//
// Various compiling-to-JS parameters. These are simply variables present when the
// JS compiler runs. To set them, do something like
//
// emcc -s OPTION1=VALUE1 -s OPTION2=VALUE2 [..other stuff..]
//
// See https://github.com/kripken/emscripten/wiki/Code-Generation-Modes/
//
// Note that the values here are the defaults in -O0, that is, unoptimized
// mode. See apply_opt_level in tools/shared.py for how -O1,2,3 affect these
// flags.
//
// Tuning
var QUANTUM_SIZE = 4; // This is the size of an individual field in a structure. 1 would
// lead to e.g. doubles and chars both taking 1 memory address. This
// is a form of 'compressed' memory, with shrinking and stretching
// according to the type, when compared to C/C++. On the other hand
// the normal value of 4 means all fields take 4 memory addresses,
// as per the norm on a 32-bit machine.
//
// Changing this from the default of 4 is deprecated.
var TARGET_X86 = 0; // For i386-pc-linux-gnu
var TARGET_LE32 = 1; // For le32-unknown-nacl
var CORRECT_SIGNS = 1; // Whether we make sure to convert unsigned values to signed values.
// Decreases performance with additional runtime checks. Might not be
// needed in some kinds of code.
// If equal to 2, done on a line-by-line basis according to
// CORRECT_SIGNS_LINES, correcting only the specified lines.
// If equal to 3, correcting all *but* the specified lines
var CHECK_SIGNS = 0; // Runtime errors for signing issues that need correcting.
// It is recommended to use this in
// order to find if your code needs CORRECT_SIGNS. If you can get your
// code to run without CORRECT_SIGNS, it will run much faster
var ASSERTIONS = 1; // Whether we should add runtime assertions, for example to
// check that each allocation to the stack does not
// exceed it's size, whether all allocations (stack and static) are
// of positive size, etc., whether we should throw if we encounter a bad __label__, i.