/* Lzip - Data compressor based on the LZMA algorithm Copyright (C) 2008, 2009, 2010, 2011 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ class Range_decoder { enum { buffer_size = 16384 }; long long partial_member_pos; uint8_t * const buffer; // input buffer int pos; // current pos in buffer int stream_pos; // when reached, a new block must be read uint32_t code; uint32_t range; const int infd; // input file descriptor bool at_stream_end; bool read_block(); public: Range_decoder( const int ifd ) : partial_member_pos( 0 ), buffer( new uint8_t[buffer_size] ), pos( 0 ), stream_pos( 0 ), code( 0 ), range( 0xFFFFFFFFU ), infd( ifd ), at_stream_end( false ) {} ~Range_decoder() { delete[] buffer; } bool code_is_zero() const { return ( code == 0 ); } bool finished() { return pos >= stream_pos && !read_block(); } long long member_position() const { return partial_member_pos + pos; } void reset_member_position() { partial_member_pos = -pos; } uint8_t get_byte() { if( finished() ) return 0x55; // make code != 0 return buffer[pos++]; } void load() { code = 0; range = 0xFFFFFFFFU; for( int i = 0; i < 5; ++i ) code = (code << 8) | get_byte(); } void normalize() { if( range <= 0x00FFFFFFU ) { range <<= 8; code = (code << 8) | get_byte(); } } int decode( const int num_bits ) { int symbol = 0; for( int i = num_bits; i > 0; --i ) { symbol <<= 1; if( range <= 0x00FFFFFFU ) { range <<= 7; code = (code << 8) | get_byte(); if( code >= range ) { code -= range; symbol |= 1; } } else { range >>= 1; if( code >= range ) { code -= range; symbol |= 1; } } } return symbol; } int decode_bit( Bit_model & bm ) { normalize(); const uint32_t bound = ( range >> bit_model_total_bits ) * bm.probability; if( code < bound ) { range = bound; bm.probability += (bit_model_total - bm.probability) >> bit_model_move_bits; return 0; } else { range -= bound; code -= bound; bm.probability -= bm.probability >> bit_model_move_bits; return 1; } } int decode_tree( Bit_model bm[], const int num_bits ) { int model = 1; for( int i = num_bits; i > 0; --i ) model = ( model << 1 ) | decode_bit( bm[model] ); return model - (1 << num_bits); } int decode_tree_reversed( Bit_model bm[], const int num_bits ) { int model = 1; int symbol = 0; for( int i = 0; i < num_bits; ++i ) { const int bit = decode_bit( bm[model] ); model <<= 1; if( bit ) { model |= 1; symbol |= (1 << i); } } return symbol; } int decode_matched( Bit_model bm[], const int match_byte ) { Bit_model * const bm1 = bm + 0x100; int symbol = 1; for( int i = 7; i >= 0; --i ) { const int match_bit = ( match_byte >> i ) & 1; const int bit = decode_bit( bm1[(match_bit<<8)+symbol] ); symbol = ( symbol << 1 ) | bit; if( match_bit != bit ) { while( --i >= 0 ) symbol = ( symbol << 1 ) | decode_bit( bm[symbol] ); break; } } return symbol & 0xFF; } }; class Len_decoder { Bit_model choice1; Bit_model choice2; Bit_model bm_low[pos_states][len_low_symbols]; Bit_model bm_mid[pos_states][len_mid_symbols]; Bit_model bm_high[len_high_symbols]; public: int decode( Range_decoder & range_decoder, const int pos_state ) { if( range_decoder.decode_bit( choice1 ) == 0 ) return range_decoder.decode_tree( bm_low[pos_state], len_low_bits ); if( range_decoder.decode_bit( choice2 ) == 0 ) return len_low_symbols + range_decoder.decode_tree( bm_mid[pos_state], len_mid_bits ); return len_low_symbols + len_mid_symbols + range_decoder.decode_tree( bm_high, len_high_bits ); } }; class Literal_decoder { Bit_model bm_literal[1<> ( 8 - literal_context_bits ) ); } public: uint8_t decode( Range_decoder & range_decoder, const uint8_t prev_byte ) { return range_decoder.decode_tree( bm_literal[lstate(prev_byte)], 8 ); } uint8_t decode_matched( Range_decoder & range_decoder, const uint8_t prev_byte, const uint8_t match_byte ) { return range_decoder.decode_matched( bm_literal[lstate(prev_byte)], match_byte ); } }; class LZ_decoder { long long partial_data_pos; const int dictionary_size; const int buffer_size; uint8_t * const buffer; // output buffer int pos; // current pos in buffer int stream_pos; // first byte not yet written to file uint32_t crc_; const int outfd; // output file descriptor const int member_version; Range_decoder & range_decoder; void flush_data(); bool verify_trailer() const; uint8_t get_prev_byte() const { const int i = ( ( pos > 0 ) ? pos : buffer_size ) - 1; return buffer[i]; } uint8_t get_byte( const int distance ) const { int i = pos - distance - 1; if( i < 0 ) i += buffer_size; return buffer[i]; } void put_byte( const uint8_t b ) { buffer[pos] = b; if( ++pos >= buffer_size ) flush_data(); } void copy_block( const int distance, int len ) { int i = pos - distance - 1; if( i < 0 ) i += buffer_size; if( len < buffer_size - max( pos, i ) && len <= abs( pos - i ) ) { memcpy( buffer + pos, buffer + i, len ); pos += len; } else for( ; len > 0; --len ) { buffer[pos] = buffer[i]; if( ++pos >= buffer_size ) flush_data(); if( ++i >= buffer_size ) i = 0; } } public: LZ_decoder( const File_header & header, Range_decoder & rdec, const int ofd ) : partial_data_pos( 0 ), dictionary_size( header.dictionary_size() ), buffer_size( max( 65536, dictionary_size ) ), buffer( new uint8_t[buffer_size] ), pos( 0 ), stream_pos( 0 ), crc_( 0xFFFFFFFFU ), outfd( ofd ), member_version( header.version() ), range_decoder( rdec ) { buffer[buffer_size-1] = 0; } // prev_byte of first_byte ~LZ_decoder() { delete[] buffer; } uint32_t crc() const { return crc_ ^ 0xFFFFFFFFU; } long long data_position() const { return partial_data_pos + pos; } int decode_member(); };