// Various tools for parsing LLVM. Utilities of various sorts, that are // specific to Emscripten (and hence not in utility.js). // Does simple 'macro' substitution, using Django-like syntax, // {{{ code }}} will be replaced with |eval(code)|. function processMacros(text) { return text.replace(/{{{[^}]+}}}/g, function(str) { str = str.substr(3, str.length-6); return eval(str).toString(); }); } // Simple #if/else/endif preprocessing for a file. Checks if the // ident checked is true in our global. Also replaces some constants. function preprocess(text, constants) { for (constant in constants) { text = text.replace(eval('/' + constant + '/g'), constants[constant]); } var lines = text.split('\n'); var ret = ''; var showStack = []; for (var i = 0; i < lines.length; i++) { var line = lines[i]; if (!line[0] || line[0] != '#') { if (showStack.indexOf(false) == -1) { ret += line + '\n'; } } else { if (line[1] && line[1] == 'i') { // if var parts = line.split(' '); var ident = parts[1]; var op = parts[2]; var value = parts[3]; if (op) { assert(op === '==') showStack.push(ident in this && this[ident] == value); } else { showStack.push(ident in this && this[ident] > 0); } } else if (line[2] && line[2] == 'l') { // else showStack.push(!showStack.pop()); } else if (line[2] && line[2] == 'n') { // endif showStack.pop(); } else { throw "Unclear preprocessor command: " + line; } } } assert(showStack.length == 0); return ret; } function addPointing(type) { return type + '*' } function removePointing(type, num) { if (num === 0) return type; return type.substr(0, type.length-(num ? num : 1)); } function pointingLevels(type) { if (!type) return 0; var ret = 0; var len1 = type.length - 1; while (type[len1-ret] && type[len1-ret] === '*') { ret ++; } return ret; } function removeAllPointing(type) { return removePointing(type, pointingLevels(type)); } function toNiceIdent(ident) { assert(ident); if (parseFloat(ident) == ident) return ident; if (ident == 'null') return '0'; // see parseNumerical return ident.replace('%', '$').replace(/["&\\ \.@:<>,\*\[\]-]/g, '_'); } // Kind of a hack. In some cases we have strings that we do not want // to |toNiceIdent|, as they are the output of previous processing. We // should refactor everything into an object, with an explicit flag // saying what has been |toNiceIdent|ed. Until then, this will detect // simple idents that are in need of |toNiceIdent|ation. Or, we should // ensure that processed strings never start with %,@, e.g. by always // enclosing them in (). function toNiceIdentCarefully(ident) { if (ident[0] == '%' || ident[0] == '@') ident = toNiceIdent(ident); return ident; } // Returns true if ident is a niceIdent (see toNiceIdent). If loose // is true, then also allow () and spaces. function isNiceIdent(ident, loose) { if (loose) { return /^[\w$_ ()]+$/.test(ident); } else { return /^[\w$_]+$/.test(ident); } } function isStructPointerType(type) { // This test is necessary for clang - in llvm-gcc, we // could check for %struct. The downside is that %1 can // be either a variable or a structure, and we guess it is // a struct, which can lead to |call i32 %5()| having // |%5()| as a function call (like |i32 (i8*)| etc.). So // we must check later on, in call(), where we have more // context, to differentiate such cases. // A similar thing happns in isStructType() return !Runtime.isNumberType(type) && type[0] == '%'; } function isStructType(type) { if (isPointerType(type)) return false; if (new RegExp(/^\[\d+\ x\ (.*)\]/g).test(type)) return true; // [15 x ?] blocks. Like structs // See comment in isStructPointerType() return !Runtime.isNumberType(type) && type[0] == '%'; } function isPointerType(type) { return pointingLevels(type) > 0; } function isVoidType(type) { return type == 'void'; } // Detects a function definition, ([...|type,[type,...]]) function isFunctionDef(token) { var text = token.text; var nonPointing = removeAllPointing(text); if (nonPointing[0] != '(' || nonPointing.substr(-1) != ')') return false; if (nonPointing === '()') return true; if (!token.item) return false; var fail = false; splitTokenList(token.item.tokens).forEach(function(segment) { var subtext = segment[0].text; fail = fail || segment.length > 1 || !(isType(subtext) || subtext == '...'); }); return !fail; } function isFunctionType(type) { var parts = type.split(' '); if (pointingLevels(type) !== 1) return false; var text = removeAllPointing(parts.slice(1).join(' ')); if (!text) return false; return isType(parts[0]) && isFunctionDef({ text: text, item: tokenizer.processItem({ lineText: text.substr(1, text.length-2) }, true) }); } function isType(type) { // TODO! return isVoidType(type) || Runtime.isNumberType(type) || isStructType(type) || isPointerType(type) || isFunctionType(type); } function addIdent(token) { token.ident = token.text; return token; } function combineTokens(tokens) { var ret = { lineNum: tokens[0].lineNum, text: '', tokens: [] }; tokens.forEach(function(token) { ret.text += token.text; ret.tokens.push(token); }); return ret; } function compareTokens(a, b) { var aId = a.__uid__; var bId = b.__uid__; a.__uid__ = 0; b.__uid__ = 0; var ret = JSON.stringify(a) == JSON.stringify(b); a.__uid__ = aId; b.__uid__ = bId; return ret; } function getTokenIndexByText(tokens, text) { var i = 0; while (tokens[i] && tokens[i].text != text) i++; return i; } function findTokenText(item, text) { for (var i = 0; i < item.tokens.length; i++) { if (item.tokens[i].text == text) return i; } return -1; } // Splits a list of tokens separated by commas. For example, a list of arguments in a function call function splitTokenList(tokens) { if (tokens.length == 0) return []; if (!tokens.slice) tokens = tokens.tokens; if (tokens.slice(-1)[0].text != ',') tokens.push({text:','}); var ret = []; var seg = []; var SPLITTERS = set(',', 'to'); // 'to' can separate parameters as well... for (var i = 0; i < tokens.length; i++) { var token = tokens[i]; if (token.text in SPLITTERS) { ret.push(seg); seg = []; } else if (token.text == ';') { ret.push(seg); break; } else { seg.push(token); } } return ret; } // Splits an item, with the intent of later reintegration function splitItem(parent, childSlot, copySlots) { if (!copySlots) copySlots = []; if (!parent[childSlot]) parent[childSlot] = {}; var child = parent[childSlot]; parent[childSlot] = null; child.parentUid = parent.__uid__; child.parentSlot = childSlot; child.parentLineNum = child.lineNum = parent.lineNum; copySlots.forEach(function(slot) { child[slot] = parent[slot] }); return { parent: parent, child: child }; } function makeReintegrator(afterFunc) { // Reintegration - find intermediate representation-parsed items and // place back in parents return { process: function(items) { var ret = []; var lineDict = {}; for (var i = 0; i < items.length; i++) { var item = items[i]; if (!item.parentSlot) { assert(!lineDict[item.lineNum]); lineDict[item.lineNum] = i; } } for (var i = 0; i < items.length; i++) { var child = items[i]; var j = lineDict[child.parentLineNum]; if (typeof j === 'number') { var parent = items[j]; // process the pair parent[child.parentSlot] = child; delete child.parentLineNum; afterFunc.call(this, parent, child); items[i] = null; items[j] = null; lineDict[child.parentLineNum] = null; } } this.forwardItems(items.filter(function(item) { return !!item }), this.name_); // next time hopefully return ret; } }; } function parseParamTokens(params) { if (params.length === 0) return []; var ret = []; if (params[params.length-1].text != ',') { params.push({ text: ',' }); } var anonymousIndex = 0; while (params.length > 0) { var i = 0; while (params[i].text != ',') i++; var segment = params.slice(0, i); params = params.slice(i+1); segment = cleanSegment(segment); if (segment[1] && segment[1].text === 'byval') { // handle 'byval' and 'byval align X' segment.splice(1, 1); if (segment[1] && segment[1].text === 'align') { segment.splice(1, 2); } } if (segment.length == 1) { if (segment[0].text == '...') { ret.push({ intertype: 'varargs' }); } else { // Clang sometimes has a parameter with just a type, // no name... the name is implied to be %{the index} ret.push({ intertype: 'value', type: segment[0].text, value: null, ident: toNiceIdent('%') + anonymousIndex }); Types.needAnalysis[ret.type] = 0; anonymousIndex ++; } } else if (segment[1].text in PARSABLE_LLVM_FUNCTIONS) { ret.push(parseLLVMFunctionCall(segment)); } else { if (segment[2] && segment[2].text == 'to') { // part of bitcast params segment = segment.slice(0, 2); } while (segment.length > 2) { segment[0].text += segment[1].text; segment.splice(1, 1); // TODO: merge tokens nicely } ret.push({ intertype: 'value', type: segment[0].text, value: segment[1], ident: toNiceIdent(parseNumerical(segment[1].text)) }); Types.needAnalysis[ret.type] = 0; // } else { // throw "what is this params token? " + JSON.stringify(segment); } } return ret; } function finalizeParam(param) { if (param.intertype in PARSABLE_LLVM_FUNCTIONS) { return finalizeLLVMFunctionCall(param); } else if (param.intertype === 'jsvalue') { return param.ident; } else { return toNiceIdent(param.ident); } } // Segment ==> Parameter function parseLLVMSegment(segment) { var type; if (segment.length == 1) { if (isType(segment[0].text)) { Types.needAnalysis[segment[0].text] = 0; return { intertype: 'type', ident: toNiceIdent(segment[0].text), type: segment[0].text }; } else { return { intertype: 'value', ident: toNiceIdent(segment[0].text), type: 'i32' }; } } else if (segment[1].type && segment[1].type == '{') { type = segment[0].text; Types.needAnalysis[type] = 0; return { intertype: 'structvalue', values: splitTokenList(segment[1].tokens).map(parseLLVMSegment), type: type }; } else if (segment[0].text in PARSABLE_LLVM_FUNCTIONS) { return parseLLVMFunctionCall([{text: '?'}].concat(segment)); } else if (segment[1].text in PARSABLE_LLVM_FUNCTIONS) { return parseLLVMFunctionCall(segment); } else if (segment[1].text === 'blockaddress') { return parseBlockAddress(segment); } else { type = segment[0].text; Types.needAnalysis[type] = 0; return { intertype: 'value', ident: toNiceIdent(segment[1].text), type: segment[0].text }; } } function cleanSegment(segment) { while (segment.length >= 2 && ['noalias', 'sret', 'nocapture', 'nest', 'zeroext', 'signext'].indexOf(segment[1].text) != -1) { segment.splice(1, 1); } return segment; } PARSABLE_LLVM_FUNCTIONS = set('getelementptr', 'bitcast', 'inttoptr', 'ptrtoint', 'mul', 'icmp', 'zext', 'sub', 'add', 'div'); // Parses a function call of form // TYPE functionname MODIFIERS (...) // e.g. // i32* getelementptr inbounds (...) function parseLLVMFunctionCall(segment) { segment = segment.slice(0); segment = cleanSegment(segment); // Remove additional modifiers var variant = null; if (!segment[2] || !segment[2].item) { variant = segment.splice(2, 1)[0]; if (variant && variant.text) variant = variant.text; // needed for mathops } assertTrue(['inreg', 'byval'].indexOf(segment[1].text) == -1); assert(segment[1].text in PARSABLE_LLVM_FUNCTIONS); while (!segment[2].item) { segment.splice(2, 1); // Remove modifiers if (!segment[2]) throw 'Invalid segment!'; } var intertype = segment[1].text; var type = segment[0].text; if (type === '?') { if (intertype === 'getelementptr') { type = '*'; // a pointer, we can easily say, this is } } var ret = { intertype: intertype, variant: variant, type: type, params: parseParamTokens(segment[2].item.tokens) }; Types.needAnalysis[ret.type] = 0; ret.ident = toNiceIdent(ret.params[0].ident); return ret; } // Gets an array of tokens, we parse out the first // 'ident' - either a simple ident of one token, or // an LLVM internal function that generates an ident. // We shift out of the array list the tokens that // we ate. function eatLLVMIdent(tokens) { var ret; if (tokens[0].text in PARSABLE_LLVM_FUNCTIONS) { ret = parseLLVMFunctionCall([{text: 'i0'}].concat(tokens.slice(0,2))).ident; // TODO: Handle more cases, return a full object, process it later tokens.shift(); tokens.shift(); } else { ret = tokens[0].text; tokens.shift(); } return ret; } function cleanOutTokens(filterOut, tokens, index) { while (filterOut.indexOf(tokens[index].text) != -1) { tokens.splice(index, 1); } } function cleanOutTokensSet(filterOut, tokens, index) { while (tokens[index].text in filterOut) { tokens.splice(index, 1); } } function _IntToHex(x) { assert(x >= 0 && x <= 15); if (x <= 9) { return String.fromCharCode('0'.charCodeAt(0) + x); } else { return String.fromCharCode('A'.charCodeAt(0) + x - 10); } } function IEEEUnHex(stringy) { stringy = stringy.substr(2); // leading '0x'; if (stringy.replace(/0/g, '') === '') return 0; while (stringy.length < 16) stringy = '0' + stringy; assert(stringy.length === 16, 'Can only unhex 16-digit double numbers, nothing platform-specific'); var top = eval('0x' + stringy[0]); var neg = !!(top & 8); // sign if (neg) { stringy = _IntToHex(top & ~8) + stringy.substr(1); } var a = eval('0x' + stringy.substr(0, 8)); // top half var b = eval('0x' + stringy.substr(8)); // bottom half var e = a >> ((52 - 32) & 0x7ff); // exponent a = a & 0xfffff; if (e === 0x7ff) { if (a == 0 && b == 0) { return neg ? '-Infinity' : 'Infinity'; } else { return 'NaN'; } } e -= 1023; // offset var absolute = ((((a | 0x100000) * 1.0) / Math.pow(2,52-32)) * Math.pow(2, e)) + (((b * 1.0) / Math.pow(2, 52)) * Math.pow(2, e)); return (absolute * (neg ? -1 : 1)).toString(); } function parseNumerical(value, type) { if ((!type || type == 'double' || type == 'float') && (value.substr && value.substr(0,2) == '0x')) { // Hexadecimal double value, as the llvm docs say, // "The one non-intuitive notation for constants is the hexadecimal form of floating point constants." value = IEEEUnHex(value); } else if (value == 'null') { // NULL *is* 0, in C/C++. No JS null! (null == 0 is false, etc.) value = '0'; } else if (value === 'true') { return '1'; } else if (value === 'false') { return '0'; } if (isNumber(value)) { return eval(value).toString(); // will change e.g. 5.000000e+01 to 50 } else { return value; } } // \0Dsometext is really '\r', then sometext // This function returns an array of int values function parseLLVMString(str) { var ret = []; var i = 0; while (i < str.length) { var chr = str[i]; if (chr != '\\') { ret.push(chr.charCodeAt(0)); i++; } else { ret.push(eval('0x' + str[i+1]+str[i+2])); i += 3; } } return ret; } function getLabelIds(labels) { return labels.map(function(label) { return label.ident }); } //! Returns the size of a field, as C/C++ would have it (in 32-bit, //! for now). //! @param field The field type, by name //! @param alone Whether this is inside a structure (so padding is //! used) or alone (line in char*, where no padding is done). function getNativeFieldSize(field, alone) { if (QUANTUM_SIZE == 1) return 1; var size = { '_i1': 1, '_i8': 1, '_i16': 2, '_i32': 4, '_i64': 8, "_float": 4, "_double": 8 }['_'+field]; // add '_' since float&double confuse closure compiler as keys if (!size && field[field.length-1] == '*') { size = QUANTUM_SIZE; // A pointer } if (!alone) size = Math.max(size, QUANTUM_SIZE); return size; } function cleanLabel(label) { if (label[0] == 'B') { return label.substr(5); } else { return label; } } function calcAllocatedSize(type) { if (pointingLevels(type) == 0 && isStructType(type)) { return Types.types[type].flatSize; // makeEmptyStruct(item.allocatedType).length; } else { return getNativeFieldSize(type, true); // We can really get away with '1', though, at least on the stack... } } // Generates the type signature for a structure, for each byte, the type that is there. // i32, 0, 0, 0 - for example, an int32 is here, then nothing to do for the 3 next bytes, naturally function generateStructTypes(type) { if (isArray(type)) return type; // already in the form of [type, type,...] if (Runtime.isNumberType(type) || isPointerType(type)) { return [type];//.concat(zeros(getNativeFieldSize(type))); } var typeData = Types.types[type]; assert(typeData, 'invalid type in generateStructTypes: ' + type); var fields = typeData.fields; var ret = []; for (var i = 0; i < fields.length; i++) { ret = ret.concat(generateStructTypes(fields[i])); if (i < fields.length-1) { ret = ret.concat(zeros(typeData.flatIndexes[i+1] - ret.length)); } } return ret.concat(zeros(typeData.flatSize - ret.length)); } // Flow blocks function recurseBlock(block, func) { var ret = []; if (block.type == 'reloop') { ret.push(func(block.inner)); } else if (block.type == 'multiple') { block.entryLabels.forEach(function(entryLabel) { ret.push(func(entryLabel.block)) }); } ret.push(func(block.next)); return ret; } function getActualLabelId(labelId) { return labelId.split('|').slice(-1)[0]; } // Misc function indentify(text, indent) { if (text.length > 1024*1024) return text; // Don't try to indentify huge strings - we may run out of memory if (typeof indent === 'number') { var len = indent; indent = ''; for (var i = 0; i < len; i++) indent += ' '; } return text.replace(/\n/g, '\n' + indent); } // Correction tools function correctSpecificSign() { assert(!(CORRECT_SIGNS >= 2 && !Debugging.on), 'Need debugging for line-specific corrections'); if (!Framework.currItem) return false; return (CORRECT_SIGNS === 2 && Debugging.getIdentifier(Framework.currItem.lineNum) in CORRECT_SIGNS_LINES) || (CORRECT_SIGNS === 3 && !(Debugging.getIdentifier(Framework.currItem.lineNum) in CORRECT_SIGNS_LINES)); } function correctSigns() { return CORRECT_SIGNS === 1 || correctSpecificSign(); } function correctSpecificOverflow() { assert(!(CORRECT_OVERFLOWS >= 2 && !Debugging.on), 'Need debugging for line-specific corrections'); if (!Framework.currItem) return false; return (CORRECT_OVERFLOWS === 2 && Debugging.getIdentifier(Framework.currItem.lineNum) in CORRECT_OVERFLOWS_LINES) || (CORRECT_OVERFLOWS === 3 && !(Debugging.getIdentifier(Framework.currItem.lineNum) in CORRECT_OVERFLOWS_LINES)); } function correctOverflows() { return CORRECT_OVERFLOWS === 1 || correctSpecificOverflow(); } function correctSpecificRounding() { assert(!(CORRECT_ROUNDINGS >= 2 && !Debugging.on), 'Need debugging for line-specific corrections'); if (!Framework.currItem) return false; return (CORRECT_ROUNDINGS === 2 && Debugging.getIdentifier(Framework.currItem.lineNum) in CORRECT_ROUNDINGS_LINES) || (CORRECT_ROUNDINGS === 3 && !(Debugging.getIdentifier(Framework.currItem.lineNum) in CORRECT_ROUNDINGS_LINES)); } function correctRoundings() { return CORRECT_ROUNDINGS === 1 || correctSpecificRounding(); } function checkSpecificSafeHeap() { assert(!(SAFE_HEAP >= 2 && !Debugging.on), 'Need debugging for line-specific checks'); if (!Framework.currItem) return false; return (SAFE_HEAP === 2 && Debugging.getIdentifier(Framework.currItem.lineNum) in SAFE_HEAP_LINES) || (SAFE_HEAP === 3 && !(Debugging.getIdentifier(Framework.currItem.lineNum) in SAFE_HEAP_LINES)); } function checkSafeHeap() { return SAFE_HEAP === 1 || checkSpecificSafeHeap(); } function getHeapOffset(offset, type) { if (USE_TYPED_ARRAYS !== 2) { return offset; } else { if (getNativeFieldSize(type) > 4) { type = 'i32'; // XXX we emulate 64-bit values as 32 } return '((' + offset + ')>>' + (Math.log(getNativeFieldSize(type, true))/Math.LN2) + ')'; } } // See makeSetValue function makeGetValue(ptr, pos, type, noNeedFirst, unsigned) { if (isStructType(type)) { var typeData = Types.types[type]; var ret = []; for (var i = 0; i < typeData.fields.length; i++) { ret.push('f' + i + ': ' + makeGetValue(ptr, pos + typeData.flatIndexes[i], typeData.fields[i], noNeedFirst, unsigned)); } return '{ ' + ret.join(', ') + ' }'; } var offset = calcFastOffset(ptr, pos, noNeedFirst); if (SAFE_HEAP) { if (type !== 'null' && type[0] !== '#') type = '"' + safeQuote(type) + '"'; if (type[0] === '#') type = type.substr(1); return 'SAFE_HEAP_LOAD(' + offset + ', ' + type + ', ' + (!!unsigned+0) + ', ' + (!checkSafeHeap()+0) + ')'; } else { return makeGetSlabs(ptr, type, false, unsigned)[0] + '[' + getHeapOffset(offset, type) + ']'; } } function indexizeFunctions(value, type) { assert((type && type !== '?') || (typeof value === 'string' && value.substr(0, 6) === 'CHECK_'), 'No type given for function indexizing: ' + [value, type]); assert(value !== type, 'Type set to value: ' + [value, type]); if (type && isFunctionType(type) && value[0] === '_') { // checking for _ differentiates from $ (local vars) if (BUILD_AS_SHARED_LIB) { return '(FUNCTION_TABLE_OFFSET + ' + Functions.getIndex(value) + ')'; } else { return Functions.getIndex(value); } } return value; } //! @param ptr The pointer. Used to find both the slab and the offset in that slab. If the pointer //! is just an integer, then this is almost redundant, but in general the pointer type //! may in the future include information about which slab as well. So, for now it is //! possible to put |0| here, but if a pointer is available, that is more future-proof. //! @param pos The position in that slab - the offset. Added to any offset in the pointer itself. //! @param value The value to set. //! @param type A string defining the type. Used to find the slab (IHEAP, FHEAP, etc.). //! 'null' means, in the context of SAFE_HEAP, that we should accept all types; //! which means we should write to all slabs, ignore type differences if any on reads, etc. //! @param noNeedFirst Whether to ignore the offset in the pointer itself. function makeSetValue(ptr, pos, value, type, noNeedFirst, ignore) { if (isStructType(type)) { var typeData = Types.types[type]; var ret = []; for (var i = 0; i < typeData.fields.length; i++) { ret.push(makeSetValue(ptr, pos + typeData.flatIndexes[i], value[i], typeData.fields[i], noNeedFirst)); } return ret.join('; '); } value = indexizeFunctions(value, type); var offset = calcFastOffset(ptr, pos, noNeedFirst); if (SAFE_HEAP) { if (type !== 'null' && type[0] !== '#') type = '"' + safeQuote(type) + '"'; if (type[0] === '#') type = type.substr(1); return 'SAFE_HEAP_STORE(' + offset + ', ' + value + ', ' + type + ', ' + ((!checkSafeHeap() || ignore)|0) + ');'; } else { return makeGetSlabs(ptr, type, true).map(function(slab) { return slab + '[' + getHeapOffset(offset, type) + ']=' + value }).join('; ') + ';'; } } function makeSetValues(ptr, pos, value, type, num) { function safety(where) { where = where || getFastValue(ptr, '+', pos) + '+$mspi$'; return ';' + (SAFE_HEAP ? 'SAFE_HEAP_ACCESS(' + where + ', ' + type + ', 1)' : ''); } if (USE_TYPED_ARRAYS in set(0, 1)) { return 'for (var $mspi$ = 0; $mspi$ < ' + num + '; $mspi$++) {\n' + makeSetValue(ptr, getFastValue(pos, '+', '$mspi$'), value, type) + ';\n}'; } else { // USE_TYPED_ARRAYS == 2 /* return 'for (var $mspi$ = 0; $mspi$ < ' + num + '; $mspi$++) {\n' + ' HEAP8[' + getFastValue(ptr, '+', pos) + '+$mspi$] = ' + value + safety() + '\n}'; */ return '' + 'var $dest$, $stop$, $stop4$, $fast$, $value4$;\n' + '$dest$ = ' + getFastValue(ptr, '+', pos) + ';\n' + '$stop$ = $dest$ + ' + num + ';\n' + '$value4$ = ' + value + ';\n' + 'if ($value4$ < 0) $value4$ += 256;\n' + '$value4$ = $value4$ + ($value4$<<8) + ($value4$<<16) + ($value4$*16777216);\n' + 'while ($dest$%4 !== 0 && $dest$ < $stop$) {\n' + ' ' + safety('$dest$') + '; HEAP8[$dest$++] = ' + value + ';\n' + '}\n' + '$dest$ >>= 2;\n' + '$stop4$ = $stop$ >> 2;\n' + 'while ($dest$ < $stop4$) {\n' + safety('($dest$<<2)+0', '($src$<<2)+0') + ';' + safety('($dest$<<2)+1', '($src$<<2)+1') + ';' + safety('($dest$<<2)+2', '($src$<<2)+2') + ';' + safety('($dest$<<2)+3', '($src$<<2)+3') + (SAFE_HEAP ? ';\n' : '') + ' HEAP32[$dest$++] = $value4$;\n' + // this is the fast inner loop we try hard to stay in '}\n' + '$dest$ <<= 2;\n' + 'while ($dest$ < $stop$) {\n' + ' ' + safety('$dest$') + '; HEAP8[$dest$++] = ' + value + ';\n' + '}' } } function makeCopyValues(dest, src, num, type, modifier) { function safety(to, from) { to = to || (dest + '+' + '$mcpi$'); from = from || (src + '+' + '$mcpi$'); return (SAFE_HEAP ? 'SAFE_HEAP_COPY_HISTORY(' + to + ', ' + from + ')' : ''); } if (USE_TYPED_ARRAYS in set(0, 1)) { return 'for (var $mcpi$ = 0; $mcpi$ < ' + num + '; $mcpi$++) {\n' + (type !== 'null' ? makeSetValue(dest, '$mcpi$', makeGetValue(src, '$mcpi$', type) + (modifier || ''), type) : // Null is special-cased: We copy over all heaps makeGetSlabs(dest, 'null', true).map(function(slab) { return slab + '[' + dest + '+$mcpi$]=' + slab + '[' + src + '+$mcpi$]' }).join('; ') + '; ' + safety() ) + '\n' + '}'; } else { // USE_TYPED_ARRAYS == 2 /* return 'for (var $mcpi$ = 0; $mcpi$ < ' + num + '; $mcpi$++) {\n' + ' HEAP8[' + dest + '+$mcpi$] = HEAP8[' + src + '+$mcpi$]; ' + safety() + ';\n' + '}'; */ return '' + 'var $src$, $dest$, $stop$, $stop4$, $fast$;\n' + '$src$ = ' + src + ';\n' + '$dest$ = ' + dest + ';\n' + '$stop$ = $src$ + ' + num + ';\n' + '$fast$ = ($dest$%4) === ($src$%4);\n' + 'while ($src$%4 !== 0 && $src$ < $stop$) {\n' + ' ' + safety('$dest$', '$src$') + '; HEAP8[$dest$++] = HEAP8[$src$++];\n' + '}\n' + 'if ($fast$) {\n' + ' $src$ >>= 2;\n' + ' $dest$ >>= 2;\n' + ' $stop4$ = $stop$ >> 2;\n' + ' while ($src$ < $stop4$) {\n' + safety('($dest$<<2)+0', '($src$<<2)+0') + ';' + safety('($dest$<<2)+1', '($src$<<2)+1') + ';' + safety('($dest$<<2)+2', '($src$<<2)+2') + ';' + safety('($dest$<<2)+3', '($src$<<2)+3') + (SAFE_HEAP ? ';\n' : '') + ' HEAP32[$dest$++] = HEAP32[$src$++];\n' + // this is the fast inner loop we try hard to stay in ' }\n' + ' $src$ <<= 2;\n' + ' $dest$ <<= 2;\n' + '}\n' + 'while ($src$ < $stop$) {\n' + ' ' + safety('$dest$', '$src$') + '; HEAP8[$dest$++] = HEAP8[$src$++];\n' + '}' } return null; } // Given two values and an operation, returns the result of that operation. // Tries to do as much as possible at compile time. function getFastValue(a, op, b) { if (isNumber(a) && isNumber(b)) { return eval(a + op + b); } if (op == '*') { if (!a) a = 1; if (!b) b = 1; if (a == 0 || b == 0) { return 0; } else if (a == 1) { return b; } else if (b == 1) { return a; } } else if (op in set('+', '-')) { if (!a) a = 0; if (!b) b = 0; if (a == 0) { return b; } else if (b == 0) { return a; } } return a + op + b; } function calcFastOffset(ptr, pos, noNeedFirst) { var offset = noNeedFirst ? '0' : makeGetPos(ptr); return getFastValue(offset, '+', pos); } function makeGetPos(ptr) { return ptr; } function makePointer(slab, pos, allocator, type) { assert(type, 'makePointer requires type info'); if (slab.substr(0, 4) === 'HEAP' || (USE_TYPED_ARRAYS == 1 && slab in set('IHEAP', 'FHEAP'))) return pos; var types = generateStructTypes(type); // compress type info and data if possible var de; try { // compress all-zeros into a number (which will become zeros(..)). // note that we cannot always eval the slab, e.g., if it contains ident,0,0 etc. In that case, no compression TODO: ensure we get arrays here, not str var evaled = typeof slab === 'string' ? eval(slab) : slab; de = dedup(evaled); if (de.length === 1 && de[0] === 0) { slab = evaled.length; } // TODO: if not all zeros, at least filter out items with type === 0. requires cleverness to know how to skip at runtime though. also // be careful of structure padding } catch(e){} de = dedup(types); if (de.length === 1) { types = de[0]; } else if (de.length === 2 && typeof slab === 'number') { // If slab is all zeros, we can compress types even if we have i32,0,0,0,i32,0,0,0 etc. - we do not need the zeros de = de.filter(function(x) { return x !== 0 }); if (de.length === 1) { types = de[0]; } } return 'allocate(' + slab + ', ' + JSON.stringify(types) + (allocator ? ', ' + allocator : '') + ')'; } function makeGetSlabs(ptr, type, allowMultiple, unsigned) { assert(type); if (!USE_TYPED_ARRAYS) { return ['HEAP']; } else if (USE_TYPED_ARRAYS == 1) { if (type in Runtime.FLOAT_TYPES || type === 'int64') { // XXX should be i64, no? return ['FHEAP']; } else if (type in Runtime.INT_TYPES || isPointerType(type)) { return ['IHEAP']; } else { assert(allowMultiple, 'Unknown slab type and !allowMultiple: ' + type); return ['IHEAP', 'FHEAP']; // unknown, so assign to both typed arrays } } else { // USE_TYPED_ARRAYS == 2) if (isPointerType(type)) type = 'i32'; // Hardcoded 32-bit function warn64() { if (!Debugging.shownUTA2_64Warning) { dprint('WARNING: .ll contains i64 or double values. These 64-bit values are dangerous in USE_TYPED_ARRAYS == 2.'); dprint(' We store i64 as i32, and double as float. This can cause serious problems!'); Debugging.shownUTA2_64Warning = true; } } switch(type) { case 'i1': case 'i8': return [unsigned ? 'HEAPU8' : 'HEAP8']; break; case 'i16': return [unsigned ? 'HEAPU16' : 'HEAP16']; break; case 'i64': warn64(); case 'i32': return [unsigned ? 'HEAPU32' : 'HEAP32']; break; case 'float': return ['HEAPF32']; break; case 'double': warn64(); return ['HEAPF32']; break; default: { throw 'what, exactly, can we do for unknown types in TA2?! ' + new Error().stack; } } } return []; } function finalizeLLVMFunctionCall(item) { switch(item.intertype) { case 'getelementptr': // TODO finalizeLLVMParameter on the ident and the indexes? return makePointer(makeGetSlabs(item.ident, item.type)[0], getGetElementPtrIndexes(item), null, item.type); case 'bitcast': case 'inttoptr': case 'ptrtoint': return finalizeLLVMParameter(item.params[0]); case 'icmp': case 'mul': case 'zext': case 'add': case 'sub': case 'div': var temp = { op: item.intertype, variant: item.variant, type: item.type }; for (var i = 1; i <= 4; i++) { if (item.params[i-1]) { temp['param' + i] = item.params[i-1]; } } return processMathop(temp); default: throw 'Invalid function to finalize: ' + dump(item.intertype); } } function getGetElementPtrIndexes(item) { var type = item.params[0].type; item.params = item.params.map(finalizeLLVMParameter); var ident = item.params[0]; // struct pointer, struct*, and getting a ptr to an element in that struct. Param 1 is which struct, then we have items in that // struct, and possibly further substructures, all embedded // can also be to 'blocks': [8 x i32]*, not just structs type = removePointing(type); var indexes = [makeGetPos(ident)]; var offset = item.params[1]; if (offset != 0) { if (isStructType(type)) { indexes.push(getFastValue(Types.types[type].flatSize, '*', offset)); } else { indexes.push(getFastValue(getNativeFieldSize(type, true), '*', offset)); } } item.params.slice(2, item.params.length).forEach(function(arg) { var curr = arg; // TODO: If index is constant, optimize var typeData = Types.types[type]; if (isStructType(type) && typeData.needsFlattening) { if (typeData.flatFactor) { indexes.push(getFastValue(curr, '*', typeData.flatFactor)); } else { if (isNumber(curr)) { indexes.push(typeData.flatIndexes[curr]); } else { indexes.push(toNiceIdent(type) + '___FLATTENER[' + curr + ']'); // TODO: If curr is constant, optimize out the flattener struct } } } else { if (curr != 0) { indexes.push(curr); } } if (!isNumber(curr) || parseInt(curr) < 0) { // We have a *variable* to index with, or a negative number. In both // cases, in theory we might need to do something dynamic here. FIXME? // But, most likely all the possible types are the same, so do that case here now... for (var i = 1; i < typeData.fields.length; i++) { assert(typeData.fields[0] === typeData.fields[i]); } curr = 0; } type = typeData ? typeData.fields[curr] : ''; }); var ret = indexes[0]; for (var i = 1; i < indexes.length; i++) { ret = getFastValue(ret, '+', indexes[i]); } ret = handleOverflow(ret, 32); // XXX - we assume a 32-bit arch here. If you fail on this, change to 64 return ret; } function handleOverflow(text, bits) { if (!bits) return text; var correct = correctOverflows(); warn(!correct || bits <= 32, 'Cannot correct overflows of this many bits: ' + bits + ' at line ' + Framework.currItem.lineNum); if (CHECK_OVERFLOWS) return 'CHECK_OVERFLOW(' + text + ', ' + bits + ', ' + Math.floor(correctSpecificOverflow() && !AUTO_OPTIMIZE) + ( AUTO_OPTIMIZE ? ', "' + Debugging.getIdentifier(Framework.currItem.lineNum) + '"' : '' ) + ')'; if (!correct) return text; if (bits <= 32) { return '((' + text + ')&' + (Math.pow(2, bits) - 1) + ')'; } else { return text; // We warned about this earlier } } // From parseLLVMSegment function finalizeLLVMParameter(param) { var ret; if (isNumber(param)) { return param; } else if (typeof param === 'string') { return toNiceIdentCarefully(param); } else if (param.intertype in PARSABLE_LLVM_FUNCTIONS) { ret = finalizeLLVMFunctionCall(param); } else if (param.intertype == 'value') { ret = parseNumerical(param.ident); } else if (param.intertype == 'structvalue') { ret = param.values.map(finalizeLLVMParameter); } else if (param.intertype === 'blockaddress') { return finalizeBlockAddress(param); } else if (param.intertype === 'type') { return param.ident; // we don't really want the type here } else { throw 'invalid llvm parameter: ' + param.intertype; } assert(param.type || (typeof param === 'string' && param.substr(0, 6) === 'CHECK_'), 'Missing type for param: ' + dump(param)); return indexizeFunctions(ret, param.type); } function makeSignOp(value, type, op) { if (!value) return value; var bits, full; if (type in Runtime.INT_TYPES) { bits = parseInt(type.substr(1)); full = op + 'Sign(' + value + ', ' + bits + ', ' + Math.floor(correctSpecificSign() && !AUTO_OPTIMIZE) + ( AUTO_OPTIMIZE ? ', "' + Debugging.getIdentifier(Framework.currItem.lineNum) + '"' : '' ) + ')'; // Always sign/unsign constants at compile time, regardless of CHECK/CORRECT if (isNumber(value)) { return eval(full).toString(); } } if (!correctSigns() && !CHECK_SIGNS) return value; if (type in Runtime.INT_TYPES) { // shortcuts for 32-bit case if (bits === 32 && !CHECK_SIGNS) { if (op === 're') { return '((' + value + ')|0)'; } else { return '((' + value + ')>>>0)'; } } return full; } return value; } function makeRounding(value, bits, signed) { // C rounds to 0 (-5.5 to -5, +5.5 to 5), while JS has no direct way to do that. // With 32 bits and less, and a signed value, |0 will round it like C does. if (bits && bits <= 32 && signed) return '(('+value+')|0)'; // If the value may be negative, and we care about proper rounding, then use a slow but correct function if (signed && correctRoundings()) return 'cRound(' + value + ')'; // Either this must be positive, so Math.Floor is correct, or we don't care return 'Math.floor(' + value + ')'; } function isUnsignedOp(op, variant) { return op in set('udiv', 'urem', 'uitofp', 'zext', 'lshr') || (variant && variant[0] == 'u'); } function isSignedOp(op, variant) { return op in set('sdiv', 'srem', 'sitofp', 'sext', 'ashr') || (variant && variant[0] == 's'); } function processMathop(item) { with(item) { var paramTypes = ['', '', '', '']; for (var i = 1; i <= 4; i++) { if (item['param'+i]) { paramTypes[i-1] = item['param'+i].type || type; item['ident'+i] = finalizeLLVMParameter(item['param'+i]); if (!isNumber(item['ident'+i])) { item['ident'+i] = '(' + item['ident'+i] + ')'; // we may have nested expressions. So enforce the order of operations we want } } else { item['ident'+i] = null; // just so it exists for purposes of reading ident2 etc. later on, and no exception is thrown } } if (isUnsignedOp(op, variant)) { ident1 = makeSignOp(ident1, paramTypes[0], 'un'); ident2 = makeSignOp(ident2, paramTypes[1], 'un'); } else if (isSignedOp(op, variant)) { ident1 = makeSignOp(ident1, paramTypes[0], 're'); ident2 = makeSignOp(ident2, paramTypes[1], 're'); } var bits = null; if (item.type[0] === 'i') { bits = parseInt(item.type.substr(1)); } var bitsLeft = ident2 ? ident2.substr(2, ident2.length-3) : null; // remove (i and ), to leave number. This value is important in float ops switch (op) { // basic integer ops case 'add': return handleOverflow(ident1 + ' + ' + ident2, bits); case 'sub': return handleOverflow(ident1 + ' - ' + ident2, bits); case 'sdiv': case 'udiv': return makeRounding(ident1 + '/' + ident2, bits, op[0] === 's'); case 'mul': return handleOverflow(ident1 + ' * ' + ident2, bits); case 'urem': case 'srem': return ident1 + ' % ' + ident2; case 'or': { if (bits > 32) { assert(bits === 64, 'Too many bits for or: ' + bits); dprint('Warning: 64 bit OR - precision limit may be hit'); return 'Runtime.or64(' + ident1 + ', ' + ident2 + ')'; } return ident1 + ' | ' + ident2; } case 'and': { if (bits > 32) { assert(bits === 64, 'Too many bits for and: ' + bits); dprint('Warning: 64 bit AND - precision limit may be hit'); return 'Runtime.and64(' + ident1 + ', ' + ident2 + ')'; } return ident1 + ' & ' + ident2; } case 'xor': { if (bits > 32) { assert(bits === 64, 'Too many bits for xor: ' + bits); dprint('Warning: 64 bit XOR - precision limit may be hit'); return 'Runtime.xor64(' + ident1 + ', ' + ident2 + ')'; } return ident1 + ' ^ ' + ident2; } case 'shl': { // Note: Increases in size may reach the 32-bit limit... where our sign can flip. But this may be expected by the code... /* if (bits >= 32) { if (CHECK_SIGNS && !CORRECT_SIGNS) return 'shlSignCheck(' + ident1 + ', ' + ident2 + ')'; if (CORRECT_SIGNS) { var mul = 'Math.pow(2, ' + ident2 + ')'; if (isNumber(ident2)) mul = eval(mul); return ident1 + ' * ' + mul; } } */ if (bits > 32) return ident1 + '*Math.pow(2,' + ident2 + ')'; return ident1 + ' << ' + ident2; } case 'ashr': { if (bits > 32) return ident1 + '/Math.pow(2,' + ident2 + ')'; return ident1 + ' >> ' + ident2; } case 'lshr': { if (bits > 32) return ident1 + '/Math.pow(2,' + ident2 + ')'; return ident1 + ' >>> ' + ident2; } // basic float ops case 'fadd': return ident1 + ' + ' + ident2; case 'fsub': return ident1 + ' - ' + ident2; case 'fdiv': return ident1 + ' / ' + ident2; case 'fmul': return ident1 + ' * ' + ident2; case 'uitofp': case 'sitofp': return ident1; case 'fptoui': case 'fptosi': return makeRounding(ident1, bitsLeft, op === 'fptosi'); // TODO: We sometimes generate false instead of 0, etc., in the *cmps. It seemed slightly faster before, but worth rechecking // Note that with typed arrays, these become 0 when written. So that is a potential difference with non-typed array runs. case 'icmp': { switch (variant) { case 'uge': case 'sge': return ident1 + ' >= ' + ident2; case 'ule': case 'sle': return ident1 + ' <= ' + ident2; case 'ugt': case 'sgt': return ident1 + ' > ' + ident2; case 'ult': case 'slt': return ident1 + ' < ' + ident2; // We use loose comparisons, which allows false == 0 to be true, etc. Ditto in fcmp case 'ne': case 'eq': { // We must sign them, so we do not compare -1 to 255 (could have unsigned them both too) // since LLVM tells us if <=, >= etc. comparisons are signed, but not == and !=. ident1 = makeSignOp(ident1, type, 're'); ident2 = makeSignOp(ident2, type, 're'); return ident1 + (variant === 'eq' ? '==' : '!=') + ident2; } default: throw 'Unknown icmp variant: ' + variant; } } case 'fcmp': { switch (variant) { // TODO 'o' ones should be 'ordered (no NaN) and', // 'u' ones should be 'unordered or'. case 'uge': case 'oge': return ident1 + ' >= ' + ident2; case 'ule': case 'ole': return ident1 + ' <= ' + ident2; case 'ugt': case 'ogt': return ident1 + ' > ' + ident2; case 'ult': case 'olt': return ident1 + ' < ' + ident2; case 'une': case 'one': return ident1 + ' != ' + ident2; case 'ueq': case 'oeq': return ident1 + ' == ' + ident2; case 'ord': return '!isNaN(' + ident1 + ') && !isNaN(' + ident2 + ')'; case 'uno': return 'isNaN(' + ident1 + ') || isNaN(' + ident2 + ')'; case 'true': return '1'; default: throw 'Unknown fcmp variant: ' + variant; } } // Note that zext has sign checking, see above. We must guard against -33 in i8 turning into -33 in i32 // then unsigning that i32... which would give something huge. case 'zext': case 'fpext': case 'sext': return ident1; case 'fptrunc': return ident1; case 'trunc': { // Unlike extending, which we just 'do' (by doing nothing), // truncating can change the number, e.g. by truncating to an i1 // in order to get the first bit assert(ident2[1] == 'i'); assert(bitsLeft <= 32, 'Cannot truncate to more than 32 bits, since we use a native & op'); return '((' + ident1 + ') & ' + (Math.pow(2, bitsLeft)-1) + ')'; } case 'select': return ident1 + ' ? ' + ident2 + ' : ' + ident3; case 'ptrtoint': case 'inttoptr': { var ret = ''; if (QUANTUM_SIZE == 1) { if (!Debugging.shownPtrtointWarning) { dprint('WARNING: .ll contains ptrtoint and/or inttoptr. These may be dangerous in QUANTUM == 1.'); dprint(' The safest thing is to investigate every appearance, and modify the source code to avoid this.'); dprint(' Emscripten will print a list of the .ll lines, and also annotate the .js.'); Debugging.shownPtrtointWarning = true; } dprint(' ' + op + ' on .ll line ' + item.lineNum); ret = ' /* Warning: ' + op + ', .ll line ' + item.lineNum + ' */'; } return ident1 + ret; } default: throw 'Unknown mathcmp op: ' + item.op; } } } // Walks through some intertype data, calling a function at every item. If // the function returns true, will stop the walk. // TODO: Use this in analyzer, possibly also in jsifier function walkInterdata(item, pre, post, obj) { if (!item || !item.intertype) return false; if (pre(item, obj)) return true; var originalObj = obj; if (obj.replaceWith) obj = obj.replaceWith; // allow pre to replace the object we pass to all its children if (item.value && walkInterdata(item.value, pre, post, obj)) return true; var i; for (i = 1; i <= 4; i++) { if (item['param'+i] && walkInterdata(item['param'+i], pre, post, obj)) return true; } if (item.params) { for (i = 0; i <= item.params.length; i++) { if (walkInterdata(item.params[i], pre, post, obj)) return true; } } return post(item, originalObj, obj); } function parseBlockAddress(segment) { return { intertype: 'blockaddress', func: toNiceIdent(segment[2].item.tokens[0].text), label: toNiceIdent(segment[2].item.tokens[2].text), type: 'i32' }; } function finalizeBlockAddress(param) { return Functions.currFunctions[param.func].labelIds[param.label]; // XXX We rely on currFunctions here...? }