

Emscripten: An LLVM to
JavaScript Compiler

Alon Zakai
Mozilla

What? Why?

Compiling to JavaScript

● The web is everywhere
– PCs to iPads

– No plugins, no installation required

– Built on standards

● The web runs JavaScript

Existing Compilers to JavaScript

● Google Web Toolkit: Java (Gmail, etc.)
● CoffeeScript
● Pyjamas: Python
● SCM2JS: Scheme
● JSIL: .NET bytecode
● (and many more)

● But C and C++ are missing!

Emscripten

● Enables compiling C and C++ into JavaScript
● Written in JavaScript
● Open source

http://emscripten.org

https://github.com/kripken/emscripten

http://emscripten.org/

Demos!

● Bullet
● SQLite
● Python, Ruby, Lua

● Real-world code
– Large, complex codebases

● Manual ports exist
– Typically partial and not up to date

The Big Picture

C or C++

LLVM Bitcode

JavaScript

Low Level Virtual Machine (LLVM)

● A compiler project (cf. GCC)

● Intermediate Representation: LLVM bitcode
– Very well documented

– Great tools

● Much easier to compile LLVM bitcode than
compile C or C++ directly!

How?

Code Comparison

#include <stdio.h>

int main() {
 printf(“hello, world!\n”);
 return 0;
}

Code Comparison

@.str = private unnamed_addr constant [15 x i8]
 c"hello, world!\0A\00", align 1

define i32 @main() {
entry:
 %retval = alloca i32, align 4
 call i32 (i8*, ...)* @printf(i8* getelementptr
 inbounds ([15 x i8]* @.str, i32 0, i32 0))
 store i32 0, i32* %retval
 ret i32 %retval
}

Code Comparison

define i32 @main() {

entry:

 %retval = alloca i32,
 align 4

 call i32 (i8*, ...)*
 @printf (..)

 store i32 0, i32*
 %retval

 ret i32 %retval

}

function _main() {

 var _retval;

 _printf (..);

 _retval = 0;

 return _retval;

}

Code Generation Principles

● 1-to-1 translation as much as possible

● LLVM function calls become native JavaScript
function calls

● LLVM variables become native JavaScript
variables

Memory

● A single JavaScript array represents the entire
memory space

– HEAP[ptr] = 0;

– var x = HEAP[ptr];

– Pointers are simple integers

● This includes the stack
– However, variables on the stack are optimized

to native JavaScript variables when possible

Control Flow: Relooper
while (1) {
 switch (__label__) {
 case 1:
 var _x = 0;
 __label__ = 2;
 break;
 case 2:
 _x++;
 if (x > 10)

__label__ = 3;
 else
 __label__ = 2;
 break;
 case 3:
 printf(“done.\n”);
 return 0;
 }
}

var _x = 0;
while (_x <= 10)
 _x++;
printf(“done.\n”);
return 0;

Types / Semantics

● 5/2 in C/C++ gives 2
– But we get 2.5 in JS

● -1 == 255 if they are 8-bit integers in C/C++
– But we get false in JS

● x = 255; x++; gives 0 if x is uint8 in C/C++
– But we get 256 in JS

Types / Semantics

● C/C++, and LLVM bitcode, have types,
JavaScript does not

● Emscripten by default generates code that
corrects all of this

● But in practice, most code doesn't need it
– Profile-Guided Optimization (PGO) helps

Performance

Benchmark V8 V8 TA* SM SM TA

dlmalloc 8.57 3.19 4.00 1.80

fannkuch 78.17 2.92 6.10 4.95

fasta 18.22 1.56 3.65 2.67

memops 239.28 4.22 6.96 6.06

primes 4.64 2.16 2.59 2.48

raytrace 90.40 29.28 6.03 6.80

numbers are times slower than gcc 4.6.1, lower numbers are better

V8 = V8 (Chrome) SM = SpiderMonkey (Firefox) TA = Typed Arrays

* V8 TA Benchmarks were patched to work around V8's lack of .subarray

Performance

● Modern JavaScript engines can in many
cases be just 2-3X slower than native code

– Close to portable, memory-safe languages like
Java and C#, which are statically typed

● However, JavaScript engines do not always
reach that speed

– Bugs

– Differences between JS engines

– Various things JS engines are not good at yet

Advanced Optimizations
● struct X_t { char a; int b; };

X_t x = { 20, 500 };

– In C, x is [20, 0, 0, 0, 244, 1, 0, 0]

● Emscripten has various memory layouts:
– Default: [20, 0, 0, 0, 500, 0, 0, 0]

– Typed arrays, dual buffers: As default, plus

 [0, …] in the floating-point buffer

– Typed arrays, shared buffer: Identical to C

– Memory compression: [20, 500]

Conclusion

● C and C++ code can be compiled in an
effective way into JavaScript, and run on the
web

● Performance is good and improving, casting
doubt on the various “JavaScript replacements”

● The future: Compile everything into JavaScript!

http://emscripten.org

Thank you.

http://emscripten.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

