/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2007 Erwin Coumans http://bulletphysics.com This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "Win32ThreadSupport.h" #ifdef USE_WIN32_THREADING #include #include "SpuCollisionTaskProcess.h" #include "SpuNarrowPhaseCollisionTask/SpuGatheringCollisionTask.h" ///The number of threads should be equal to the number of available cores ///@todo: each worker should be linked to a single core, using SetThreadIdealProcessor. ///Win32ThreadSupport helps to initialize/shutdown libspe2, start/stop SPU tasks and communication ///Setup and initialize SPU/CELL/Libspe2 Win32ThreadSupport::Win32ThreadSupport(const Win32ThreadConstructionInfo & threadConstructionInfo) { m_maxNumTasks = threadConstructionInfo.m_numThreads; startThreads(threadConstructionInfo); } ///cleanup/shutdown Libspe2 Win32ThreadSupport::~Win32ThreadSupport() { stopSPU(); } #include DWORD WINAPI Thread_no_1( LPVOID lpParam ) { Win32ThreadSupport::btSpuStatus* status = (Win32ThreadSupport::btSpuStatus*)lpParam; while (1) { WaitForSingleObject(status->m_eventStartHandle,INFINITE); void* userPtr = status->m_userPtr; if (userPtr) { btAssert(status->m_status); status->m_userThreadFunc(userPtr,status->m_lsMemory); status->m_status = 2; SetEvent(status->m_eventCompletetHandle); } else { //exit Thread status->m_status = 3; printf("Thread with taskId %i with handle %p exiting\n",status->m_taskId, status->m_threadHandle); SetEvent(status->m_eventCompletetHandle); break; } } printf("Thread TERMINATED\n"); return 0; } ///send messages to SPUs void Win32ThreadSupport::sendRequest(uint32_t uiCommand, ppu_address_t uiArgument0, uint32_t taskId) { /// gMidphaseSPU.sendRequest(CMD_GATHER_AND_PROCESS_PAIRLIST, (ppu_address_t) &taskDesc); ///we should spawn an SPU task here, and in 'waitForResponse' it should wait for response of the (one of) the first tasks that finished switch (uiCommand) { case CMD_GATHER_AND_PROCESS_PAIRLIST: { //#define SINGLE_THREADED 1 #ifdef SINGLE_THREADED btSpuStatus& spuStatus = m_activeSpuStatus[0]; spuStatus.m_userPtr=(void*)uiArgument0; spuStatus.m_userThreadFunc(spuStatus.m_userPtr,spuStatus.m_lsMemory); HANDLE handle =0; #else btSpuStatus& spuStatus = m_activeSpuStatus[taskId]; btAssert(taskId>=0); btAssert(int(taskId) 1); spuStatus.m_status = 0; ///need to find an active spu btAssert(last>=0); #else last=0; btSpuStatus& spuStatus = m_activeSpuStatus[last]; #endif //SINGLE_THREADED *puiArgument0 = spuStatus.m_taskId; *puiArgument1 = spuStatus.m_status; } ///check for messages from SPUs bool Win32ThreadSupport::isTaskCompleted(unsigned int *puiArgument0, unsigned int *puiArgument1, int timeOutInMilliseconds) { ///We should wait for (one of) the first tasks to finish (or other SPU messages), and report its response ///A possible response can be 'yes, SPU handled it', or 'no, please do a PPU fallback' btAssert(m_activeSpuStatus.size()); int last = -1; #ifndef SINGLE_THREADED DWORD res = WaitForMultipleObjects(m_completeHandles.size(), &m_completeHandles[0], FALSE, timeOutInMilliseconds); if ((res != STATUS_TIMEOUT) && (res != WAIT_FAILED)) { btAssert(res != WAIT_FAILED); last = res - WAIT_OBJECT_0; btSpuStatus& spuStatus = m_activeSpuStatus[last]; btAssert(spuStatus.m_threadHandle); btAssert(spuStatus.m_eventCompletetHandle); //WaitForSingleObject(spuStatus.m_eventCompletetHandle, INFINITE); btAssert(spuStatus.m_status > 1); spuStatus.m_status = 0; ///need to find an active spu btAssert(last>=0); #else last=0; btSpuStatus& spuStatus = m_activeSpuStatus[last]; #endif //SINGLE_THREADED *puiArgument0 = spuStatus.m_taskId; *puiArgument1 = spuStatus.m_status; return true; } return false; } void Win32ThreadSupport::startThreads(const Win32ThreadConstructionInfo& threadConstructionInfo) { m_activeSpuStatus.resize(threadConstructionInfo.m_numThreads); m_completeHandles.resize(threadConstructionInfo.m_numThreads); m_maxNumTasks = threadConstructionInfo.m_numThreads; for (int i=0;i0) { WaitForSingleObject(spuStatus.m_eventCompletetHandle, INFINITE); } spuStatus.m_userPtr = 0; SetEvent(spuStatus.m_eventStartHandle); WaitForSingleObject(spuStatus.m_eventCompletetHandle, INFINITE); CloseHandle(spuStatus.m_eventCompletetHandle); CloseHandle(spuStatus.m_eventStartHandle); CloseHandle(spuStatus.m_threadHandle); } m_activeSpuStatus.clear(); m_completeHandles.clear(); } class btWin32Barrier : public btBarrier { private: CRITICAL_SECTION mExternalCriticalSection; CRITICAL_SECTION mLocalCriticalSection; HANDLE mRunEvent,mNotifyEvent; int mCounter,mEnableCounter; int mMaxCount; public: btWin32Barrier() { mCounter = 0; mMaxCount = 1; mEnableCounter = 0; InitializeCriticalSection(&mExternalCriticalSection); InitializeCriticalSection(&mLocalCriticalSection); mRunEvent = CreateEvent(NULL,TRUE,FALSE,NULL); mNotifyEvent = CreateEvent(NULL,TRUE,FALSE,NULL); } virtual ~btWin32Barrier() { DeleteCriticalSection(&mExternalCriticalSection); DeleteCriticalSection(&mLocalCriticalSection); CloseHandle(mRunEvent); CloseHandle(mNotifyEvent); } void sync() { int eventId; EnterCriticalSection(&mExternalCriticalSection); //PFX_PRINTF("enter taskId %d count %d stage %d phase %d mEnableCounter %d\n",taskId,mCounter,debug&0xff,debug>>16,mEnableCounter); if(mEnableCounter > 0) { ResetEvent(mNotifyEvent); LeaveCriticalSection(&mExternalCriticalSection); WaitForSingleObject(mNotifyEvent,INFINITE); EnterCriticalSection(&mExternalCriticalSection); } eventId = mCounter; mCounter++; if(eventId == mMaxCount-1) { SetEvent(mRunEvent); mEnableCounter = mCounter-1; mCounter = 0; } else { ResetEvent(mRunEvent); LeaveCriticalSection(&mExternalCriticalSection); WaitForSingleObject(mRunEvent,INFINITE); EnterCriticalSection(&mExternalCriticalSection); mEnableCounter--; } if(mEnableCounter == 0) { SetEvent(mNotifyEvent); } //PFX_PRINTF("leave taskId %d count %d stage %d phase %d mEnableCounter %d\n",taskId,mCounter,debug&0xff,debug>>16,mEnableCounter); LeaveCriticalSection(&mExternalCriticalSection); } virtual void setMaxCount(int n) {mMaxCount = n;} virtual int getMaxCount() {return mMaxCount;} }; class btWin32CriticalSection : public btCriticalSection { private: CRITICAL_SECTION mCriticalSection; public: btWin32CriticalSection() { InitializeCriticalSection(&mCriticalSection); } ~btWin32CriticalSection() { DeleteCriticalSection(&mCriticalSection); } unsigned int getSharedParam(int i) { btAssert(i>=0&&i<31); return mCommonBuff[i+1]; } void setSharedParam(int i,unsigned int p) { btAssert(i>=0&&i<31); mCommonBuff[i+1] = p; } void lock() { EnterCriticalSection(&mCriticalSection); mCommonBuff[0] = 1; } void unlock() { mCommonBuff[0] = 0; LeaveCriticalSection(&mCriticalSection); } }; btBarrier* Win32ThreadSupport::createBarrier() { unsigned char* mem = (unsigned char*)btAlignedAlloc(sizeof(btWin32Barrier),16); btWin32Barrier* barrier = new(mem) btWin32Barrier(); barrier->setMaxCount(getNumTasks()); return barrier; } btCriticalSection* Win32ThreadSupport::createCriticalSection() { unsigned char* mem = (unsigned char*) btAlignedAlloc(sizeof(btWin32CriticalSection),16); btWin32CriticalSection* cs = new(mem) btWin32CriticalSection(); return cs; } #endif //USE_WIN32_THREADING