#!/usr/bin/env python2
# -*- Mode: python -*-
'''
emcc - compiler helper script
=============================
emcc is a drop-in replacement for a compiler like gcc or clang.
Tell your build system to use this instead of the compiler, and similarly
use emar, emranlib etc. instead of the same command without 'em'.
Example uses:
* For configure, instead of ./configure, cmake, etc., run emconfigure.py
with that command as an argument, for example
emconfigure.py ./configure [options]
emconfigure.py is a tiny script that just sets some environment vars
as a convenience. The command just shown is equivalent to
EMMAKEN_JUST_CONFIGURE=1 RANLIB=PATH/emranlib AR=PATH/emar CXX=PATH/em++ CC=PATH/emcc ./configure [options]
where PATH is the path to this file.
EMMAKEN_JUST_CONFIGURE tells emcc that it is being run in ./configure,
so it should relay everything to gcc/g++. You should not define that when
running make, of course.
* With CMake, the same command will work (with cmake instead of ./configure). You may also be
able to do the following in your CMakeLists.txt:
SET(CMAKE_C_COMPILER "PATH/emcc")
SET(CMAKE_CXX_COMPILER "PATH/em++")
SET(CMAKE_LINKER "PATH/emcc")
SET(CMAKE_CXX_LINKER "PATH/emcc")
SET(CMAKE_C_LINK_EXECUTABLE "PATH/emcc")
SET(CMAKE_CXX_LINK_EXECUTABLE "PATH/emcc")
SET(CMAKE_AR "PATH/emar")
SET(CMAKE_RANLIB "PATH/emranlib")
* For SCons the shared.py can be imported like so:
__file__ = str(Dir('#/project_path_to_emscripten/dummy/dummy'))
__rootpath__ = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
def path_from_root(*pathelems):
return os.path.join(__rootpath__, *pathelems)
sys.path += [path_from_root('')]
from tools.shared import *
For using the Emscripten compilers/linkers/etc. you can do:
env = Environment()
...
env.Append(CCFLAGS = COMPILER_OPTS)
env.Replace(LINK = LLVM_LD)
env.Replace(LD = LLVM_LD)
TODO: Document all relevant setup changes
After setting that up, run your build system normally.
Note the appearance of em++ instead of emcc
for the C++ compiler. This is needed for cases where we get
a C++ file with a C extension, in which case CMake can be told
to run g++ on it despite the .c extension, see
https://github.com/kripken/emscripten/issues/6
(If a similar situation occurs with ./configure, you can do the same there too.)
emcc can be influenced by a few environment variables:
EMMAKEN_NO_SDK - Will tell emcc *not* to use the emscripten headers. Instead
your system headers will be used.
EMMAKEN_COMPILER - The compiler to be used, if you don't want the default clang.
'''
import os, sys, shutil, tempfile, subprocess, shlex, time
from subprocess import PIPE, STDOUT
from tools import shared
from tools.shared import Compression, execute, suffix, unsuffixed, unsuffixed_basename
# Mapping of emcc opt levels to llvm opt levels. We use llvm opt level 3 in emcc opt
# levels 2 and 3 (emcc 3 is unsafe opts, so unsuitable for the only level to get
# llvm opt level 3, and speed-wise emcc level 2 is already the slowest/most optimizing
# level)
LLVM_OPT_LEVEL = {
0: 0,
1: 1,
2: 3,
3: 3,
}
DEBUG = os.environ.get('EMCC_DEBUG')
if DEBUG == "0":
DEBUG = None
TEMP_DIR = os.environ.get('EMCC_TEMP_DIR')
LEAVE_INPUTS_RAW = os.environ.get('EMCC_LEAVE_INPUTS_RAW') # Do not compile .ll files into .bc, just compile them with emscripten directly
# Not recommended, this is mainly for the test runner, or if you have some other
# specific need.
# One major limitation with this mode is that libc and libc++ cannot be
# added in. Also, LLVM optimizations will not be done, nor dead code elimination
AUTODEBUG = os.environ.get('EMCC_AUTODEBUG