1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
|
#include "Relooper.h"
#include <string.h>
#include <stdlib.h>
#include <list>
#include <stack>
#include "ministring.h"
// TODO: move all set to unorderedset
#if DEBUG
static void PrintDebug(const char *Format, ...);
#define DebugDump(x, ...) Debugging::Dump(x, __VA_ARGS__)
#else
#define PrintDebug(x, ...)
#define DebugDump(x, ...)
#endif
struct Indenter {
static int CurrIndent;
static void Indent() { CurrIndent++; }
static void Unindent() { CurrIndent--; }
};
static void PrintIndented(const char *Format, ...);
static void PutIndented(const char *String);
static char *OutputBufferRoot = NULL;
static char *OutputBuffer = NULL;
static int OutputBufferSize = 0;
void PrintIndented(const char *Format, ...) {
assert(OutputBuffer);
assert(OutputBuffer + Indenter::CurrIndent*2 - OutputBufferRoot < OutputBufferSize);
for (int i = 0; i < Indenter::CurrIndent*2; i++, OutputBuffer++) *OutputBuffer = ' ';
va_list Args;
va_start(Args, Format);
int left = OutputBufferSize - (OutputBuffer - OutputBufferRoot);
int written = vsnprintf(OutputBuffer, left, Format, Args);
assert(written < left);
OutputBuffer += written;
va_end(Args);
}
void PutIndented(const char *String) {
assert(OutputBuffer);
assert(OutputBuffer + Indenter::CurrIndent*2 - OutputBufferRoot < OutputBufferSize);
for (int i = 0; i < Indenter::CurrIndent*2; i++, OutputBuffer++) *OutputBuffer = ' ';
int left = OutputBufferSize - (OutputBuffer - OutputBufferRoot);
int needed = strlen(String)+1;
assert(needed < left);
strcpy(OutputBuffer, String);
OutputBuffer += strlen(String);
*OutputBuffer++ = '\n';
*OutputBuffer = 0;
}
static int AsmJS = 0;
// Indenter
#if EMSCRIPTEN
int Indenter::CurrIndent = 1;
#else
int Indenter::CurrIndent = 0;
#endif
// Branch
Branch::Branch(const char *ConditionInit, const char *CodeInit) : Ancestor(NULL), Labeled(false) {
Condition = ConditionInit ? strdup(ConditionInit) : NULL;
Code = CodeInit ? strdup(CodeInit) : NULL;
}
Branch::~Branch() {
if (Condition) free((void*)Condition);
if (Code) free((void*)Code);
}
void Branch::Render(Block *Target, bool SetLabel) {
if (Code) PrintIndented("%s\n", Code);
if (SetLabel) PrintIndented("label = %d;\n", Target->Id);
if (Ancestor) {
if (Type != Direct) {
if (Labeled) {
PrintIndented("%s L%d;\n", Type == Break ? "break" : "continue", Ancestor->Id);
} else {
PrintIndented("%s;\n", Type == Break ? "break" : "continue");
}
}
}
}
// Block
int Block::IdCounter = 1; // 0 is reserved for clearings
Block::Block(const char *CodeInit) : Parent(NULL), Id(Block::IdCounter++), DefaultTarget(NULL), IsCheckedMultipleEntry(false) {
Code = strdup(CodeInit);
}
Block::~Block() {
if (Code) free((void*)Code);
for (BlockBranchMap::iterator iter = ProcessedBranchesOut.begin(); iter != ProcessedBranchesOut.end(); iter++) {
delete iter->second;
}
// XXX If not reachable, expected to have branches here. But need to clean them up to prevent leaks!
}
void Block::AddBranchTo(Block *Target, const char *Condition, const char *Code) {
assert(BranchesOut.find(Target) == BranchesOut.end()); // cannot add more than one branch to the same target
BranchesOut[Target] = new Branch(Condition, Code);
}
void Block::Render(bool InLoop) {
if (IsCheckedMultipleEntry && InLoop) {
PrintIndented("label = 0;\n");
}
if (Code) {
// Print code in an indented manner, even over multiple lines
char *Start = const_cast<char*>(Code);
while (*Start) {
char *End = strchr(Start, '\n');
if (End) *End = 0;
PutIndented(Start);
if (End) *End = '\n'; else break;
Start = End+1;
}
}
if (!ProcessedBranchesOut.size()) return;
bool SetLabel = true; // in some cases it is clear we can avoid setting label, see later
if (ProcessedBranchesOut.size() == 1 && ProcessedBranchesOut.begin()->second->Type == Branch::Direct) {
SetLabel = false;
}
// A setting of the label variable (label = x) is necessary if it can
// cause an impact. The main case is where we set label to x, then elsewhere
// we check if label is equal to that value, i.e., that label is an entry
// in a multiple block. We also need to reset the label when we enter
// that block, so that each setting is a one-time action: consider
//
// while (1) {
// if (check) label = 1;
// if (label == 1) { label = 0 }
// }
//
// (Note that this case is impossible due to fusing, but that is not
// material here.) So setting to 0 is important just to clear the 1 for
// future iterations.
// TODO: When inside a loop, if necessary clear the label variable
// once on the top, and never do settings that are in effect clears
// Fusing: If the next is a Multiple, we can fuse it with this block. Note
// that we must be the Inner of a Simple, so fusing means joining a Simple
// to a Multiple. What happens there is that all options in the Multiple
// *must* appear in the Simple (the Simple is the only one reaching the
// Multiple), so we can remove the Multiple and add its independent groups
// into the Simple's branches.
MultipleShape *Fused = Shape::IsMultiple(Parent->Next);
if (Fused) {
PrintDebug("Fusing Multiple to Simple\n");
Parent->Next = Parent->Next->Next;
Fused->RenderLoopPrefix();
// When the Multiple has the same number of groups as we have branches,
// they will all be fused, so it is safe to not set the label at all
if (SetLabel && Fused->InnerMap.size() == ProcessedBranchesOut.size()) {
SetLabel = false;
}
}
// We must do this here, because blocks can be split and even comparing their Ids is not enough. We must check the conditions.
for (BlockBranchMap::iterator iter = ProcessedBranchesOut.begin(); iter != ProcessedBranchesOut.end(); iter++) {
if (!iter->second->Condition) {
assert(!DefaultTarget); // Must be exactly one default
DefaultTarget = iter->first;
}
}
assert(DefaultTarget); // Must be a default
ministring RemainingConditions;
bool First = true;
for (BlockBranchMap::iterator iter = ProcessedBranchesOut.begin();; iter++) {
Block *Target;
Branch *Details;
if (iter != ProcessedBranchesOut.end()) {
Target = iter->first;
if (Target == DefaultTarget) continue; // done at the end
Details = iter->second;
assert(Details->Condition); // must have a condition if this is not the default target
} else {
Target = DefaultTarget;
Details = ProcessedBranchesOut[DefaultTarget];
}
bool SetCurrLabel = SetLabel && Target->IsCheckedMultipleEntry;
bool HasFusedContent = Fused && Fused->InnerMap.find(Target) != Fused->InnerMap.end();
bool HasContent = SetCurrLabel || Details->Type != Branch::Direct || HasFusedContent || Details->Code;
if (iter != ProcessedBranchesOut.end()) {
// If there is nothing to show in this branch, omit the condition
if (HasContent) {
PrintIndented("%sif (%s) {\n", First ? "" : "} else ", Details->Condition);
First = false;
} else {
if (RemainingConditions.size() > 0) RemainingConditions += " && ";
RemainingConditions += "!(";
RemainingConditions += Details->Condition;
RemainingConditions += ")";
}
} else {
if (HasContent) {
if (RemainingConditions.size() > 0) {
if (First) {
PrintIndented("if (%s) {\n", RemainingConditions.c_str());
First = false;
} else {
PrintIndented("} else if (%s) {\n", RemainingConditions.c_str());
}
} else if (!First) {
PrintIndented("} else {\n");
}
}
}
if (!First) Indenter::Indent();
Details->Render(Target, SetCurrLabel);
if (HasFusedContent) {
Fused->InnerMap.find(Target)->second->Render(InLoop);
}
if (!First) Indenter::Unindent();
if (iter == ProcessedBranchesOut.end()) break;
}
if (!First) PrintIndented("}\n");
if (Fused) {
Fused->RenderLoopPostfix();
}
}
// Shape
int Shape::IdCounter = 0;
// MultipleShape
void MultipleShape::RenderLoopPrefix() {
if (NeedLoop) {
if (Labeled) {
PrintIndented("L%d: do {\n", Id);
} else {
PrintIndented("do {\n");
}
Indenter::Indent();
}
}
void MultipleShape::RenderLoopPostfix() {
if (NeedLoop) {
Indenter::Unindent();
PrintIndented("} while(0);\n");
}
}
void MultipleShape::Render(bool InLoop) {
RenderLoopPrefix();
bool First = true;
for (BlockShapeMap::iterator iter = InnerMap.begin(); iter != InnerMap.end(); iter++) {
if (AsmJS) {
PrintIndented("%sif ((label|0) == %d) {\n", First ? "" : "else ", iter->first->Id);
} else {
PrintIndented("%sif (label == %d) {\n", First ? "" : "else ", iter->first->Id);
}
First = false;
Indenter::Indent();
iter->second->Render(InLoop);
Indenter::Unindent();
PrintIndented("}\n");
}
RenderLoopPostfix();
if (Next) Next->Render(InLoop);
};
// LoopShape
void LoopShape::Render(bool InLoop) {
if (Labeled) {
PrintIndented("L%d: while(1) {\n", Id);
} else {
PrintIndented("while(1) {\n");
}
Indenter::Indent();
Inner->Render(true);
Indenter::Unindent();
PrintIndented("}\n");
if (Next) Next->Render(InLoop);
};
/*
// EmulatedShape
void EmulatedShape::Render(bool InLoop) {
PrintIndented("while(1) {\n");
Indenter::Indent();
PrintIndented("switch(label) {\n");
Indenter::Indent();
for (int i = 0; i < Blocks.size(); i++) {
Block *Curr = Blocks[i];
PrintIndented("case %d: {\n", Curr->Id);
Indenter::Indent();
Curr->Render(InLoop);
PrintIndented("break;\n");
Indenter::Unindent();
PrintIndented("}\n");
}
Indenter::Unindent();
PrintIndented("}\n");
Indenter::Unindent();
PrintIndented("}\n");
if (Next) Next->Render(InLoop);
};
*/
// Relooper
Relooper::Relooper() : Root(NULL) {
}
Relooper::~Relooper() {
for (int i = 0; i < Blocks.size(); i++) delete Blocks[i];
for (int i = 0; i < Shapes.size(); i++) delete Shapes[i];
}
void Relooper::AddBlock(Block *New) {
Blocks.push_back(New);
}
struct RelooperRecursor {
Relooper *Parent;
RelooperRecursor(Relooper *ParentInit) : Parent(ParentInit) {}
};
typedef std::list<Block*> BlockList;
void Relooper::Calculate(Block *Entry) {
// Scan and optimize the input
struct PreOptimizer : public RelooperRecursor {
PreOptimizer(Relooper *Parent) : RelooperRecursor(Parent) {}
BlockSet Live;
void FindLive(Block *Root) {
BlockList ToInvestigate;
ToInvestigate.push_back(Root);
while (ToInvestigate.size() > 0) {
Block *Curr = ToInvestigate.front();
ToInvestigate.pop_front();
if (Live.find(Curr) != Live.end()) continue;
Live.insert(Curr);
for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
ToInvestigate.push_back(iter->first);
}
}
}
// If a block has multiple entries but no exits, and it is small enough, it is useful to split it.
// A common example is a C++ function where everything ends up at a final exit block and does some
// RAII cleanup. Without splitting, we will be forced to introduce labelled loops to allow
// reaching the final block
void SplitDeadEnds() {
int TotalCodeSize = 0;
for (BlockSet::iterator iter = Live.begin(); iter != Live.end(); iter++) {
Block *Curr = *iter;
TotalCodeSize += strlen(Curr->Code);
}
for (BlockSet::iterator iter = Live.begin(); iter != Live.end(); iter++) {
Block *Original = *iter;
if (Original->BranchesIn.size() <= 1 || Original->BranchesOut.size() > 0) continue;
if (strlen(Original->Code)*(Original->BranchesIn.size()-1) > TotalCodeSize/5) continue; // if splitting increases raw code size by a significant amount, abort
// Split the node (for simplicity, we replace all the blocks, even though we could have reused the original)
PrintDebug("Splitting block %d\n", Original->Id);
for (BlockSet::iterator iter = Original->BranchesIn.begin(); iter != Original->BranchesIn.end(); iter++) {
Block *Prior = *iter;
Block *Split = new Block(Original->Code);
Split->BranchesIn.insert(Prior);
Prior->BranchesOut[Split] = new Branch(Prior->BranchesOut[Original]->Condition, Prior->BranchesOut[Original]->Code);
Prior->BranchesOut.erase(Original);
Parent->AddBlock(Split);
Live.insert(Split);
for (BlockBranchMap::iterator iter = Original->BranchesOut.begin(); iter != Original->BranchesOut.end(); iter++) {
Block *Post = iter->first;
Branch *Details = iter->second;
Split->BranchesOut[Post] = new Branch(Details->Condition, Details->Code);
Post->BranchesIn.insert(Split);
}
}
}
}
};
PreOptimizer Pre(this);
Pre.FindLive(Entry);
// Add incoming branches from live blocks, ignoring dead code
for (int i = 0; i < Blocks.size(); i++) {
Block *Curr = Blocks[i];
if (Pre.Live.find(Curr) == Pre.Live.end()) continue;
for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
iter->first->BranchesIn.insert(Curr);
}
}
Pre.SplitDeadEnds();
// Recursively process the graph
struct Analyzer : public RelooperRecursor {
Analyzer(Relooper *Parent) : RelooperRecursor(Parent) {}
// Add a shape to the list of shapes in this Relooper calculation
void Notice(Shape *New) {
Parent->Shapes.push_back(New);
}
// Create a list of entries from a block. If LimitTo is provided, only results in that set
// will appear
void GetBlocksOut(Block *Source, BlockSet& Entries, BlockSet *LimitTo=NULL) {
for (BlockBranchMap::iterator iter = Source->BranchesOut.begin(); iter != Source->BranchesOut.end(); iter++) {
if (!LimitTo || LimitTo->find(iter->first) != LimitTo->end()) {
Entries.insert(iter->first);
}
}
}
// Converts/processes all branchings to a specific target
void Solipsize(Block *Target, Branch::FlowType Type, Shape *Ancestor, BlockSet &From) {
PrintDebug("Solipsizing branches into %d\n", Target->Id);
DebugDump(From, " relevant to solipsize: ");
for (BlockSet::iterator iter = Target->BranchesIn.begin(); iter != Target->BranchesIn.end();) {
Block *Prior = *iter;
if (From.find(Prior) == From.end()) {
iter++;
continue;
}
Branch *PriorOut = Prior->BranchesOut[Target];
PriorOut->Ancestor = Ancestor;
PriorOut->Type = Type;
if (MultipleShape *Multiple = Shape::IsMultiple(Ancestor)) {
Multiple->NeedLoop++; // We are breaking out of this Multiple, so need a loop
}
iter++; // carefully increment iter before erasing
Target->BranchesIn.erase(Prior);
Target->ProcessedBranchesIn.insert(Prior);
Prior->BranchesOut.erase(Target);
Prior->ProcessedBranchesOut[Target] = PriorOut;
PrintDebug(" eliminated branch from %d\n", Prior->Id);
}
}
Shape *MakeSimple(BlockSet &Blocks, Block *Inner, BlockSet &NextEntries) {
PrintDebug("creating simple block with block #%d\n", Inner->Id);
SimpleShape *Simple = new SimpleShape;
Notice(Simple);
Simple->Inner = Inner;
Inner->Parent = Simple;
if (Blocks.size() > 1) {
Blocks.erase(Inner);
GetBlocksOut(Inner, NextEntries, &Blocks);
BlockSet JustInner;
JustInner.insert(Inner);
for (BlockSet::iterator iter = NextEntries.begin(); iter != NextEntries.end(); iter++) {
Solipsize(*iter, Branch::Direct, Simple, JustInner);
}
}
return Simple;
}
Shape *MakeLoop(BlockSet &Blocks, BlockSet& Entries, BlockSet &NextEntries) {
// Find the inner blocks in this loop. Proceed backwards from the entries until
// you reach a seen block, collecting as you go.
BlockSet InnerBlocks;
BlockSet Queue = Entries;
while (Queue.size() > 0) {
Block *Curr = *(Queue.begin());
Queue.erase(Queue.begin());
if (InnerBlocks.find(Curr) == InnerBlocks.end()) {
// This element is new, mark it as inner and remove from outer
InnerBlocks.insert(Curr);
Blocks.erase(Curr);
// Add the elements prior to it
for (BlockSet::iterator iter = Curr->BranchesIn.begin(); iter != Curr->BranchesIn.end(); iter++) {
Queue.insert(*iter);
}
}
}
assert(InnerBlocks.size() > 0);
for (BlockSet::iterator iter = InnerBlocks.begin(); iter != InnerBlocks.end(); iter++) {
Block *Curr = *iter;
for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
Block *Possible = iter->first;
if (InnerBlocks.find(Possible) == InnerBlocks.end()) {
NextEntries.insert(Possible);
}
}
}
PrintDebug("creating loop block:\n");
DebugDump(InnerBlocks, " inner blocks:");
DebugDump(Entries, " inner entries:");
DebugDump(Blocks, " outer blocks:");
DebugDump(NextEntries, " outer entries:");
// TODO: Optionally hoist additional blocks into the loop
LoopShape *Loop = new LoopShape();
Notice(Loop);
// Solipsize the loop, replacing with break/continue and marking branches as Processed (will not affect later calculations)
// A. Branches to the loop entries become a continue to this shape
for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
Solipsize(*iter, Branch::Continue, Loop, InnerBlocks);
}
// B. Branches to outside the loop (a next entry) become breaks on this shape
for (BlockSet::iterator iter = NextEntries.begin(); iter != NextEntries.end(); iter++) {
Solipsize(*iter, Branch::Break, Loop, InnerBlocks);
}
// Finish up
Shape *Inner = Process(InnerBlocks, Entries, NULL);
Loop->Inner = Inner;
return Loop;
}
// For each entry, find the independent group reachable by it. The independent group is
// the entry itself, plus all the blocks it can reach that cannot be directly reached by another entry. Note that we
// ignore directly reaching the entry itself by another entry.
void FindIndependentGroups(BlockSet &Blocks, BlockSet &Entries, BlockBlockSetMap& IndependentGroups) {
typedef std::map<Block*, Block*> BlockBlockMap;
struct HelperClass {
BlockBlockSetMap& IndependentGroups;
BlockBlockMap Ownership; // For each block, which entry it belongs to. We have reached it from there.
HelperClass(BlockBlockSetMap& IndependentGroupsInit) : IndependentGroups(IndependentGroupsInit) {}
void InvalidateWithChildren(Block *New) { // TODO: rename New
BlockList ToInvalidate; // Being in the list means you need to be invalidated
ToInvalidate.push_back(New);
while (ToInvalidate.size() > 0) {
Block *Invalidatee = ToInvalidate.front();
ToInvalidate.pop_front();
Block *Owner = Ownership[Invalidatee];
if (IndependentGroups.find(Owner) != IndependentGroups.end()) { // Owner may have been invalidated, do not add to IndependentGroups!
IndependentGroups[Owner].erase(Invalidatee);
}
if (Ownership[Invalidatee]) { // may have been seen before and invalidated already
Ownership[Invalidatee] = NULL;
for (BlockBranchMap::iterator iter = Invalidatee->BranchesOut.begin(); iter != Invalidatee->BranchesOut.end(); iter++) {
Block *Target = iter->first;
BlockBlockMap::iterator Known = Ownership.find(Target);
if (Known != Ownership.end()) {
Block *TargetOwner = Known->second;
if (TargetOwner) {
ToInvalidate.push_back(Target);
}
}
}
}
}
}
};
HelperClass Helper(IndependentGroups);
// We flow out from each of the entries, simultaneously.
// When we reach a new block, we add it as belonging to the one we got to it from.
// If we reach a new block that is already marked as belonging to someone, it is reachable by
// two entries and is not valid for any of them. Remove it and all it can reach that have been
// visited.
BlockList Queue; // Being in the queue means we just added this item, and we need to add its children
for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
Block *Entry = *iter;
Helper.Ownership[Entry] = Entry;
IndependentGroups[Entry].insert(Entry);
Queue.push_back(Entry);
}
while (Queue.size() > 0) {
Block *Curr = Queue.front();
Queue.pop_front();
Block *Owner = Helper.Ownership[Curr]; // Curr must be in the ownership map if we are in the queue
if (!Owner) continue; // we have been invalidated meanwhile after being reached from two entries
// Add all children
for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
Block *New = iter->first;
BlockBlockMap::iterator Known = Helper.Ownership.find(New);
if (Known == Helper.Ownership.end()) {
// New node. Add it, and put it in the queue
Helper.Ownership[New] = Owner;
IndependentGroups[Owner].insert(New);
Queue.push_back(New);
continue;
}
Block *NewOwner = Known->second;
if (!NewOwner) continue; // We reached an invalidated node
if (NewOwner != Owner) {
// Invalidate this and all reachable that we have seen - we reached this from two locations
Helper.InvalidateWithChildren(New);
}
// otherwise, we have the same owner, so do nothing
}
}
// Having processed all the interesting blocks, we remain with just one potential issue:
// If a->b, and a was invalidated, but then b was later reached by someone else, we must
// invalidate b. To check for this, we go over all elements in the independent groups,
// if an element has a parent which does *not* have the same owner, we must remove it
// and all its children.
for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
BlockSet &CurrGroup = IndependentGroups[*iter];
BlockList ToInvalidate;
for (BlockSet::iterator iter = CurrGroup.begin(); iter != CurrGroup.end(); iter++) {
Block *Child = *iter;
for (BlockSet::iterator iter = Child->BranchesIn.begin(); iter != Child->BranchesIn.end(); iter++) {
Block *Parent = *iter;
if (Helper.Ownership[Parent] != Helper.Ownership[Child]) {
ToInvalidate.push_back(Child);
}
}
}
while (ToInvalidate.size() > 0) {
Block *Invalidatee = ToInvalidate.front();
ToInvalidate.pop_front();
Helper.InvalidateWithChildren(Invalidatee);
}
}
// Remove empty groups
for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
if (IndependentGroups[*iter].size() == 0) {
IndependentGroups.erase(*iter);
}
}
#if DEBUG
PrintDebug("Investigated independent groups:\n");
for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end(); iter++) {
DebugDump(iter->second, " group: ");
}
#endif
}
Shape *MakeMultiple(BlockSet &Blocks, BlockSet& Entries, BlockBlockSetMap& IndependentGroups, Shape *Prev, BlockSet &NextEntries) {
PrintDebug("creating multiple block with %d inner groups\n", IndependentGroups.size());
bool Fused = !!(Shape::IsSimple(Prev));
MultipleShape *Multiple = new MultipleShape();
Notice(Multiple);
BlockSet CurrEntries;
for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end(); iter++) {
Block *CurrEntry = iter->first;
BlockSet &CurrBlocks = iter->second;
PrintDebug(" multiple group with entry %d:\n", CurrEntry->Id);
DebugDump(CurrBlocks, " ");
// Create inner block
CurrEntries.clear();
CurrEntries.insert(CurrEntry);
for (BlockSet::iterator iter = CurrBlocks.begin(); iter != CurrBlocks.end(); iter++) {
Block *CurrInner = *iter;
// Remove the block from the remaining blocks
Blocks.erase(CurrInner);
// Find new next entries and fix branches to them
for (BlockBranchMap::iterator iter = CurrInner->BranchesOut.begin(); iter != CurrInner->BranchesOut.end();) {
Block *CurrTarget = iter->first;
BlockBranchMap::iterator Next = iter;
Next++;
if (CurrBlocks.find(CurrTarget) == CurrBlocks.end()) {
NextEntries.insert(CurrTarget);
Solipsize(CurrTarget, Branch::Break, Multiple, CurrBlocks);
}
iter = Next; // increment carefully because Solipsize can remove us
}
}
Multiple->InnerMap[CurrEntry] = Process(CurrBlocks, CurrEntries, NULL);
// If we are not fused, then our entries will actually be checked
if (!Fused) {
CurrEntry->IsCheckedMultipleEntry = true;
}
}
DebugDump(Blocks, " remaining blocks after multiple:");
// Add entries not handled as next entries, they are deferred
for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
Block *Entry = *iter;
if (IndependentGroups.find(Entry) == IndependentGroups.end()) {
NextEntries.insert(Entry);
}
}
return Multiple;
}
// Main function.
// Process a set of blocks with specified entries, returns a shape
// The Make* functions receive a NextEntries. If they fill it with data, those are the entries for the
// ->Next block on them, and the blocks are what remains in Blocks (which Make* modify). In this way
// we avoid recursing on Next (imagine a long chain of Simples, if we recursed we could blow the stack).
Shape *Process(BlockSet &Blocks, BlockSet& InitialEntries, Shape *Prev) {
PrintDebug("Process() called\n");
BlockSet *Entries = &InitialEntries;
BlockSet TempEntries[2];
int CurrTempIndex = 0;
BlockSet *NextEntries;
Shape *Ret = NULL;
#define Make(call) \
Shape *Temp = call; \
if (Prev) Prev->Next = Temp; \
if (!Ret) Ret = Temp; \
if (!NextEntries->size()) { PrintDebug("Process() returning\n"); return Ret; } \
Prev = Temp; \
Entries = NextEntries; \
continue;
while (1) {
PrintDebug("Process() running\n");
DebugDump(Blocks, " blocks : ");
DebugDump(*Entries, " entries: ");
CurrTempIndex = 1-CurrTempIndex;
NextEntries = &TempEntries[CurrTempIndex];
NextEntries->clear();
if (Entries->size() == 0) return Ret;
if (Entries->size() == 1) {
Block *Curr = *(Entries->begin());
if (Curr->BranchesIn.size() == 0) {
// One entry, no looping ==> Simple
Make(MakeSimple(Blocks, Curr, *NextEntries));
}
// One entry, looping ==> Loop
Make(MakeLoop(Blocks, *Entries, *NextEntries));
}
// More than one entry, try to eliminate through a Multiple groups of
// independent blocks from an entry/ies. It is important to remove through
// multiples as opposed to looping since the former is more performant.
BlockBlockSetMap IndependentGroups;
FindIndependentGroups(Blocks, *Entries, IndependentGroups);
PrintDebug("Independent groups: %d\n", IndependentGroups.size());
if (IndependentGroups.size() > 0) {
// We can handle a group in a multiple if its entry cannot be reached by another group.
// Note that it might be reachable by itself - a loop. But that is fine, we will create
// a loop inside the multiple block (which is the performant order to do it).
for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end();) {
Block *Entry = iter->first;
BlockSet &Group = iter->second;
BlockBlockSetMap::iterator curr = iter++; // iterate carefully, we may delete
for (BlockSet::iterator iterBranch = Entry->BranchesIn.begin(); iterBranch != Entry->BranchesIn.end(); iterBranch++) {
Block *Origin = *iterBranch;
if (Group.find(Origin) == Group.end()) {
// Reached from outside the group, so we cannot handle this
PrintDebug("Cannot handle group with entry %d because of incoming branch from %d\n", Entry->Id, Origin->Id);
IndependentGroups.erase(curr);
break;
}
}
}
// As an optimization, if we have 2 independent groups, and one is a small dead end, we can handle only that dead end.
// The other then becomes a Next - without nesting in the code and recursion in the analysis.
// TODO: if the larger is the only dead end, handle that too
// TODO: handle >2 groups
// TODO: handle not just dead ends, but also that do not branch to the NextEntries. However, must be careful
// there since we create a Next, and that Next can prevent eliminating a break (since we no longer
// naturally reach the same place), which may necessitate a one-time loop, which makes the unnesting
// pointless.
if (IndependentGroups.size() == 2) {
// Find the smaller one
BlockBlockSetMap::iterator iter = IndependentGroups.begin();
Block *SmallEntry = iter->first;
int SmallSize = iter->second.size();
iter++;
Block *LargeEntry = iter->first;
int LargeSize = iter->second.size();
if (SmallSize != LargeSize) { // ignore the case where they are identical - keep things symmetrical there
if (SmallSize > LargeSize) {
Block *Temp = SmallEntry;
SmallEntry = LargeEntry;
LargeEntry = Temp; // Note: we did not flip the Sizes too, they are now invalid. TODO: use the smaller size as a limit?
}
// Check if dead end
bool DeadEnd = true;
BlockSet &SmallGroup = IndependentGroups[SmallEntry];
for (BlockSet::iterator iter = SmallGroup.begin(); iter != SmallGroup.end(); iter++) {
Block *Curr = *iter;
for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
Block *Target = iter->first;
if (SmallGroup.find(Target) == SmallGroup.end()) {
DeadEnd = false;
break;
}
}
if (!DeadEnd) break;
}
if (DeadEnd) {
PrintDebug("Removing nesting by not handling large group because small group is dead end\n");
IndependentGroups.erase(LargeEntry);
}
}
}
PrintDebug("Handleable independent groups: %d\n", IndependentGroups.size());
if (IndependentGroups.size() > 0) {
// Some groups removable ==> Multiple
Make(MakeMultiple(Blocks, *Entries, IndependentGroups, Prev, *NextEntries));
}
}
// No independent groups, must be loopable ==> Loop
Make(MakeLoop(Blocks, *Entries, *NextEntries));
}
}
};
// Main
BlockSet AllBlocks;
for (int i = 0; i < Blocks.size(); i++) {
AllBlocks.insert(Blocks[i]);
#if DEBUG
PrintDebug("Adding block %d (%s)\n", Blocks[i]->Id, Blocks[i]->Code);
for (BlockBranchMap::iterator iter = Blocks[i]->BranchesOut.begin(); iter != Blocks[i]->BranchesOut.end(); iter++) {
PrintDebug(" with branch out to %d\n", iter->first->Id);
}
#endif
}
BlockSet Entries;
Entries.insert(Entry);
Root = Analyzer(this).Process(AllBlocks, Entries, NULL);
// Post optimizations
struct PostOptimizer {
Relooper *Parent;
void *Closure;
PostOptimizer(Relooper *ParentInit) : Parent(ParentInit), Closure(NULL) {}
#define RECURSE_MULTIPLE_MANUAL(func, manual) \
for (BlockShapeMap::iterator iter = manual->InnerMap.begin(); iter != manual->InnerMap.end(); iter++) { \
func(iter->second); \
}
#define RECURSE_MULTIPLE(func) RECURSE_MULTIPLE_MANUAL(func, Multiple);
#define RECURSE_LOOP(func) \
func(Loop->Inner);
#define SHAPE_SWITCH(var, simple, multiple, loop) \
if (SimpleShape *Simple = Shape::IsSimple(var)) { \
simple; \
} else if (MultipleShape *Multiple = Shape::IsMultiple(var)) { \
multiple; \
} else if (LoopShape *Loop = Shape::IsLoop(var)) { \
loop; \
}
#define SHAPE_SWITCH_AUTO(var, simple, multiple, loop, func) \
if (SimpleShape *Simple = Shape::IsSimple(var)) { \
simple; \
func(Simple->Next); \
} else if (MultipleShape *Multiple = Shape::IsMultiple(var)) { \
multiple; \
RECURSE_MULTIPLE(func) \
func(Multiple->Next); \
} else if (LoopShape *Loop = Shape::IsLoop(var)) { \
loop; \
RECURSE_LOOP(func); \
func(Loop->Next); \
}
// Remove unneeded breaks and continues.
// A flow operation is trivially unneeded if the shape we naturally get to by normal code
// execution is the same as the flow forces us to.
void RemoveUnneededFlows(Shape *Root, Shape *Natural=NULL) {
Shape *Next = Root;
while (Next) {
Root = Next;
Next = NULL;
SHAPE_SWITCH(Root, {
// If there is a next block, we already know at Simple creation time to make direct branches,
// and we can do nothing more. If there is no next however, then Natural is where we will
// go to by doing nothing, so we can potentially optimize some branches to direct.
if (Simple->Next) {
Next = Simple->Next;
} else {
for (BlockBranchMap::iterator iter = Simple->Inner->ProcessedBranchesOut.begin(); iter != Simple->Inner->ProcessedBranchesOut.end(); iter++) {
Block *Target = iter->first;
Branch *Details = iter->second;
if (Details->Type != Branch::Direct && Target->Parent == Natural) {
Details->Type = Branch::Direct;
if (MultipleShape *Multiple = Shape::IsMultiple(Details->Ancestor)) {
Multiple->NeedLoop--;
}
}
}
}
}, {
for (BlockShapeMap::iterator iter = Multiple->InnerMap.begin(); iter != Multiple->InnerMap.end(); iter++) {
RemoveUnneededFlows(iter->second, Multiple->Next);
}
Next = Multiple->Next;
}, {
RemoveUnneededFlows(Loop->Inner, Loop->Inner);
Next = Loop->Next;
});
}
}
// After we know which loops exist, we can calculate which need to be labeled
void FindLabeledLoops(Shape *Root) {
bool First = Closure == NULL;
if (First) {
Closure = (void*)(new std::stack<Shape*>);
}
std::stack<Shape*> &LoopStack = *((std::stack<Shape*>*)Closure);
Shape *Next = Root;
while (Next) {
Root = Next;
Next = NULL;
SHAPE_SWITCH(Root, {
MultipleShape *Fused = Shape::IsMultiple(Root->Next);
// If we are fusing a Multiple with a loop into this Simple, then visit it now
if (Fused && Fused->NeedLoop) {
LoopStack.push(Fused);
RECURSE_MULTIPLE_MANUAL(FindLabeledLoops, Fused);
}
for (BlockBranchMap::iterator iter = Simple->Inner->ProcessedBranchesOut.begin(); iter != Simple->Inner->ProcessedBranchesOut.end(); iter++) {
Block *Target = iter->first;
Branch *Details = iter->second;
if (Details->Type != Branch::Direct) {
assert(LoopStack.size() > 0);
if (Details->Ancestor != LoopStack.top()) {
LabeledShape *Labeled = Shape::IsLabeled(Details->Ancestor);
Labeled->Labeled = true;
Details->Labeled = true;
} else {
Details->Labeled = false;
}
}
}
if (Fused && Fused->NeedLoop) {
LoopStack.pop();
Next = Fused->Next;
} else {
Next = Root->Next;
}
}, {
if (Multiple->NeedLoop) {
LoopStack.push(Multiple);
}
RECURSE_MULTIPLE(FindLabeledLoops);
if (Multiple->NeedLoop) {
LoopStack.pop();
}
Next = Root->Next;
}, {
LoopStack.push(Loop);
RECURSE_LOOP(FindLabeledLoops);
LoopStack.pop();
Next = Root->Next;
});
}
if (First) {
delete (std::stack<Shape*>*)Closure;
}
}
void Process(Shape *Root) {
RemoveUnneededFlows(Root);
FindLabeledLoops(Root);
}
};
PrintDebug("=== Optimizing shapes ===\n");
PostOptimizer(this).Process(Root);
}
void Relooper::Render() {
OutputBuffer = OutputBufferRoot;
Root->Render(false);
}
void Relooper::SetOutputBuffer(char *Buffer, int Size) {
OutputBufferRoot = OutputBuffer = Buffer;
OutputBufferSize = Size;
}
void Relooper::MakeOutputBuffer(int Size) {
OutputBufferRoot = OutputBuffer = (char*)malloc(Size);
OutputBufferSize = Size;
}
void Relooper::SetAsmJSMode(int On) {
AsmJS = On;
}
#if DEBUG
// Debugging
void DebugDump(BlockSet &Blocks, const char *prefix) {
if (prefix) printf("%s ", prefix);
for (BlockSet::iterator iter = Blocks.begin(); iter != Blocks.end(); iter++) {
printf("%d:\n", (*iter)->Id);
for (BlockBranchMap::iterator iter2 = (*iter)->BranchesOut.begin(); iter2 != (*iter)->BranchesOut.end(); iter2++) {
printf(" OUT %d\n", iter2->first->Id);
}
for (BlockSet::iterator iter2 = (*iter)->BranchesIn.begin(); iter2 != (*iter)->BranchesIn.end(); iter2++) {
printf(" IN %d\n", (*iter2)->Id);
}
}
}
static void PrintDebug(const char *Format, ...) {
printf("// ");
va_list Args;
va_start(Args, Format);
vprintf(Format, Args);
va_end(Args);
}
#endif
// C API - useful for binding to other languages
typedef std::map<void*, int> VoidIntMap;
VoidIntMap __blockDebugMap__; // maps block pointers in currently running code to block ids, for generated debug output
extern "C" {
void rl_set_output_buffer(char *buffer, int size) {
#if DEBUG
printf("#include \"Relooper.h\"\n");
printf("int main() {\n");
printf(" char buffer[100000];\n");
printf(" rl_set_output_buffer(buffer);\n");
#endif
Relooper::SetOutputBuffer(buffer, size);
}
void rl_make_output_buffer(int size) {
Relooper::SetOutputBuffer((char*)malloc(size), size);
}
void rl_set_asm_js_mode(int on) {
Relooper::SetAsmJSMode(on);
}
void *rl_new_block(const char *text) {
Block *ret = new Block(text);
#if DEBUG
printf(" void *b%d = rl_new_block(\"// code %d\");\n", ret->Id, ret->Id);
__blockDebugMap__[ret] = ret->Id;
printf(" block_map[%d] = b%d;\n", ret->Id, ret->Id);
#endif
return ret;
}
void rl_delete_block(void *block) {
#if DEBUG
printf(" rl_delete_block(block_map[%d]);\n", ((Block*)block)->Id);
#endif
delete (Block*)block;
}
void rl_block_add_branch_to(void *from, void *to, const char *condition, const char *code) {
#if DEBUG
printf(" rl_block_add_branch_to(block_map[%d], block_map[%d], %s%s%s, %s%s%s);\n", ((Block*)from)->Id, ((Block*)to)->Id, condition ? "\"" : "", condition ? condition : "NULL", condition ? "\"" : "", code ? "\"" : "", code ? code : "NULL", code ? "\"" : "");
#endif
((Block*)from)->AddBranchTo((Block*)to, condition, code);
}
void *rl_new_relooper() {
#if DEBUG
printf(" void *block_map[10000];\n");
printf(" void *rl = rl_new_relooper();\n");
#endif
return new Relooper;
}
void rl_delete_relooper(void *relooper) {
delete (Relooper*)relooper;
}
void rl_relooper_add_block(void *relooper, void *block) {
#if DEBUG
printf(" rl_relooper_add_block(rl, block_map[%d]);\n", ((Block*)block)->Id);
#endif
((Relooper*)relooper)->AddBlock((Block*)block);
}
void rl_relooper_calculate(void *relooper, void *entry) {
#if DEBUG
printf(" rl_relooper_calculate(rl, block_map[%d]);\n", ((Block*)entry)->Id);
printf(" rl_relooper_render(rl);\n");
printf(" rl_delete_relooper(rl);\n");
printf(" puts(buffer);\n");
printf(" return 0;\n");
printf("}\n");
#endif
((Relooper*)relooper)->Calculate((Block*)entry);
}
void rl_relooper_render(void *relooper) {
((Relooper*)relooper)->Render();
}
}
|