aboutsummaryrefslogtreecommitdiff
path: root/src/analyzer.js
blob: 5b34c665f5c55e4c142aa51e272cd566d43774b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
//"use strict";

// Analyze intertype data. Calculates things that are necessary in order
// to do the final conversion into JavaScript later, for example,
// properties of variables, loop structures of functions, etc.

var VAR_NATIVE = 'native';
var VAR_NATIVIZED = 'nativized';
var VAR_EMULATED = 'emulated';

function cleanFunc(func) {
  func.lines = func.lines.filter(function(line) { return line.intertype !== null });
  func.labels.forEach(function(label) {
    label.lines = label.lines.filter(function(line) { return line.intertype !== null });
  });
}

function analyzer(data) {
  // Substrate
  var substrate = new Substrate('Analyzer');

  // Sorter
  substrate.addActor('Sorter', {
    processItem: function(item) {
      item.items.sort(function (a, b) { return a.lineNum - b.lineNum });
      this.forwardItem(item, 'Gatherer');
    }
  });

  // Gatherer
  substrate.addActor('Gatherer', {
    processItem: function(item) {
      // Single-liners
      ['globalVariable', 'functionStub', 'unparsedFunction', 'unparsedGlobals', 'unparsedTypes', 'alias'].forEach(function(intertype) {
        var temp = splitter(item.items, function(item) { return item.intertype == intertype });
        item.items = temp.leftIn;
        item[intertype + 's'] = temp.splitOut;
      });
      var temp = splitter(item.items, function(item) { return item.intertype == 'type' });
      item.items = temp.leftIn;
      temp.splitOut.forEach(function(type) {
        Types.types[type.name_] = type;
        if (QUANTUM_SIZE === 1) {
          Types.fatTypes[type.name_] = copy(type);
        }
      });

      // Functions & labels
      item.functions = [];
      var currLabelFinished; // Sometimes LLVM puts a branch in the middle of a label. We need to ignore all lines after that.
      item.items.sort(function(a, b) { return a.lineNum - b.lineNum });
      for (var i = 0; i < item.items.length; i++) {
        var subItem = item.items[i];
        assert(subItem.lineNum);
        if (subItem.intertype == 'function') {
          item.functions.push(subItem);
          subItem.endLineNum = null;
          subItem.lines = [];
          subItem.labels = [];

          // no explicit 'entry' label in clang on LLVM 2.8 - most of the time, but not all the time! - so we add one if necessary
          if (LLVM_STYLE == 'new' && item.items[i+1].intertype !== 'label') {
            item.items.splice(i+1, 0, {
              intertype: 'label',
              ident: toNiceIdent('%0'),
              lineNum: subItem.lineNum + '.5'
            });
          }
        } else if (subItem.intertype == 'functionEnd') {
          item.functions.slice(-1)[0].endLineNum = subItem.lineNum;
        } else if (subItem.intertype == 'label') {
          item.functions.slice(-1)[0].labels.push(subItem);
          subItem.lines = [];
          currLabelFinished = false;
        } else if (item.functions.length > 0 && item.functions.slice(-1)[0].endLineNum === null) {
          // Internal line
          if (!currLabelFinished) {
            item.functions.slice(-1)[0].lines.push(subItem);
            item.functions.slice(-1)[0].labels.slice(-1)[0].lines.push(subItem); // If this line fails, perhaps missing a label? LLVM_STYLE related?
            if (subItem.intertype === 'branch') {
              currLabelFinished = true;
            }
          } else {
            print('// WARNING: content after a branch in a label, line: ' + subItem.lineNum);
          }
        } else {
          throw 'ERROR: what is this? ' + dump(subItem);
        }
      }
      delete item.items;
      this.forwardItem(item, 'Typevestigator');
    }
  });

  function addTypeInternal(type, data) {
    if (type.length == 1) return;
    if (Types.types[type]) return;
    if (['internal', 'hidden', 'inbounds', 'void'].indexOf(type) != -1) return;
    if (Runtime.isNumberType(type)) return;
    dprint('types', 'Adding type: ' + type);

    // 'blocks': [14 x %struct.X] etc. If this is a pointer, we need
    // to look at the underlying type - it was not defined explicitly
    // anywhere else.
    var nonPointing = removeAllPointing(type);
    var check = /^\[(\d+)\ x\ (.*)\]$/.exec(nonPointing);
    if (check && !Types.types[nonPointing]) {
      var num = parseInt(check[1]);
      num = Math.max(num, 1); // [0 x something] is used not for allocations and such of course, but
                              // for indexing - for an |array of unknown length|, basically. So we
                              // define the 'type' as having a single field. TODO: Ensure as a sanity
                              // check that we never allocate with this (either as a child structure
                              // in the analyzer, or in calcSize in alloca).
      var subType = check[2];
      addTypeInternal(subType, data); // needed for anonymous structure definitions (see below)

      Types.types[nonPointing] = {
        name_: nonPointing,
        fields: range(num).map(function() { return subType }),
        lineNum: '?'
      };
      // Also add a |[0 x type]| type
      var zerod = '[0 x ' + subType + ']';
      if (!Types.types[zerod]) {
        Types.types[zerod] = {
          name_: zerod,
          fields: [subType, subType], // Two, so we get the flatFactor right. We care about the flatFactor, not the size here
          lineNum: '?'
        };
      }
      return;
    }

    // anonymous structure definition, for example |{ i32, i8*, void ()*, i32 }|
    if (type[0] == '{' || type[0] == '<') {
      type = nonPointing;
      var packed = type[0] == '<';
      Types.types[type] = {
        name_: type,
        fields: splitTokenList(tokenize(type.substr(2 + packed, type.length - 4 - 2*packed)).tokens).map(function(segment) {
          return segment[0].text;
        }),
        packed: packed,
        lineNum: '?'
      };
      return;
    }

    if (isPointerType(type)) return;
    if (['['].indexOf(type) != -1) return;
    Types.types[type] = {
      name_: type,
      fields: [ 'i' + (QUANTUM_SIZE*8) ], // a single quantum size
      flatSize: 1,
      lineNum: '?'
    };
  }

  function addType(type, data) {
    addTypeInternal(type, data);
    if (QUANTUM_SIZE === 1) {
      Types.flipTypes();
      addTypeInternal(type, data);
      Types.flipTypes();
    }
  }

  // Typevestigator
  substrate.addActor('Typevestigator', {
    processItem: function(data) {
      for (var type in Types.needAnalysis) {
        if (type) addType(type, data);
      }
      Types.needAnalysis = {};
      this.forwardItem(data, 'Typeanalyzer');
    }
  });

  // Type analyzer
  substrate.addActor('Typeanalyzer', {
    processItem: function analyzeTypes(item, fatTypes) {
      var types = Types.types;

      // 'fields' is the raw list of LLVM fields. However, we embed
      // child structures into parent structures, basically like C.
      // So { int, { int, int }, int } would be represented as
      // an Array of 4 ints. getelementptr on the parent would take
      // values 0, 1, 2, where 2 is the entire middle structure.
      // We also need to be careful with getelementptr to child
      // structures - we return a pointer to the same slab, just
      // a different offset. Likewise, need to be careful for
      // getelementptr of 2 (the last int) - it's real index is 4.
      // The benefit of this approach is inheritance -
      //    { { ancestor } , etc. } = descendant
      // In this case it is easy to bitcast ancestor to descendant
      // pointers - nothing needs to be done. If the ancestor were
      // a new slab, it would need some pointer to the outer one
      // for casting in that direction.
      // TODO: bitcasts of non-inheritance cases of embedding (not at start)
      var more = true;
      while (more) {
        more = false;
        values(types).forEach(function(type) {
          if (type.flatIndexes) return;
          var ready = true;
          type.fields.forEach(function(field) {
            if (isStructType(field)) {
              if (!types[field]) {
                addType(field, item);
                ready = false;
              } else {
                if (!types[field].flatIndexes) {
                  ready = false;
                }
              }
            }
          });
          if (!ready) {
            more = true;
            return;
          }

          Runtime.calculateStructAlignment(type);

          if (dcheck('types')) dprint('type (fat=' + !!fatTypes + '): ' + type.name_ + ' : ' + JSON.stringify(type.fields));
          if (dcheck('types')) dprint('                        has final size of ' + type.flatSize + ', flatting: ' + type.needsFlattening + ' ? ' + (type.flatFactor ? type.flatFactor : JSON.stringify(type.flatIndexes)));
        });
      }

      if (QUANTUM_SIZE === 1 && !fatTypes) {
        Types.flipTypes();
        // Fake a quantum size of 4 for fat types. TODO: Might want non-4 for some reason?
        var trueQuantumSize = QUANTUM_SIZE;
        Runtime.QUANTUM_SIZE = 4;
        analyzeTypes(item, true);
        Runtime.QUANTUM_SIZE = trueQuantumSize;
        Types.flipTypes();
      }

      if (!fatTypes) {
        this.forwardItem(item, 'VariableAnalyzer');
      }
    }
  });
  
  // Variable analyzer
  substrate.addActor('VariableAnalyzer', {
    processItem: function(item) {
      // Globals

      var old = item.globalVariables;
      item.globalVariables = {};
      old.forEach(function(variable) {
        variable.impl = 'emulated'; // All global variables are emulated, for now. Consider optimizing later if useful
        item.globalVariables[variable.ident] = variable;
      });

      // Function locals

      item.functions.forEach(function(func) {
        dprint('vars', 'Analyzing variables in ' + func.ident);

        func.variables = {};

        // LLVM is SSA, so we always have a single assignment/write. We care about
        // the reads/other uses.

        // Function parameters
        func.params.forEach(function(param) {
          if (param.intertype !== 'varargs') {
            func.variables[param.ident] = {
              ident: param.ident,
              type: param.type,
              origin: 'funcparam',
              lineNum: func.lineNum,
              uses: null
            };
          }
        });

        // Normal variables
        func.lines.forEach(function(item) {
          if (item.intertype === 'assign') {
            var variable = func.variables[item.ident] = {
              ident: item.ident,
              type: item.value.type,
              origin: item.value.intertype,
              lineNum: item.lineNum,
              uses: item.uses
            };
            assert(isNumber(variable.uses), 'Failed to find the # of uses of var: ' + item.ident);
            if (variable.origin === 'alloca') {
              variable.allocatedNum = item.value.allocatedNum;
            }
          }
        });

        if (QUANTUM_SIZE === 1) {
          // Second pass over variables - notice when types are crossed by bitcast

          func.lines.forEach(function(item) {
            if (item.intertype === 'assign' && item.value.intertype === 'bitcast') {
              // bitcasts are unique in that they convert one pointer to another. We
              // sometimes need to know the original type of a pointer, so we save that.
              //
              // originalType is the type this variable is created from
              // derivedTypes are the types that this variable is cast into
              func.variables[item.ident].originalType = item.value.type2;

              if (!isNumber(item.value.ident)) {
                if (!func.variables[item.value.ident].derivedTypes) {
                  func.variables[item.value.ident].derivedTypes = [];
                }
                func.variables[item.value.ident].derivedTypes.push(item.value.type);
              }
            }
          });
        }

        for (vname in func.variables) {
          var variable = func.variables[vname];

          // Whether the value itself is used. For an int, always yes. For a pointer,
          // we might never use the pointer's value - we might always just store to it /
          // read from it. If so, then we can optimize away the pointer.
          variable.hasValueTaken = false;
          // Whether our address was used. If not, then we do not need to bother with
          // implementing this variable in a way that other functions can access it.
          variable.hasAddrTaken = false;

          variable.pointingLevels = pointingLevels(variable.type);

          // Analysis!

          if (variable.pointingLevels > 0) {
            // Pointers
            variable.loads = 0;
            variable.stores = 0;

            func.lines.forEach(function(line) {
              if (line.intertype == 'store' && line.ident == vname) {
                variable.stores ++;
              } else if (line.intertype == 'assign' && line.value.intertype == 'load' && line.value.ident == vname) {
                variable.loads ++;
              }
            });

            variable.otherUses = variable.uses - variable.loads - variable.stores;
            if (variable.otherUses > 0)
              variable.hasValueTaken = true;
          }
 
          // Decision time

          var pointedType = pointingLevels(variable.type) > 0 ? removePointing(variable.type) : null;
          if (variable.origin == 'getelementptr') {
            // Use our implementation that emulates pointers etc.
            // TODO Can we perhaps nativize some of these? However to do so, we need to discover their
            //      true types; we have '?' for them now, as they cannot be discovered in the intertyper.
            variable.impl = VAR_EMULATED;
          } else if (variable.origin == 'funcparam') {
            variable.impl = VAR_EMULATED;
          } else if (variable.type == 'i64*' && I64_MODE == 1) {
            variable.impl = VAR_EMULATED;
          } else if (MICRO_OPTS && variable.pointingLevels === 0 && !variable.hasAddrTaken) {
            // A simple int value, can be implemented as a native variable
            variable.impl = VAR_NATIVE;
          } else if (MICRO_OPTS && variable.origin === 'alloca' && !variable.hasAddrTaken && !variable.hasValueTaken &&
                     variable.allocatedNum === 1 &&
                     (Runtime.isNumberType(pointedType) || Runtime.isPointerType(pointedType))) {
            // A pointer to a value which is only accessible through this pointer. Basically
            // a local value on the stack, which nothing fancy is done on. So we can
            // optimize away the pointing altogether, and just have a native variable
            variable.impl = VAR_NATIVIZED;
          } else {
            variable.impl = VAR_EMULATED;
          }
          if (dcheck('vars')) dprint('// var ' + vname + ': ' + JSON.stringify(variable));
        }
      });
      this.forwardItem(item, 'Signalyzer');
    }
  });

  // Sign analyzer
  //
  // Analyze our variables and detect their signs. In USE_TYPED_ARRAYS == 2,
  // we can read signed or unsigned values and prevent the need for signing
  // corrections.
  //
  // For each variable that is the result of a Load, we look a little forward
  // to see where it is used. We only care about mathops, since only they
  // need signs.
  //
  substrate.addActor('Signalyzer', {
    processItem: function(item) {
      this.forwardItem(item, 'QuantumFixer');
      if (USE_TYPED_ARRAYS !== 2) return;

      function seekIdent(item, obj) {
        if (item.ident === obj.ident) {
          obj.found++;
        }
      }

      function seekMathop(item, obj) {
        if (item.intertype === 'mathop' && obj.found && !obj.decided) {
          if (isUnsignedOp(item.op, item.variant)) {
            obj.unsigned++;
          } else {
            obj.signed++;
          }
        }
      }

      item.functions.forEach(function(func) {
        func.lines.forEach(function(line, i) {
          if (line.intertype === 'assign' && line.value.intertype === 'load') {
            var data = func.variables[line.ident]
            if (data.type === 'i1') {
              line.value.unsigned = true;
              return;
            }

            var total = data.uses;
            if (total === 0) return;
            var obj = { ident: line.ident, found: 0, unsigned: 0, signed: 0, total: total };
            // in loops with phis, we can also be used *before* we are defined
            var j = i-1, k = i+1;
            while(1) {
              assert(j >= 0 || k < func.lines.length, 'Signalyzer ran out of space to look for sign indications for line ' + line.lineNum);
              if (j >= 0 && walkInterdata(func.lines[j], seekIdent, seekMathop, obj)) break;
              if (k < func.lines.length && walkInterdata(func.lines[k], seekIdent, seekMathop, obj)) break;
              if (obj.total && obj.found >= obj.total) break; // see comment below
              j -= 1;
              k += 1;
            }

            // unsigned+signed might be < total, since the same ident can appear multiple times in the same mathop.
            // found can actually be > total, since we currently have the same ident in a GEP (see cubescript test)
            // in the GEP item, and a child item (we have the ident copied onto the GEP item as a convenience).
            // probably not a bug-causer, but FIXME. see also a reference to this above
            // we also leave the loop above potentially early due to this. otherwise, though, we end up scanning the
            // entire function in some cases which is very slow
            assert(obj.found >= obj.total, 'Could not Signalyze line ' + line.lineNum);
            line.value.unsigned = obj.unsigned > 0;
            dprint('vars', 'Signalyzer: ' + line.ident + ' has unsigned == ' + line.value.unsigned + ' (line ' + line.lineNum + ')');
          }
        });
      });
    }
  });

  // Quantum fixer
  //
  // See settings.js for the meaning of QUANTUM_SIZE. The issue we fix here is,
  // to correct the .ll assembly code so that things work with QUANTUM_SIZE=1.
  //
  substrate.addActor('QuantumFixer', {
    processItem: function(item) {
      this.forwardItem(item, 'LabelAnalyzer');
      if (QUANTUM_SIZE !== 1) return;

      // ptrs: the indexes of parameters that are pointers, whose originalType is what we want
      // bytes: the index of the 'bytes' parameter
      // TODO: malloc, realloc?
      var FIXABLE_CALLS = {
        'memcpy': { ptrs: [0,1], bytes: 2 },
        'memmove': { ptrs: [0,1], bytes: 2 },
        'memset': { ptrs: [0], bytes: 2 },
        'qsort': { ptrs: [0], bytes: 2 }
      };

      function getSize(types, type, fat) {
        if (types[type]) return types[type].flatSize;
        if (fat) {
          Runtime.QUANTUM_SIZE = 4;
        }
        var ret = Runtime.getNativeTypeSize(type);
        if (fat) {
          Runtime.QUANTUM_SIZE = 1;
        }
        return ret;
      }

      function getFlatIndexes(types, type) {
        if (types[type]) return types[type].flatIndexes;
        return [0];
      }

      item.functions.forEach(function(func) {
        function getOriginalType(param) {
          function get() {
            if (param.intertype === 'value' && !isNumber(param.ident)) {
              if (func.variables[param.ident]) {
                return func.variables[param.ident].originalType || null;
              } else {
                return item.globalVariables[param.ident].originalType;
              }
            } else if (param.intertype === 'bitcast') {
              return param.params[0].type;
            } else if (param.intertype === 'getelementptr') {
              if (param.params[0].type[0] === '[') return param.params[0].type;
            }
            return null;
          }
          var ret = get();
          if (ret && ret[0] === '[') {
            var check = /^\[(\d+)\ x\ (.*)\]\*$/.exec(ret);
            assert(check);
            ret = check[2] + '*';
          }
          return ret;
        }

        func.lines.forEach(function(line) {
          // Call
          if (line.intertype === 'call') {
            var funcIdent = LibraryManager.getRootIdent(line.ident.substr(1));
            var fixData = FIXABLE_CALLS[funcIdent];
            if (!fixData) return;
            var ptrs = fixData.ptrs.map(function(ptr) { return line.params[ptr] });
            var bytes = line.params[fixData.bytes].ident;

            // Only consider original types. This assumes memcpy always has pointers bitcast to i8*
            var originalTypes = ptrs.map(getOriginalType);
            for (var i = 0; i < originalTypes.length; i++) {
              if (!originalTypes[i]) return;
            }
            originalTypes = originalTypes.map(function(type) { return removePointing(type) });
            var sizes = originalTypes.map(function(type) { return getSize(Types.types, type) });
            var fatSizes = originalTypes.map(function(type) { return getSize(Types.fatTypes, type, true) });
            // The sizes may not be identical, if we copy a descendant class into a parent class. We use
            // the smaller size in that case. However, this may also be a bug, it is hard to tell, hence a warning
            warn(dedup(sizes).length === 1, 'All sizes should probably be identical here: ' + dump(originalTypes) + ':' + dump(sizes) + ':' +
                 line.lineNum);
            warn(dedup(fatSizes).length === 1, 'All fat sizes should probably be identical here: ' + dump(originalTypes) + ':' + dump(sizes) + ':' +
                 line.lineNum);
            var size = Math.min.apply(null, sizes);
            var fatSize = Math.min.apply(null, fatSizes);
            if (isNumber(bytes)) {
              // Figure out how much to copy.
              var fixedBytes;
              if (bytes % fatSize === 0) {
                fixedBytes = size*(bytes/fatSize);
              } else if (fatSize % bytes === 0 && size % (fatSize/bytes) === 0) {
                // Assume this is a simple array. XXX We can be wrong though! See next TODO
                fixedBytes = size/(fatSize/bytes);
              } else {
                // Just part of a structure. Align them to see how many fields. Err on copying more.
                // TODO: properly generate a complete structure, including nesteds, and calculate on that
                var flatIndexes = getFlatIndexes(Types.types, originalTypes[0]).concat(size);
                var fatFlatIndexes = getFlatIndexes(Types.fatTypes, originalTypes[0]).concat(fatSize);
                var index = 0;
                var left = bytes;
                fixedBytes = 0;
                while (left > 0) {
                  left -= fatFlatIndexes[index+1] - fatFlatIndexes[index]; // note: we copy the alignment bytes too, which is unneeded
                  fixedBytes += flatIndexes[index+1] - flatIndexes[index];
                }
              }
              line.params[fixData.bytes].ident = fixedBytes;
            } else {
              line.params[fixData.bytes].intertype = 'jsvalue';
              // We have an assertion in library::memcpy() that this is round
              line.params[fixData.bytes].ident = size + '*(' + bytes + '/' + fatSize + ')';
            }
          }
        });
      });

      // 2nd part - fix hardcoded constant offsets in global constants
      values(item.globalVariables).forEach(function(variable) {
        function recurse(item) {
          if (item.contents) {
            item.contents.forEach(recurse);
          } else if (item.intertype === 'getelementptr' && item.params[0].intertype === 'bitcast' && item.params[0].type === 'i8*') {
            var originalType = removePointing(item.params[0].params[0].type);
            var fatSize = getSize(Types.fatTypes, originalType, true);
            var slimSize = getSize(Types.types, originalType, false);
            assert(fatSize % slimSize === 0);
            item.params.slice(1).forEach(function(param) {
              if (param.intertype === 'value' && isNumber(param.ident)) {
                var corrected = parseInt(param.ident)/(fatSize/slimSize);
                assert(corrected % 1 === 0);
                param.ident = param.value.text = corrected.toString();
              }
            });
          } else if (item.params) {
            item.params.forEach(recurse);
          }
        }
        if (!variable.external && variable.value) recurse(variable.value);
      });
    }
  });

  // Label analyzer
  substrate.addActor('LabelAnalyzer', {
    processItem: function(item) {
      item.functions.forEach(function(func) {
        func.labelsDict = {};
        func.labelIds = {};
        func.labelIdCounter = 0;
        func.labels.forEach(function(label) {
          func.labelsDict[label.ident] = label;
          func.labelIds[label.ident] = func.labelIdCounter++;
        });
        func.labelIds[toNiceIdent('%0')] = -1; // entry is always -1

        func.hasIndirectBr = false;
        func.lines.forEach(function(line) {
          if (line.intertype == 'indirectbr') {
            func.hasIndirectBr = true;
          }
        });

        if (!MICRO_OPTS) {
          // 'Emulate' phis, by doing an if where the phi appears in the .ll. For this
          // we need __lastLabel__.
          func.needsLastLabel = false;
          func.labels.forEach(function(label) {
            var phis = [], phi;
            label.lines.forEach(function(line) {
              if ((phi = line.value) && phi.intertype == 'phi') {
                for (var i = 0; i < phi.params.length; i++) {
                  var sourceLabelId = phi.params[i].label;
                  var sourceLabel = func.labelsDict[sourceLabelId];
                  var lastLine = sourceLabel.lines.slice(-1)[0];
                  if (lastLine.intertype == 'assign') lastLine = lastLine.value;
                  assert(lastLine.intertype in LLVM.PHI_REACHERS, 'Only some can lead to labels with phis:' + [func.ident, label.ident, lastLine.intertype]);
                  lastLine.currLabelId = sourceLabelId;
                }
                phis.push(line);
                func.needsLastLabel = true;
              }
            });

            if (phis.length >= 2) {
              // Multiple phis have the semantics that they all occur 'in parallel', i.e., changes to
              // a variable that is the result of a phi should *not* affect the other results. We must
              // therefore be careful!
              phis[phis.length-1].value.postSet = '; /* post-phi: */';
              for (var i = 0; i < phis.length-1; i++) {
                var ident = phis[i].ident;
                var phid = ident+'$phi'
                phis[phis.length-1].value.postSet += ident + '=' + phid + ';';
                phis[i].ident = phid;
                func.variables[phid] = {
                  ident: phid,
                  type: func.variables[ident].type,
                  origin: func.variables[ident].origin,
                  lineNum: func.variables[ident].lineNum,
                  uses: 1,
                  impl: VAR_EMULATED
                };
              }
            }
          });
        } else {
          // MICRO_OPTS == 1: Properly implement phis, by pushing them back into the branch
          // that leads to here. We will only have the |var| definition in this location.

          // First, push phis back
          func.labels.forEach(function(label) {
            label.lines.forEach(function(line) {
              var phi;
              if ((phi = line.value) && phi.intertype == 'phi') {
                for (var i = 0; i < phi.params.length; i++) {
                  var param = phi.params[i];
                  var sourceLabelId = param.label;
                  var sourceLabel = func.labelsDict[sourceLabelId];
                  var lastLine = sourceLabel.lines.slice(-1)[0];
                  if (lastLine.intertype == 'assign') lastLine = lastLine.value;
                  assert(lastLine.intertype in LLVM.PHI_REACHERS, 'Only some can lead to labels with phis:' + [func.ident, label.ident, lastLine.intertype]);
                  if (!lastLine.phi) {
                    lastLine.phi = true;
                    assert(!lastLine.dependent);
                    lastLine.dependent = {
                      intertype: 'phiassigns',
                      params: []
                    };
                  };
                  lastLine.dependent.params.push({
                    intertype: 'phiassign',
                    ident: line.ident,
                    value: param.value,
                    targetLabel: label.ident
                  });
                }
                // The assign to phi is now just a var
                line.intertype = 'var';
                line.value = null;
              }
            });
          });
        }
      });
      this.forwardItem(item, 'StackAnalyzer');
    }
  });

  // Stack analyzer - calculate the base stack usage
  substrate.addActor('StackAnalyzer', {
    processItem: function(data) {
      data.functions.forEach(function(func) {
        var lines = func.labels[0].lines;
        for (var i = 0; i < lines.length; i++) {
          var line = lines[i];
          var item = line.value;
          if (!item || item.intertype != 'alloca') break;
          assert(isNumber(item.allocatedNum));
          item.allocatedSize = func.variables[line.ident].impl === VAR_EMULATED ?
            calcAllocatedSize(item.allocatedType)*item.allocatedNum: 0;
        }
        var index = 0;
        for (var i = 0; i < lines.length; i++) {
          var item = lines[i].value;
          if (!item || item.intertype != 'alloca') break;
          if (USE_TYPED_ARRAYS === 2) index = Runtime.forceAlign(index, Math.min(item.allocatedSize, QUANTUM_SIZE));
          item.allocatedIndex = index;
          index += item.allocatedSize;
          delete item.allocatedSize;
        }
        func.initialStack = index;
      });
      this.forwardItem(data, 'Relooper');
    }
  });

  var BRANCH_INVOKE = set('branch', 'invoke');
  function operateOnLabels(line, func) {
    function process(item, id) {
      ['label', 'labelTrue', 'labelFalse', 'toLabel', 'unwindLabel', 'defaultLabel'].forEach(function(id) {
        if (item[id]) {
          func(item, id);
        }
      });
    }
    if (line.intertype in BRANCH_INVOKE) {
      process(line);
    } else if (line.intertype == 'assign' && line.value.intertype == 'invoke') {
      process(line.value);
    } else if (line.intertype == 'switch') {
      process(line);
      line.switchLabels.forEach(process);
    }
  }

  //! @param toLabelId If false, just a dry run - useful to search for labels
  function replaceLabels(line, labelIds, toLabelId) {
    var ret = [];

    var value = keys(labelIds)[0];
    var wildcard = value.indexOf('*') >= 0;
    assert(!wildcard || values(labelIds).length == 1); // For now, just handle that case
    var wildcardParts = null;
    if (wildcard) {
      wildcardParts = value.split('|');
    }
    function wildcardCheck(s) {
      var parts = s.split('|');
      for (var i = 0; i < 3; i++) {
        if (wildcardParts[i] !== '*' && wildcardParts[i] != parts[i]) return false;
      }
      return true;
    }

    operateOnLabels(line, function process(item, id) {
      if (item[id] in labelIds || (wildcard && wildcardCheck(item[id]))) {
        ret.push(item[id]);
        if (dcheck('relooping')) dprint('zz ' + id + ' replace ' + item[id] + ' with ' + toLabelId);
        if (toLabelId) {
          // replace wildcards in new value with old parts
          var oldParts = item[id].split('|');
          var newParts = toLabelId.split('|');
          for (var i = 1; i < 3; i++) {
            if (newParts[i] === '*') newParts[i] = oldParts[i];
          }
          item[id] = newParts.join('|') + '|' + item[id];
        }
      }
    });
    return ret;
  }

  function replaceLabelLabels(labels, labelIds, toLabelId) {
    ret = [];
    labels.forEach(function(label) {
      ret = ret.concat(replaceLabels(label.lines[label.lines.length-1], labelIds, toLabelId));
    });
    return ret;
  }

  // ReLooper - reconstruct nice loops, as much as possible
  substrate.addActor('Relooper', {
    processItem: function(item) {
      var that = this;
      function finish() {
        that.forwardItem(item, 'LoopOptimizer');
      }

      // Tools

      function calcLabelBranchingData(labels, labelsDict) {
        item.functions.forEach(function(func) {
          labels.forEach(function(label) {
            label.outLabels = [];
            label.inLabels = [];
            label.hasReturn = false;
            label.hasBreak = false;
            if (!label.originalOutlabels) {
              label.originalOutLabels = [];
              label.needOriginalOutLabels = true;
            }
          });
        });
        // Find direct branchings
        labels.forEach(function(label) {
          [label.lines[label.lines.length-1]].forEach(function(line) {
            operateOnLabels(line, function process(item, id) {
              if (item[id][0] == 'B') { // BREAK, BCONT, BNOPP, BJSET
                label.hasBreak = true;
              } else {
                label.outLabels.push(item[id]);
                labelsDict[item[id]].inLabels.push(label.ident);
              }
              if (label.needOriginalOutLabels) {
                label.originalOutLabels.push(item[id]);
              }
            });
            label.needOriginalOutLabels = false;
            label.hasReturn |= line.intertype == 'return';
          });
        });
        // Find all incoming and all outgoing - recursively
        labels.forEach(function(label) {
          label.allInLabels = [];
          label.allOutLabels = [];
        });

        var worked = true;
        while (worked) {
          worked = false;
          labels.forEach(function(label) {
            function inout(s, l) {
              var temp = label[s].slice(0);
              label[s].forEach(function(label2Id) {
                temp = temp.concat(labelsDict[label2Id][l]);
              });
              temp = dedup(temp);
              temp.sort();
              if (JSON.stringify(label[l]) != JSON.stringify(temp)) {
                label[l] = temp;
                worked = true;
              }
            }
            inout('inLabels', 'allInLabels');
            inout('outLabels', 'allOutLabels');
          });
        }

        labels.forEach(function(label) {
          if (dcheck('relooping')) {
            dprint('// label: ' + label.ident + ' :out      : ' + JSON.stringify(label.outLabels));
            dprint('//        ' + label.ident + ' :in       : ' + JSON.stringify(label.inLabels));
            dprint('//        ' + label.ident + ' :ALL out  : ' + JSON.stringify(label.allOutLabels));
            dprint('//        ' + label.ident + ' :ALL in   : ' + JSON.stringify(label.allInLabels));
            dprint('//        ' + label.ident + ' :origOut  : ' + JSON.stringify(label.originalOutLabels));
          }

          // Convert to set, for speed (we mainly do lookups here) and code clarity (x in Xlabels)
          // Also removes duplicates (which we can get in llvm switches)
          // TODO do we need all these?
          label.outLabels = set(label.outLabels);
          label.inLabels = set(label.inLabels);
          label.allOutLabels = set(label.allOutLabels);
          label.allInLabels = set(label.allInLabels);
        });
      }

      var idCounter = 0;
      function makeBlockId(entries) {
        idCounter++;
        return entries.join('$') + '$' + idCounter;
      }

      // There are X main kinds of blocks:
      //
      //----------------------------------------------------------------------------------------
      //
      //  'emulated': A soup of labels, implemented as a barbaric switch in a loop. Any
      //              label can get to any label. No block follows this.
      //
      //  'reloop': That is a block of the following shape:
      //
      //       loopX: while(1) {
      //         // internal labels, etc. Labels are internal to the current one, if
      //         // they can return to it.
      //         //
      //         // Such labels can either do |continue loopX| to get back to the entry label,
      //         // or set __label__ and do |break loopX| to get to any of the external entries
      //         // they need to get to. External labels, of course, are those that cannot
      //         // get to the entry
      //       }
      //       // external labels
      //
      //  'multiple': A block that branches into multiple subblocks, each independent,
      //              finally leading outside into another block afterwards
      //              For now, we do this in a loop, so we can break out of it easily to get
      //              to the labels afterwards. TODO: Optimize that out
      //
      function makeBlock(labels, entries, labelsDict, forceEmulated) {
        if (labels.length == 0) return null;
        dprint('relooping', 'prelooping: ' + entries + ',' + labels.length + ' labels');
        assert(entries && entries[0]); // need at least 1 entry

        var blockId = makeBlockId(entries);

        var emulated = {
          type: 'emulated',
          id: blockId,
          labels: labels,
          entries: entries.slice(0)
        };
        if (!RELOOP || forceEmulated) return emulated;

        calcLabelBranchingData(labels, labelsDict);

        var s_entries = set(entries);
        dprint('relooping', 'makeBlock: ' + entries + ',' + labels.length + ' labels');

        var entryLabels = entries.map(function(entry) { return labelsDict[entry] });
        assert(entryLabels[0]);

        var canReturn = false, mustReturn = true;
        entryLabels.forEach(function(entryLabel) {
          var curr = values(entryLabel.inLabels).length > 0;
          canReturn = canReturn || curr;
          mustReturn = mustReturn && curr;
        });

        // Remove unreachables
        allOutLabels = {};
        entryLabels.forEach(function(entryLabel) {
          mergeInto(allOutLabels, entryLabel.allOutLabels);
        });
        labels = labels.filter(function(label) { return label.ident in s_entries || label.ident in allOutLabels });

        // === (simple) 'emulated' ===

        if (entries.length == 1 && !canReturn) {
          var entry = entries[0];
          var entryLabel = entryLabels[0];
          var others = labels.filter(function(label) { return label.ident != entry });

          var nextEntries = keys(entryLabel.outLabels);
          dprint('relooping', '   Creating simple emulated, outlabels: ' + nextEntries);
          nextEntries.forEach(function(nextEntry) {
            replaceLabelLabels([entryLabel], set(nextEntry), 'BJSET|' + nextEntry); // Just SET __label__ - no break or continue or whatnot
          });
          return {
            type: 'emulated',
            id: blockId,
            labels: [entryLabel],
            entries: entries,
            next: makeBlock(others, keys(entryLabel.outLabels), labelsDict)
          };
        }

        // === 'reloop' away a loop, if we need to ===

        function makeLoop() {
          var ret = {
            type: 'reloop',
            id: blockId,
            needBlockId: true,
            entries: entries,
            labels: labels
          };

          // Find internal and external labels
          var split_ = splitter(labels, function(label) {
            return !(label.ident in s_entries) && values(setIntersect(s_entries, label.allOutLabels)).length == 0;
          });
          var externals = split_.splitOut;
          var internals = split_.leftIn;
          var currExitLabels = set(getLabelIds(externals));

          if (dcheck('relooping')) dprint('   Creating reloop: Inner: ' + dump(getLabelIds(internals)) + ', Exxer: ' + dump(currExitLabels));

          // Verify that no external can reach an internal
          var inLabels = set(getLabelIds(internals));
          externals.forEach(function(external) {
            if (values(setIntersect(external.outLabels, inLabels)).length > 0) {
              dprint('relooping', 'Found an external that wants to reach an internal, fallback to emulated?');
              throw "Spaghetti label flow";
            }
          });

          // We will be in a loop, |continue| gets us back to the entry
          entries.forEach(function(entry) {
            replaceLabelLabels(internals, set(entries), 'BCONT|' + blockId);
          });

          // To get to any of our (not our parents') exit labels, we will break.
          if (dcheck('relooping')) dprint('for exit purposes, Replacing: ' + dump(currExitLabels));
          var enteredExitLabels = {};
          if (externals.length > 0) {
            entries.forEach(function(entry) {
              mergeInto(enteredExitLabels, set(replaceLabelLabels(internals, currExitLabels, 'BREAK|' + blockId)));
            });
            enteredExitLabels = keys(enteredExitLabels).map(cleanLabel);
            if (dcheck('relooping')) dprint('enteredExitLabels: ' + dump(enteredExitLabels));
            assert(enteredExitLabels.length > 0);
          }

          // inner
          ret.inner = makeBlock(internals, entries, labelsDict);

          if (externals.length > 0) {
            // outer
            ret.next = makeBlock(externals, enteredExitLabels, labelsDict);
          }

          return ret;
        }

        if (entries.length === 1 && canReturn) return makeLoop();

        // === handle multiple branches from the entry with a 'multiple' ===
        //
        // For each entry, try to 'build it out' as much as possible. Add labels, until
        //    * hit a post label
        //    * hit a label reachable by another actual entry

        dprint('relooping', 'trying multiple...');

        var shouldNotReach = entryLabels;
        var handlingNow = [];
        var actualEntryLabels = [];
        var postEntryLabels = {};
        entryLabels.forEach(function(entryLabel) {
          entryLabel.blockChildren = [];
          var visited = {};
          function tryAdd(label) {
            if (label.ident in visited) return;
            visited[label.ident] = true;
            function isReachable(label, otherLabels, ignoreLabel) { // is label reachable by otherLabels, ignoring ignoreLabel in those otherLabels
              var reachable = false;
              otherLabels.forEach(function(otherLabel) {
                reachable = reachable || (otherLabel !== ignoreLabel && (label.ident == otherLabel.ident ||
                                                                         label.ident in otherLabel.allOutLabels));
              });
              return reachable;
            }

            if (!isReachable(label, shouldNotReach, entryLabel)) {
              entryLabel.blockChildren.push(label);
              handlingNow.push(label);
              keys(label.outLabels).forEach(function(outLabelId) { tryAdd(labelsDict[outLabelId]) });
            } else {
              postEntryLabels[label.ident] = true; // This will be an entry in the next block
            }
          }
          tryAdd(entryLabel);
          if (entryLabel.blockChildren.length > 0) {
            dprint('relooping', '  Considering multiple, found a valid entry, ' + entryLabel.ident);
            actualEntryLabels.push(entryLabel);
          }
        });

        if (dcheck('relooping')) dprint('  Considering multiple, canHandle: ' + getLabelIds(handlingNow));

        if (handlingNow.length > 0) {
          // This is a 'multiple'

          var actualEntries = getLabelIds(actualEntryLabels);
          if (dcheck('relooping')) dprint('   Creating multiple, with entries: ' + actualEntries + ', post entries: ' + dump(postEntryLabels));
          actualEntryLabels.forEach(function(actualEntryLabel) {
            if (dcheck('relooping')) dprint('      creating sub-block in multiple for ' + actualEntryLabel.ident + ' : ' + getLabelIds(actualEntryLabel.blockChildren) + ' ::: ' + actualEntryLabel.blockChildren.length);

            keys(postEntryLabels).forEach(function(post) {
              replaceLabelLabels(actualEntryLabel.blockChildren, set(post), 'BREAK|' + blockId);
            });
            // Create child block
            actualEntryLabel.block = makeBlock(actualEntryLabel.blockChildren, [actualEntryLabel.blockChildren[0].ident], labelsDict);
          });
          return {
            type: 'multiple',
            id: blockId,
            needBlockId: true,
            entries: actualEntries,
            entryLabels: actualEntryLabels,
            labels: handlingNow,
            next: makeBlock(labels.filter(function(label) { return handlingNow.indexOf(label) == -1 }), keys(postEntryLabels), labelsDict)
          };
        }

        assert(canReturn, 'If not a multiple, must be able to create a loop');

        return makeLoop();
      }

      // TODO: each of these can be run in parallel
      item.functions.forEach(function(func) {
        dprint('relooping', "// relooping function: " + func.ident);
        func.block = makeBlock(func.labels, [toNiceIdent(func.labels[0].ident)], func.labelsDict, func.hasIndirectBr);
      });

      return finish();
    }
  });

  // LoopOptimizer. The Relooper generates native loop structures, that are
  //       logically correct. The LoopOptimizer works on that, doing further optimizations
  //       like switching to BNOPP when possible, etc.

  substrate.addActor('LoopOptimizer', {
    processItem: function(item) {
      var that = this;
      function finish() {
        item.__finalResult__ = true;
        return [item];
      }
      if (!RELOOP) return finish();

      // Find where each block will 'naturally' get to, just by the flow of code
      function exploreBlockEndings(block, endOfTheWorld) { // endoftheworld - where we will get, if we have nothing else to get to - 'fall off the face of the earth'
        if (!block) return;

        function singular(block) {
          if (!block) return endOfTheWorld;
          if (block.type === 'multiple') return null;
          if (block.entries.length == 1) {
            return block.entries[0];
          } else {
            return null;
          }
        }

        dprint('relooping', "//    exploring block: " + block.type + ' : ' + block.entries);

        if (block.type == 'reloop') {
          exploreBlockEndings(block.inner, singular(block.inner));
        } else if (block.type == 'multiple') {
          block.entryLabels.forEach(function(entryLabel) { exploreBlockEndings(entryLabel.block, singular(block.next)) });
        }

        exploreBlockEndings(block.next, endOfTheWorld);

        if (block.next) {
          block.willGetTo = singular(block.next);
        } else {
          block.willGetTo = endOfTheWorld;
        }

        dprint('relooping', "//    explored block: " + block.type + ' : ' + block.entries + ' , willGetTo: ' + block.willGetTo);
      }

      // Remove unneeded label settings, if we set it to where we will get anyhow
      function optimizeBlockEndings(block) {
        if (!block) return;

        dprint('relooping', "//    optimizing block: " + block.type + ' : ' + block.entries);

        recurseBlock(block, optimizeBlockEndings);

        if (block.type === 'emulated' && block.willGetTo) {
          dprint('relooping', '//         removing (trying): ' + block.willGetTo);
          replaceLabelLabels(block.labels, set('BJSET|*|' + block.willGetTo), 'BNOPP');
          replaceLabelLabels(block.labels, set('BCONT|*|' + block.willGetTo), 'BNOPP');
          replaceLabelLabels(block.labels, set('BREAK|*|' + block.willGetTo), 'BNOPP');
        }
      }

      // TODO: Parallelize
      item.functions.forEach(function(func) {
        dprint('relooping', "// loopOptimizing function: " + func.ident);
        exploreBlockEndings(func.block);
        optimizeBlockEndings(func.block);
      });
      return finish();
    }
  });

  // Data
  substrate.addItem({
    items: data
  }, 'Sorter');

  // Solve it
  return substrate.solve();
}