return bodyB; }
bool get_collideConnected(bool b) { return collideConnected; }
};
/// A weld joint essentially glues two bodies together. A weld joint may
/// distort somewhat because the island constraint solver is approximate.
// emscripten - b2WeldJoint: make constructor public
class b2WeldJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const;
b2Vec2 GetAnchorB() const;
b2Vec2 GetReactionForce(float32 inv_dt) const;
float32 GetReactionTorque(float32 inv_dt) const;
/// The local anchor point relative to bodyA's origin.
const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
/// The local anchor point relative to bodyB's origin.
const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
/// Get the reference angle.
float32 GetReferenceAngle() const { return m_referenceAngle; }
/// Set/get frequency in Hz.
void SetFrequency(float32 hz) { m_frequencyHz = hz; }
float32 GetFrequency() const { return m_frequencyHz; }
/// Set/get damping ratio.
void SetDampingRatio(float32 ratio) { m_dampingRatio = ratio; }
float32 GetDampingRatio() const { return m_dampingRatio; }
/// Dump to b2Log
void Dump();
b2WeldJoint(const b2WeldJointDef* def);
protected:
friend class b2Joint;
void InitVelocityConstraints(const b2SolverData& data);
void SolveVelocityConstraints(const b2SolverData& data);
bool SolvePositionConstraints(const b2SolverData& data);
float32 m_frequencyHz;
float32 m_dampingRatio;
float32 m_bias;
// Solver shared
b2Vec2 m_localAnchorA;
b2Vec2 m_localAnchorB;
float32 m_referenceAngle;
float32 m_gamma;
b2Vec3 m_impulse;
// Solver temp
int32 m_indexA;
int32 m_indexB;
b2Vec2 m_rA;
b2Vec2 m_rB;
b2Vec2 m_localCenterA;
b2Vec2 m_localCenterB;
float32 m_invMassA;
float32 m_invMassB;
float32 m_invIA;
float32 m_invIB;
b2Mat33 m_mass;
};
#endif
|