/* Copyright (C) 2006, 2008 Sony Computer Entertainment Inc. All rights reserved. This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ //#include "PfxContactBoxBox.h" #include #include "../PlatformDefinitions.h" #include "boxBoxDistance.h" static inline float sqr( float a ) { return (a * a); } enum BoxSepAxisType { A_AXIS, B_AXIS, CROSS_AXIS }; //------------------------------------------------------------------------------------------------- // voronoiTol: bevels Voronoi planes slightly which helps when features are parallel. //------------------------------------------------------------------------------------------------- static const float voronoiTol = -1.0e-5f; //------------------------------------------------------------------------------------------------- // separating axis tests: gaps along each axis are computed, and the axis with the maximum // gap is stored. cross product axes are normalized. //------------------------------------------------------------------------------------------------- #define AaxisTest( dim, letter, first ) \ { \ if ( first ) \ { \ maxGap = gap = gapsA.get##letter(); \ if ( gap > distanceThreshold ) return gap; \ axisType = A_AXIS; \ faceDimA = dim; \ axisA = identity.getCol##dim(); \ } \ else \ { \ gap = gapsA.get##letter(); \ if ( gap > distanceThreshold ) return gap; \ else if ( gap > maxGap ) \ { \ maxGap = gap; \ axisType = A_AXIS; \ faceDimA = dim; \ axisA = identity.getCol##dim(); \ } \ } \ } #define BaxisTest( dim, letter ) \ { \ gap = gapsB.get##letter(); \ if ( gap > distanceThreshold ) return gap; \ else if ( gap > maxGap ) \ { \ maxGap = gap; \ axisType = B_AXIS; \ faceDimB = dim; \ axisB = identity.getCol##dim(); \ } \ } #define CrossAxisTest( dima, dimb, letterb ) \ { \ const float lsqr_tolerance = 1.0e-30f; \ float lsqr; \ \ lsqr = lsqrs.getCol##dima().get##letterb(); \ \ if ( lsqr > lsqr_tolerance ) \ { \ float l_recip = 1.0f / sqrtf( lsqr ); \ gap = float(gapsAxB.getCol##dima().get##letterb()) * l_recip; \ \ if ( gap > distanceThreshold ) \ { \ return gap; \ } \ \ if ( gap > maxGap ) \ { \ maxGap = gap; \ axisType = CROSS_AXIS; \ edgeDimA = dima; \ edgeDimB = dimb; \ axisA = cross(identity.getCol##dima(),matrixAB.getCol##dimb()) * l_recip; \ } \ } \ } //------------------------------------------------------------------------------------------------- // tests whether a vertex of box B and a face of box A are the closest features //------------------------------------------------------------------------------------------------- inline float VertexBFaceATest( bool & inVoronoi, float & t0, float & t1, const vmVector3 & hA, PE_REF(vmVector3) faceOffsetAB, PE_REF(vmVector3) faceOffsetBA, const vmMatrix3 & matrixAB, const vmMatrix3 & matrixBA, PE_REF(vmVector3) signsB, PE_REF(vmVector3) scalesB ) { // compute a corner of box B in A's coordinate system vmVector3 corner = vmVector3( faceOffsetAB + matrixAB.getCol0() * scalesB.getX() + matrixAB.getCol1() * scalesB.getY() ); // compute the parameters of the point on A, closest to this corner t0 = corner[0]; t1 = corner[1]; if ( t0 > hA[0] ) t0 = hA[0]; else if ( t0 < -hA[0] ) t0 = -hA[0]; if ( t1 > hA[1] ) t1 = hA[1]; else if ( t1 < -hA[1] ) t1 = -hA[1]; // do the Voronoi test: already know the point on B is in the Voronoi region of the // point on A, check the reverse. vmVector3 facePointB = vmVector3( mulPerElem( faceOffsetBA + matrixBA.getCol0() * t0 + matrixBA.getCol1() * t1 - scalesB, signsB ) ); inVoronoi = ( ( facePointB[0] >= voronoiTol * facePointB[2] ) && ( facePointB[1] >= voronoiTol * facePointB[0] ) && ( facePointB[2] >= voronoiTol * facePointB[1] ) ); return (sqr( corner[0] - t0 ) + sqr( corner[1] - t1 ) + sqr( corner[2] )); } #define VertexBFaceA_SetNewMin() \ { \ minDistSqr = distSqr; \ localPointA.setX(t0); \ localPointA.setY(t1); \ localPointB.setX( scalesB.getX() ); \ localPointB.setY( scalesB.getY() ); \ featureA = F; \ featureB = V; \ } void VertexBFaceATests( bool & done, float & minDistSqr, vmPoint3 & localPointA, vmPoint3 & localPointB, FeatureType & featureA, FeatureType & featureB, const vmVector3 & hA, PE_REF(vmVector3) faceOffsetAB, PE_REF(vmVector3) faceOffsetBA, const vmMatrix3 & matrixAB, const vmMatrix3 & matrixBA, PE_REF(vmVector3) signsB, PE_REF(vmVector3) scalesB, bool first ) { float t0, t1; float distSqr; distSqr = VertexBFaceATest( done, t0, t1, hA, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsB, scalesB ); if ( first ) { VertexBFaceA_SetNewMin(); } else { if ( distSqr < minDistSqr ) { VertexBFaceA_SetNewMin(); } } if ( done ) return; signsB.setX( -signsB.getX() ); scalesB.setX( -scalesB.getX() ); distSqr = VertexBFaceATest( done, t0, t1, hA, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsB, scalesB ); if ( distSqr < minDistSqr ) { VertexBFaceA_SetNewMin(); } if ( done ) return; signsB.setY( -signsB.getY() ); scalesB.setY( -scalesB.getY() ); distSqr = VertexBFaceATest( done, t0, t1, hA, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsB, scalesB ); if ( distSqr < minDistSqr ) { VertexBFaceA_SetNewMin(); } if ( done ) return; signsB.setX( -signsB.getX() ); scalesB.setX( -scalesB.getX() ); distSqr = VertexBFaceATest( done, t0, t1, hA, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsB, scalesB ); if ( distSqr < minDistSqr ) { VertexBFaceA_SetNewMin(); } } //------------------------------------------------------------------------------------------------- // VertexAFaceBTest: tests whether a vertex of box A and a face of box B are the closest features //------------------------------------------------------------------------------------------------- inline float VertexAFaceBTest( bool & inVoronoi, float & t0, float & t1, const vmVector3 & hB, PE_REF(vmVector3) faceOffsetAB, PE_REF(vmVector3) faceOffsetBA, const vmMatrix3 & matrixAB, const vmMatrix3 & matrixBA, PE_REF(vmVector3) signsA, PE_REF(vmVector3) scalesA ) { vmVector3 corner = vmVector3( faceOffsetBA + matrixBA.getCol0() * scalesA.getX() + matrixBA.getCol1() * scalesA.getY() ); t0 = corner[0]; t1 = corner[1]; if ( t0 > hB[0] ) t0 = hB[0]; else if ( t0 < -hB[0] ) t0 = -hB[0]; if ( t1 > hB[1] ) t1 = hB[1]; else if ( t1 < -hB[1] ) t1 = -hB[1]; vmVector3 facePointA = vmVector3( mulPerElem( faceOffsetAB + matrixAB.getCol0() * t0 + matrixAB.getCol1() * t1 - scalesA, signsA ) ); inVoronoi = ( ( facePointA[0] >= voronoiTol * facePointA[2] ) && ( facePointA[1] >= voronoiTol * facePointA[0] ) && ( facePointA[2] >= voronoiTol * facePointA[1] ) ); return (sqr( corner[0] - t0 ) + sqr( corner[1] - t1 ) + sqr( corner[2] )); } #define VertexAFaceB_SetNewMin() \ { \ minDistSqr = distSqr; \ localPointB.setX(t0); \ localPointB.setY(t1); \ localPointA.setX( scalesA.getX() ); \ localPointA.setY( scalesA.getY() ); \ featureA = V; \ featureB = F; \ } void VertexAFaceBTests( bool & done, float & minDistSqr, vmPoint3 & localPointA, vmPoint3 & localPointB, FeatureType & featureA, FeatureType & featureB, const vmVector3 & hB, PE_REF(vmVector3) faceOffsetAB, PE_REF(vmVector3) faceOffsetBA, const vmMatrix3 & matrixAB, const vmMatrix3 & matrixBA, PE_REF(vmVector3) signsA, PE_REF(vmVector3) scalesA, bool first ) { float t0, t1; float distSqr; distSqr = VertexAFaceBTest( done, t0, t1, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, scalesA ); if ( first ) { VertexAFaceB_SetNewMin(); } else { if ( distSqr < minDistSqr ) { VertexAFaceB_SetNewMin(); } } if ( done ) return; signsA.setX( -signsA.getX() ); scalesA.setX( -scalesA.getX() ); distSqr = VertexAFaceBTest( done, t0, t1, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, scalesA ); if ( distSqr < minDistSqr ) { VertexAFaceB_SetNewMin(); } if ( done ) return; signsA.setY( -signsA.getY() ); scalesA.setY( -scalesA.getY() ); distSqr = VertexAFaceBTest( done, t0, t1, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, scalesA ); if ( distSqr < minDistSqr ) { VertexAFaceB_SetNewMin(); } if ( done ) return; signsA.setX( -signsA.getX() ); scalesA.setX( -scalesA.getX() ); distSqr = VertexAFaceBTest( done, t0, t1, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, scalesA ); if ( distSqr < minDistSqr ) { VertexAFaceB_SetNewMin(); } } //------------------------------------------------------------------------------------------------- // CustomEdgeEdgeTest: // // tests whether a pair of edges are the closest features // // note on the shorthand: // 'a' & 'b' refer to the edges. // 'c' is the dimension of the axis that points from the face center to the edge Center // 'd' is the dimension of the edge Direction // the dimension of the face normal is 2 //------------------------------------------------------------------------------------------------- #define CustomEdgeEdgeTest( ac, ac_letter, ad, ad_letter, bc, bc_letter, bd, bd_letter ) \ { \ vmVector3 edgeOffsetAB; \ vmVector3 edgeOffsetBA; \ \ edgeOffsetAB = faceOffsetAB + matrixAB.getCol##bc() * scalesB.get##bc_letter(); \ edgeOffsetAB.set##ac_letter( edgeOffsetAB.get##ac_letter() - scalesA.get##ac_letter() ); \ \ edgeOffsetBA = faceOffsetBA + matrixBA.getCol##ac() * scalesA.get##ac_letter(); \ edgeOffsetBA.set##bc_letter( edgeOffsetBA.get##bc_letter() - scalesB.get##bc_letter() ); \ \ float dirDot = matrixAB.getCol##bd().get##ad_letter(); \ float denom = 1.0f - dirDot*dirDot; \ float edgeOffsetAB_ad = edgeOffsetAB.get##ad_letter(); \ float edgeOffsetBA_bd = edgeOffsetBA.get##bd_letter(); \ \ if ( denom == 0.0f ) \ { \ tA = 0.0f; \ } \ else \ { \ tA = ( edgeOffsetAB_ad + edgeOffsetBA_bd * dirDot ) / denom; \ } \ \ if ( tA < -hA[ad] ) tA = -hA[ad]; \ else if ( tA > hA[ad] ) tA = hA[ad]; \ \ tB = tA * dirDot + edgeOffsetBA_bd; \ \ if ( tB < -hB[bd] ) \ { \ tB = -hB[bd]; \ tA = tB * dirDot + edgeOffsetAB_ad; \ \ if ( tA < -hA[ad] ) tA = -hA[ad]; \ else if ( tA > hA[ad] ) tA = hA[ad]; \ } \ else if ( tB > hB[bd] ) \ { \ tB = hB[bd]; \ tA = tB * dirDot + edgeOffsetAB_ad; \ \ if ( tA < -hA[ad] ) tA = -hA[ad]; \ else if ( tA > hA[ad] ) tA = hA[ad]; \ } \ \ vmVector3 edgeOffAB = vmVector3( mulPerElem( edgeOffsetAB + matrixAB.getCol##bd() * tB, signsA ) );\ vmVector3 edgeOffBA = vmVector3( mulPerElem( edgeOffsetBA + matrixBA.getCol##ad() * tA, signsB ) );\ \ inVoronoi = ( edgeOffAB[ac] >= voronoiTol * edgeOffAB[2] ) && \ ( edgeOffAB[2] >= voronoiTol * edgeOffAB[ac] ) && \ ( edgeOffBA[bc] >= voronoiTol * edgeOffBA[2] ) && \ ( edgeOffBA[2] >= voronoiTol * edgeOffBA[bc] ); \ \ edgeOffAB[ad] -= tA; \ edgeOffBA[bd] -= tB; \ \ return dot(edgeOffAB,edgeOffAB); \ } float CustomEdgeEdgeTest_0101( bool & inVoronoi, float & tA, float & tB, const vmVector3 & hA, const vmVector3 & hB, PE_REF(vmVector3) faceOffsetAB, PE_REF(vmVector3) faceOffsetBA, const vmMatrix3 & matrixAB, const vmMatrix3 & matrixBA, PE_REF(vmVector3) signsA, PE_REF(vmVector3) signsB, PE_REF(vmVector3) scalesA, PE_REF(vmVector3) scalesB ) { CustomEdgeEdgeTest( 0, X, 1, Y, 0, X, 1, Y ); } float CustomEdgeEdgeTest_0110( bool & inVoronoi, float & tA, float & tB, const vmVector3 & hA, const vmVector3 & hB, PE_REF(vmVector3) faceOffsetAB, PE_REF(vmVector3) faceOffsetBA, const vmMatrix3 & matrixAB, const vmMatrix3 & matrixBA, PE_REF(vmVector3) signsA, PE_REF(vmVector3) signsB, PE_REF(vmVector3) scalesA, PE_REF(vmVector3) scalesB ) { CustomEdgeEdgeTest( 0, X, 1, Y, 1, Y, 0, X ); } float CustomEdgeEdgeTest_1001( bool & inVoronoi, float & tA, float & tB, const vmVector3 & hA, const vmVector3 & hB, PE_REF(vmVector3) faceOffsetAB, PE_REF(vmVector3) faceOffsetBA, const vmMatrix3 & matrixAB, const vmMatrix3 & matrixBA, PE_REF(vmVector3) signsA, PE_REF(vmVector3) signsB, PE_REF(vmVector3) scalesA, PE_REF(vmVector3) scalesB ) { CustomEdgeEdgeTest( 1, Y, 0, X, 0, X, 1, Y ); } float CustomEdgeEdgeTest_1010( bool & inVoronoi, float & tA, float & tB, const vmVector3 & hA, const vmVector3 & hB, PE_REF(vmVector3) faceOffsetAB, PE_REF(vmVector3) faceOffsetBA, const vmMatrix3 & matrixAB, const vmMatrix3 & matrixBA, PE_REF(vmVector3) signsA, PE_REF(vmVector3) signsB, PE_REF(vmVector3) scalesA, PE_REF(vmVector3) scalesB ) { CustomEdgeEdgeTest( 1, Y, 0, X, 1, Y, 0, X ); } #define EdgeEdge_SetNewMin( ac_letter, ad_letter, bc_letter, bd_letter ) \ { \ minDistSqr = distSqr; \ localPointA.set##ac_letter(scalesA.get##ac_letter()); \ localPointA.set##ad_letter(tA); \ localPointB.set##bc_letter(scalesB.get##bc_letter()); \ localPointB.set##bd_letter(tB); \ otherFaceDimA = testOtherFaceDimA; \ otherFaceDimB = testOtherFaceDimB; \ featureA = E; \ featureB = E; \ } void EdgeEdgeTests( bool & done, float & minDistSqr, vmPoint3 & localPointA, vmPoint3 & localPointB, int & otherFaceDimA, int & otherFaceDimB, FeatureType & featureA, FeatureType & featureB, const vmVector3 & hA, const vmVector3 & hB, PE_REF(vmVector3) faceOffsetAB, PE_REF(vmVector3) faceOffsetBA, const vmMatrix3 & matrixAB, const vmMatrix3 & matrixBA, PE_REF(vmVector3) signsA, PE_REF(vmVector3) signsB, PE_REF(vmVector3) scalesA, PE_REF(vmVector3) scalesB, bool first ) { float distSqr; float tA, tB; int testOtherFaceDimA, testOtherFaceDimB; testOtherFaceDimA = 0; testOtherFaceDimB = 0; distSqr = CustomEdgeEdgeTest_0101( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( first ) { EdgeEdge_SetNewMin( X, Y, X, Y ); } else { if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( X, Y, X, Y ); } } if ( done ) return; signsA.setX( -signsA.getX() ); scalesA.setX( -scalesA.getX() ); distSqr = CustomEdgeEdgeTest_0101( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( X, Y, X, Y ); } if ( done ) return; signsB.setX( -signsB.getX() ); scalesB.setX( -scalesB.getX() ); distSqr = CustomEdgeEdgeTest_0101( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( X, Y, X, Y ); } if ( done ) return; signsA.setX( -signsA.getX() ); scalesA.setX( -scalesA.getX() ); distSqr = CustomEdgeEdgeTest_0101( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( X, Y, X, Y ); } if ( done ) return; testOtherFaceDimA = 1; testOtherFaceDimB = 0; signsB.setX( -signsB.getX() ); scalesB.setX( -scalesB.getX() ); distSqr = CustomEdgeEdgeTest_1001( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( Y, X, X, Y ); } if ( done ) return; signsA.setY( -signsA.getY() ); scalesA.setY( -scalesA.getY() ); distSqr = CustomEdgeEdgeTest_1001( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( Y, X, X, Y ); } if ( done ) return; signsB.setX( -signsB.getX() ); scalesB.setX( -scalesB.getX() ); distSqr = CustomEdgeEdgeTest_1001( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( Y, X, X, Y ); } if ( done ) return; signsA.setY( -signsA.getY() ); scalesA.setY( -scalesA.getY() ); distSqr = CustomEdgeEdgeTest_1001( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( Y, X, X, Y ); } if ( done ) return; testOtherFaceDimA = 0; testOtherFaceDimB = 1; signsB.setX( -signsB.getX() ); scalesB.setX( -scalesB.getX() ); distSqr = CustomEdgeEdgeTest_0110( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( X, Y, Y, X ); } if ( done ) return; signsA.setX( -signsA.getX() ); scalesA.setX( -scalesA.getX() ); distSqr = CustomEdgeEdgeTest_0110( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( X, Y, Y, X ); } if ( done ) return; signsB.setY( -signsB.getY() ); scalesB.setY( -scalesB.getY() ); distSqr = CustomEdgeEdgeTest_0110( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( X, Y, Y, X ); } if ( done ) return; signsA.setX( -signsA.getX() ); scalesA.setX( -scalesA.getX() ); distSqr = CustomEdgeEdgeTest_0110( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( X, Y, Y, X ); } if ( done ) return; testOtherFaceDimA = 1; testOtherFaceDimB = 1; signsB.setY( -signsB.getY() ); scalesB.setY( -scalesB.getY() ); distSqr = CustomEdgeEdgeTest_1010( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( Y, X, Y, X ); } if ( done ) return; signsA.setY( -signsA.getY() ); scalesA.setY( -scalesA.getY() ); distSqr = CustomEdgeEdgeTest_1010( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( Y, X, Y, X ); } if ( done ) return; signsB.setY( -signsB.getY() ); scalesB.setY( -scalesB.getY() ); distSqr = CustomEdgeEdgeTest_1010( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( Y, X, Y, X ); } if ( done ) return; signsA.setY( -signsA.getY() ); scalesA.setY( -scalesA.getY() ); distSqr = CustomEdgeEdgeTest_1010( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA, matrixAB, matrixBA, signsA, signsB, scalesA, scalesB ); if ( distSqr < minDistSqr ) { EdgeEdge_SetNewMin( Y, X, Y, X ); } } float boxBoxDistance(vmVector3& normal, BoxPoint& boxPointA, BoxPoint& boxPointB, PE_REF(Box) boxA, const vmTransform3 & transformA, PE_REF(Box) boxB, const vmTransform3 & transformB, float distanceThreshold) { vmMatrix3 identity; identity = vmMatrix3::identity(); vmVector3 ident[3]; ident[0] = identity.getCol0(); ident[1] = identity.getCol1(); ident[2] = identity.getCol2(); // get relative transformations vmTransform3 transformAB, transformBA; vmMatrix3 matrixAB, matrixBA; vmVector3 offsetAB, offsetBA; transformAB = orthoInverse(transformA) * transformB; transformBA = orthoInverse(transformAB); matrixAB = transformAB.getUpper3x3(); offsetAB = transformAB.getTranslation(); matrixBA = transformBA.getUpper3x3(); offsetBA = transformBA.getTranslation(); vmMatrix3 absMatrixAB = absPerElem(matrixAB); vmMatrix3 absMatrixBA = absPerElem(matrixBA); // find separating axis with largest gap between projections BoxSepAxisType axisType; vmVector3 axisA(0.0f), axisB(0.0f); float gap, maxGap; int faceDimA = 0, faceDimB = 0, edgeDimA = 0, edgeDimB = 0; // face axes vmVector3 gapsA = absPerElem(offsetAB) - boxA.mHalf - absMatrixAB * boxB.mHalf; AaxisTest(0,X,true); AaxisTest(1,Y,false); AaxisTest(2,Z,false); vmVector3 gapsB = absPerElem(offsetBA) - boxB.mHalf - absMatrixBA * boxA.mHalf; BaxisTest(0,X); BaxisTest(1,Y); BaxisTest(2,Z); // cross product axes // 外積が0のときの対策 absMatrixAB += vmMatrix3(1.0e-5f); absMatrixBA += vmMatrix3(1.0e-5f); vmMatrix3 lsqrs, projOffset, projAhalf, projBhalf; lsqrs.setCol0( mulPerElem( matrixBA.getCol2(), matrixBA.getCol2() ) + mulPerElem( matrixBA.getCol1(), matrixBA.getCol1() ) ); lsqrs.setCol1( mulPerElem( matrixBA.getCol2(), matrixBA.getCol2() ) + mulPerElem( matrixBA.getCol0(), matrixBA.getCol0() ) ); lsqrs.setCol2( mulPerElem( matrixBA.getCol1(), matrixBA.getCol1() ) + mulPerElem( matrixBA.getCol0(), matrixBA.getCol0() ) ); projOffset.setCol0(matrixBA.getCol1() * offsetAB.getZ() - matrixBA.getCol2() * offsetAB.getY()); projOffset.setCol1(matrixBA.getCol2() * offsetAB.getX() - matrixBA.getCol0() * offsetAB.getZ()); projOffset.setCol2(matrixBA.getCol0() * offsetAB.getY() - matrixBA.getCol1() * offsetAB.getX()); projAhalf.setCol0(absMatrixBA.getCol1() * boxA.mHalf.getZ() + absMatrixBA.getCol2() * boxA.mHalf.getY()); projAhalf.setCol1(absMatrixBA.getCol2() * boxA.mHalf.getX() + absMatrixBA.getCol0() * boxA.mHalf.getZ()); projAhalf.setCol2(absMatrixBA.getCol0() * boxA.mHalf.getY() + absMatrixBA.getCol1() * boxA.mHalf.getX()); projBhalf.setCol0(absMatrixAB.getCol1() * boxB.mHalf.getZ() + absMatrixAB.getCol2() * boxB.mHalf.getY()); projBhalf.setCol1(absMatrixAB.getCol2() * boxB.mHalf.getX() + absMatrixAB.getCol0() * boxB.mHalf.getZ()); projBhalf.setCol2(absMatrixAB.getCol0() * boxB.mHalf.getY() + absMatrixAB.getCol1() * boxB.mHalf.getX()); vmMatrix3 gapsAxB = absPerElem(projOffset) - projAhalf - transpose(projBhalf); CrossAxisTest(0,0,X); CrossAxisTest(0,1,Y); CrossAxisTest(0,2,Z); CrossAxisTest(1,0,X); CrossAxisTest(1,1,Y); CrossAxisTest(1,2,Z); CrossAxisTest(2,0,X); CrossAxisTest(2,1,Y); CrossAxisTest(2,2,Z); // need to pick the face on each box whose normal best matches the separating axis. // will transform vectors to be in the coordinate system of this face to simplify things later. // for this, a permutation matrix can be used, which the next section computes. int dimA[3], dimB[3]; if ( axisType == A_AXIS ) { if ( dot(axisA,offsetAB) < 0.0f ) axisA = -axisA; axisB = matrixBA * -axisA; vmVector3 absAxisB = vmVector3(absPerElem(axisB)); if ( ( absAxisB[0] > absAxisB[1] ) && ( absAxisB[0] > absAxisB[2] ) ) faceDimB = 0; else if ( absAxisB[1] > absAxisB[2] ) faceDimB = 1; else faceDimB = 2; } else if ( axisType == B_AXIS ) { if ( dot(axisB,offsetBA) < 0.0f ) axisB = -axisB; axisA = matrixAB * -axisB; vmVector3 absAxisA = vmVector3(absPerElem(axisA)); if ( ( absAxisA[0] > absAxisA[1] ) && ( absAxisA[0] > absAxisA[2] ) ) faceDimA = 0; else if ( absAxisA[1] > absAxisA[2] ) faceDimA = 1; else faceDimA = 2; } if ( axisType == CROSS_AXIS ) { if ( dot(axisA,offsetAB) < 0.0f ) axisA = -axisA; axisB = matrixBA * -axisA; vmVector3 absAxisA = vmVector3(absPerElem(axisA)); vmVector3 absAxisB = vmVector3(absPerElem(axisB)); dimA[1] = edgeDimA; dimB[1] = edgeDimB; if ( edgeDimA == 0 ) { if ( absAxisA[1] > absAxisA[2] ) { dimA[0] = 2; dimA[2] = 1; } else { dimA[0] = 1; dimA[2] = 2; } } else if ( edgeDimA == 1 ) { if ( absAxisA[2] > absAxisA[0] ) { dimA[0] = 0; dimA[2] = 2; } else { dimA[0] = 2; dimA[2] = 0; } } else { if ( absAxisA[0] > absAxisA[1] ) { dimA[0] = 1; dimA[2] = 0; } else { dimA[0] = 0; dimA[2] = 1; } } if ( edgeDimB == 0 ) { if ( absAxisB[1] > absAxisB[2] ) { dimB[0] = 2; dimB[2] = 1; } else { dimB[0] = 1; dimB[2] = 2; } } else if ( edgeDimB == 1 ) { if ( absAxisB[2] > absAxisB[0] ) { dimB[0] = 0; dimB[2] = 2; } else { dimB[0] = 2; dimB[2] = 0; } } else { if ( absAxisB[0] > absAxisB[1] ) { dimB[0] = 1; dimB[2] = 0; } else { dimB[0] = 0; dimB[2] = 1; } } } else { dimA[2] = faceDimA; dimA[0] = (faceDimA+1)%3; dimA[1] = (faceDimA+2)%3; dimB[2] = faceDimB; dimB[0] = (faceDimB+1)%3; dimB[1] = (faceDimB+2)%3; } vmMatrix3 aperm_col, bperm_col; aperm_col.setCol0(ident[dimA[0]]); aperm_col.setCol1(ident[dimA[1]]); aperm_col.setCol2(ident[dimA[2]]); bperm_col.setCol0(ident[dimB[0]]); bperm_col.setCol1(ident[dimB[1]]); bperm_col.setCol2(ident[dimB[2]]); vmMatrix3 aperm_row, bperm_row; aperm_row = transpose(aperm_col); bperm_row = transpose(bperm_col); // permute all box parameters to be in the face coordinate systems vmMatrix3 matrixAB_perm = aperm_row * matrixAB * bperm_col; vmMatrix3 matrixBA_perm = transpose(matrixAB_perm); vmVector3 offsetAB_perm, offsetBA_perm; offsetAB_perm = aperm_row * offsetAB; offsetBA_perm = bperm_row * offsetBA; vmVector3 halfA_perm, halfB_perm; halfA_perm = aperm_row * boxA.mHalf; halfB_perm = bperm_row * boxB.mHalf; // compute the vector between the centers of each face, in each face's coordinate frame vmVector3 signsA_perm, signsB_perm, scalesA_perm, scalesB_perm, faceOffsetAB_perm, faceOffsetBA_perm; signsA_perm = copySignPerElem(vmVector3(1.0f),aperm_row * axisA); signsB_perm = copySignPerElem(vmVector3(1.0f),bperm_row * axisB); scalesA_perm = mulPerElem( signsA_perm, halfA_perm ); scalesB_perm = mulPerElem( signsB_perm, halfB_perm ); faceOffsetAB_perm = offsetAB_perm + matrixAB_perm.getCol2() * scalesB_perm.getZ(); faceOffsetAB_perm.setZ( faceOffsetAB_perm.getZ() - scalesA_perm.getZ() ); faceOffsetBA_perm = offsetBA_perm + matrixBA_perm.getCol2() * scalesA_perm.getZ(); faceOffsetBA_perm.setZ( faceOffsetBA_perm.getZ() - scalesB_perm.getZ() ); if ( maxGap < 0.0f ) { // if boxes overlap, this will separate the faces for finding points of penetration. faceOffsetAB_perm -= aperm_row * axisA * maxGap * 1.01f; faceOffsetBA_perm -= bperm_row * axisB * maxGap * 1.01f; } // for each vertex/face or edge/edge pair of the two faces, find the closest points. // // these points each have an associated box feature (vertex, edge, or face). if each // point is in the external Voronoi region of the other's feature, they are the // closest points of the boxes, and the algorithm can exit. // // the feature pairs are arranged so that in the general case, the first test will // succeed. degenerate cases (parallel faces) may require up to all tests in the // worst case. // // if for some reason no case passes the Voronoi test, the features with the minimum // distance are returned. vmPoint3 localPointA_perm, localPointB_perm; float minDistSqr; bool done; vmVector3 hA_perm( halfA_perm ), hB_perm( halfB_perm ); localPointA_perm.setZ( scalesA_perm.getZ() ); localPointB_perm.setZ( scalesB_perm.getZ() ); scalesA_perm.setZ(0.0f); scalesB_perm.setZ(0.0f); int otherFaceDimA, otherFaceDimB; FeatureType featureA, featureB; if ( axisType == CROSS_AXIS ) { EdgeEdgeTests( done, minDistSqr, localPointA_perm, localPointB_perm, otherFaceDimA, otherFaceDimB, featureA, featureB, hA_perm, hB_perm, faceOffsetAB_perm, faceOffsetBA_perm, matrixAB_perm, matrixBA_perm, signsA_perm, signsB_perm, scalesA_perm, scalesB_perm, true ); if ( !done ) { VertexBFaceATests( done, minDistSqr, localPointA_perm, localPointB_perm, featureA, featureB, hA_perm, faceOffsetAB_perm, faceOffsetBA_perm, matrixAB_perm, matrixBA_perm, signsB_perm, scalesB_perm, false ); if ( !done ) { VertexAFaceBTests( done, minDistSqr, localPointA_perm, localPointB_perm, featureA, featureB, hB_perm, faceOffsetAB_perm, faceOffsetBA_perm, matrixAB_perm, matrixBA_perm, signsA_perm, scalesA_perm, false ); } } } else if ( axisType == B_AXIS ) { VertexAFaceBTests( done, minDistSqr, localPointA_perm, localPointB_perm, featureA, featureB, hB_perm, faceOffsetAB_perm, faceOffsetBA_perm, matrixAB_perm, matrixBA_perm, signsA_perm, scalesA_perm, true ); if ( !done ) { VertexBFaceATests( done, minDistSqr, localPointA_perm, localPointB_perm, featureA, featureB, hA_perm, faceOffsetAB_perm, faceOffsetBA_perm, matrixAB_perm, matrixBA_perm, signsB_perm, scalesB_perm, false ); if ( !done ) { EdgeEdgeTests( done, minDistSqr, localPointA_perm, localPointB_perm, otherFaceDimA, otherFaceDimB, featureA, featureB, hA_perm, hB_perm, faceOffsetAB_perm, faceOffsetBA_perm, matrixAB_perm, matrixBA_perm, signsA_perm, signsB_perm, scalesA_perm, scalesB_perm, false ); } } } else { VertexBFaceATests( done, minDistSqr, localPointA_perm, localPointB_perm, featureA, featureB, hA_perm, faceOffsetAB_perm, faceOffsetBA_perm, matrixAB_perm, matrixBA_perm, signsB_perm, scalesB_perm, true ); if ( !done ) { VertexAFaceBTests( done, minDistSqr, localPointA_perm, localPointB_perm, featureA, featureB, hB_perm, faceOffsetAB_perm, faceOffsetBA_perm, matrixAB_perm, matrixBA_perm, signsA_perm, scalesA_perm, false ); if ( !done ) { EdgeEdgeTests( done, minDistSqr, localPointA_perm, localPointB_perm, otherFaceDimA, otherFaceDimB, featureA, featureB, hA_perm, hB_perm, faceOffsetAB_perm, faceOffsetBA_perm, matrixAB_perm, matrixBA_perm, signsA_perm, signsB_perm, scalesA_perm, scalesB_perm, false ); } } } // convert local points from face-local to box-local coordinate system boxPointA.localPoint = vmPoint3( aperm_col * vmVector3( localPointA_perm )) ; boxPointB.localPoint = vmPoint3( bperm_col * vmVector3( localPointB_perm )) ; #if 0 // find which features of the boxes are involved. // the only feature pairs which occur in this function are VF, FV, and EE, even though the // closest points might actually lie on sub-features, as in a VF contact might be used for // what's actually a VV contact. this means some feature pairs could possibly seem distinct // from others, although their contact positions are the same. don't know yet whether this // matters. int sA[3], sB[3]; sA[0] = boxPointA.localPoint.getX() > 0.0f; sA[1] = boxPointA.localPoint.getY() > 0.0f; sA[2] = boxPointA.localPoint.getZ() > 0.0f; sB[0] = boxPointB.localPoint.getX() > 0.0f; sB[1] = boxPointB.localPoint.getY() > 0.0f; sB[2] = boxPointB.localPoint.getZ() > 0.0f; if ( featureA == F ) { boxPointA.setFaceFeature( dimA[2], sA[dimA[2]] ); } else if ( featureA == E ) { boxPointA.setEdgeFeature( dimA[2], sA[dimA[2]], dimA[otherFaceDimA], sA[dimA[otherFaceDimA]] ); } else { boxPointA.setVertexFeature( sA[0], sA[1], sA[2] ); } if ( featureB == F ) { boxPointB.setFaceFeature( dimB[2], sB[dimB[2]] ); } else if ( featureB == E ) { boxPointB.setEdgeFeature( dimB[2], sB[dimB[2]], dimB[otherFaceDimB], sB[dimB[otherFaceDimB]] ); } else { boxPointB.setVertexFeature( sB[0], sB[1], sB[2] ); } #endif normal = transformA * axisA; if ( maxGap < 0.0f ) { return (maxGap); } else { return (sqrtf( minDistSqr )); } }