Emscripten: An LLVM-to-JavaScript Compiler

Alon Zakai
Mouzilla
azakai@mozilla.com

Abstract

We present Emscripten, an LLVM-to-JavaScript
compiler. FEmscripten compiles LLVM assem-
bly code into standard JavaScript, which opens
up two avenues for running code written in lan-
guages other than JavaScript on the web: (1)
Compile code written in a language directly
into LLVM bitcode, and then compile that into
JavaScript using Emscripten, or (2) Compile a
language’s entire runtime into LLVM and then
JavaScript, as in the previous approach, and then
use the compiled runtime to run code written
in that language. For example, the former ap-
proach can work for C and C++, while the latter
can work for Python; all three examples open up
new opportunities for running code on the web.

Emscripten itself is written in JavaScript and
is available under the MIT license (a per-
missive open source license), at http://www.
emscripten.org. As a compiler from LLVM
to JavaScript, the challenges in designing Em-
scripten are somewhat the reverse of the norm
— one must go from a low-level assembly into
a high-level language, and recreate parts of the
original high-level structure of the code that were
lost in the compilation to low-level LLVM. We
detail the algorithms used in Emscripten to deal
with those challenges.

(©2011 Alon Zakai. License: Creative Com-
mons Attribution-ShareAlike (CC BY-SA),
http://creativecommons.org/licenses/
by-sa/3.0/

1 Introduction

Since the mid 1990’s, JavaScript has been
present in most web browsers (sometimes with
minor variations and under slightly different
names, e.g., JScript in Internet Explorer), and
today it is well-supported on essentially all web
browsers, from desktop browsers like Internet
Explorer, Firefox, Chrome and Safari, to mo-
bile browsers on smartphones and tablets. To-
gether with HTML and CSS, JavaScript forms
the standards-based foundation of the web.

Running other programming languages on the
web has been suggested many times, and browser
plugins have allowed doing so, e.g., via the Java
and Flash plugins. However, plugins must be
manually installed and do not integrate in a per-
fect way with the outside HTML. Perhaps more
problematic is that they cannot run at all on
some platforms, for example, Java and Flash can-
not run on iOS devices such as the iPhone and
iPad. For those reasons, JavaScript remains the
primary programming language of the web.

There are, however, reasonable motivations
for running code from other programming lan-
guages on the web, for example, if one has a
large amount of existing code already written in
another language, or if one simply has a strong
preference for another language and perhaps is
more productive in it.

As a consequence, there have been work
on tools to compile languages into JavaScript.
Since JavaScript is present in essentially all web
browsers, by compiling one’s language of choice
into JavaScript, one can still generate content
that will run practically everywhere. Exam-

Page 1

ples of this approach include the Google Web
Toolkit [Google Web Toolkit], which compiles
Java into JavaScript and Pyjamas [Pyjamas],
which compiles Python into JavaScript; for a
comphrehensive list, see [Ashkenas]. Such tools
usually only allow a subset of the original lan-
guage to be compiled. For example, multi-
threaded code (with shared memory) is not pos-
sible on the web, so compiling code of that
sort is subject to not directly possible. There
are also often limitations of the conversion pro-
cess, for example, Pyjamas compiles Python to
JavaScript in a nearly 1-to-1 manner, and as a
consequence the underlying semantics are those
of JavaScript, not Python so for example division
of integers can yield unexpected results (it should
yield an integer in Python 2.x, but in JavaScript
and in Pyjamas a floating-point number can be
generated).

In this paper we present another project
along those lines: Emscripten, which com-
piles LLVM assembly code into JavaScript.
LLVM (the Low Level Virtual Machine,
[Low Level Virtual Machine]) is a compiler
project primarily focused on C, C+4 and
Objective-C. It compiles those languages
through a frontend (the main ones of which
are Clang and LLVM-GCC) into the LLVM
intermediary representation (which can be
machine-readable bitcode, or human-readable
assembly), and then passes it through a backend
which generates actual machine code for a
particular architecure. Emscripten plays the
role of a backend which targets JavaScript.

By using Emscripten, potentially many lan-
guages can be run on the web, using one of the
following methods:

e Compile code in a language recognized
by one of the existing LLVM frontends
into LLVM, and then compile that into
JavaScript using Emscripten. Frontends for
various languages exist, including many of
the most popular programming languages
such as C and C++, and also various new
and emerging languages (e.g., Rust).

e Compile the runtime used to parse and
execute code in a particular language into

LLVM, then compile that into JavaScript
using Emscripten. It is then possible to run
code in that runtime on the web. This is
a useful approach if a language’s runtime is
written in a language for which an LLVM
frontend exists, but the language iself has
no such frontend. For example, there is cur-
rently no frontend for Python, however it
is possible to compile CPython — the stan-
dard implementation of Python, written in
C — into JavaScript, and run Python code
on that (see Section ?77).

From a technical standpoint, one challenge in
designing and implementing Emscripten is that
it compiles a low-level language — LLVM assem-
bly — into a high-level one — JavaScript. This is
somethat the reverse of the usual situation one is
in when building a compiler, and leads to some
unique difficulties. For example, to get good
performance in JavaScript one must use natural
JavaScript code flow structures, like loops and
ifs, but those structures do not exist in LLVM
assembly (instead, what is present there is es-
sentially ‘flat’ code with goto commands). Em-
scripten must therefore reconstruct a high-level
representation from the low-level data it receives.

In theory that issue could have been avoided
by compiling a higher-level language into
JavaScript. For example, if compiling Java into
JavaScript (as the Google Web Toolkit does),
then one can benefit from the fact that Java’s
loops, ifs and so forth generally have a very direct
parallel in JavaScript. (Of course the downside
in that approach is it yields a compiler only for
Java.) Compiling LLVM into JavaScript is less
straightforward, but we will see later that it is
possible to reconstruct a substantial part of the
original high-level structure of the original code.

Another challenge in Emscripten is to achieve
good performance. LLVM assembly is an ab-
straction of how modern CPUs are program-
mmed for, and its basic operations are not all
directly possible in JavaScript. For example, if
in LLVM we are to add two unsigned 8-bit num-
bers z and y, with overflowing (e.g., 255 plus
1 should give 0), then there is no single opera-
tion in JavaScript which can do this - we cannot

Page 2

just write x 4+ y, as that would use the normal
JavaScript semantics. It is possible to emulate
a CPU in JavaScript, however doing so is very
slow. Emscripten’s approach is to allow such
emulation, but try to use it as little as possible,
and to provide tools that help one find out which
parts of the compiled code will need full emula-
tion. We will later see that in practice it is often
possible to not use full emulation, and thereby
achieve far better performance than strict emu-
lation would achieve.

We conclude this introduction with a list of
this paper’s main contributions:

e We describe Emscripten itself, during which
we detail its approach in compiling LLVM
into JavaScript.

e We give details of Emscripten’s ‘Relooper’
algorithm, which generates high-level loop
structures from low-level branching data.

In addition, the following are the main contribu-
tions of Emscripten itself, that to our knowledge
were not previously possible:

e It allows compiling a very large subset of C
and C++ code into JavaScript, which can
then be run on the web.

e By compiling their runtimes, it allows run-
ning languages such as Python on the web.

XXX The remainder of this paper is structured
as follows. In Section 2 we describe, from a high
level, the approach taken to compiling LLVM as-
sembly into JavaScript. In Section 3 we describe
the workings of Emscripten on a lower, more
concrete level. In Section ??7 we describe Em-
scripten’s approach to achieving good compat-
ibility with existing real-world code, while still
achieving good performance. In Section 4 we
give an overview of some uses of Emscripten. In
Section 5 we summarize and give directions for
future work on Emscripten and uses of it.

2 Compilation Approach

Let us begin by considering what the challenge is,
when we want to compile LLVM assembly into

JavaScript. Assume we are given the following
simple example of a C program, which we want
to compile into JavaScript:

#include <stdio.h>
int main()
{

int sum = 0;

for (dnt i = 1; i < 100; i++)

sum += 1i;
printf ("1+...+100=%d\n", sum);
return O;

¥

This program calculates the sum of the integers
from 1 to 100. When compiled by Clang, the
generated LLVM assembly code includes the fol-
lowing:

@.str = private constant [14 x i8]
c"1+...+100=Y%d\0A\OO"

define i32 @main() {
%1 = alloca i32, align 4
%sum = alloca i32, align 4
%i = alloca i32, align 4
store i32 0, i32x% %1
store i32 0, i32* Ysum, align 4
store 132 1, i32* i, align 4
br label %2

; <label>:2
%3 = load 132 %i, align 4
%4 = icmp slt i32 %3, 100
br il %4, label %5, label %12

; <label>:5
%6 = load i32* %i, align 4
%7 = load 132% Y%sum, align 4
%8 = add nsw i32 %7, %6

store i32 %8, i32% Ysum, align 4
br label %9

; <label>:9
%10 = load i32* %i, align 4
%11 add nsw i32 %10, 1
store i32 %11, i32* %i, align 4
br label %2

Page 3

; <label>:12
%13 = load 132+ Ysum, align 4
%14 = call i32 (i8%, ...)*

O@printf (i8* getelementptr inbounds
([14 x i8]* @.str, i32 0, i32 0),

i32 %13)
ret i32 0O
}

At first glance, this may look more difficult
to translate into JavaScript than the original
C++. However, compiling C++ in general
would require writing code to handle prepro-
cessing, classes, templates, and all the idiosyn-
crasies and complexities of C++4. LLVM assem-
bly, while more verbose in this example, is lower-
level and simpler to work on. Compiling it also
has the benefit we mentioned earlier, which is one
of the main goals of Emscripten, that it allows
many languages can be compiled into LLVM and
not just C++.

A detailed overview of LLVM assembly is be-
yond our scope here (see http://llvm.org/
docs/LangRef .html). Briefly, though, the ex-
ample assembly above can be seen to define a
function main(), then allocate some values on the
stack (alloca), then load and store various values
(load and store). We do not have the high-level
code structure as we had in C++ (with a loop),
instead we have labelled code fragments, called
LLVM basic blocks, and code flow moves from
one to another by branch (br) instructions. (La-
bel 2 is the condition check in the loop; label 5
is the body, label 9 is the increment, and label
12 is the final part of the function, outside of the
loop). Conditional branches can depend on cal-
culations, for example the results of comparing
two values (icmp). Other numerical operations
include addition (add). Finally, printf is called
(call). The challenge, then, is to convert this and
things like it into JavaScript.

In general, Emscripten’s main approach is
to translate each line of LLVM assembly into
JavaScript, 1-to-1, into ‘normal’ JavaScript as
much as possible. So, for example, an add op-
eration becomes a normal JavaScript addition, a
function call becomes a JavaScript function call,
etc. This 1 to 1 translation generates JavaScript

that resembles assembly code, for example, the
LLVM assembly shown before for main() would
be compiled into the following:

function _main() {

var __stackBase__ = STACKTOP;
STACKTOP += 12;
var __label__ = -1;
while(1) switch(__label__) {
case -1:
var $1 = __stackBase__;
var $sum = __stackBase__+4;
var $i = __stackBase__+8;
HEAP[$1] = O;
HEAP [$sum] = O;
HEAP[$i] = 0;
__label__ = 0; break;
case O:
var $3 = HEAP[$i];
var $4 = $3 < 100;
if ($4) { __label__ = 1; break; }
else { __label__ = 2; break; }
case 1:
var $6 = HEAP[$i];
var $7 = HEAP[$sum];
var $8 = $7 + $6;
HEAP [$sum] = $8;
__label__ = 3; break;
case 3:
var $10 = HEAP[$i];
var $11 = $10 + 1;
HEAP[$i] = $11;
__label__ = 0; break;
case 2:
var $13 = HEAP[$sum] ;
var $14 = _printf(__str, $13);
STACKTOP = __stackBase__;
return O;

}
+

Some things to take notice of:

e A switch-in-a-loop construction is used in
order to let the flow of execution move be-
tween basic blocks of code in an arbitrary
manner: We set __label__ to the (numerical
representation of the) label of the fragment
we want to reach, and do a break, which

Page 4

leads to the proper fragment being reached.
Inside each fragment, every line of code cor-
responds to a line of LLVM assembly, gen-
erally in a very straightforward manner.

e Memory is implemented by HFEAP, a
JavaScript array. Reading from memory is
a read from that array, and writing to mem-
ory is a write. STACKTOP is the current
position of the stack. (Note that we allo-
cate 4 memory locations for 32-bit integers
on the stack, but only write to 1 of them.
See Section 2.2 for why.)

e LIVM assembly functions become
JavaScript functions, and function calls
are normal JavaScript function calls. In
general, we attempt to generate as ‘normal’

JavaScript as possible.

e We implemented the LLVM add operation
using simple addition in JavaScript. As
mentioned earlier, the semantics of that
code are not entirely identical to those of the
original LLVM assembly code (in this case,
overflows will have very different effects).
We will explain Emscripten’s approach to
that problem in Section 2.2.1.

2.1 Performance

In this section we will deal with several topics
regarding Emscripten’s approach to generating
high-performance JavaScript code.

2.2 Load-Store Consistency (LSC)

We saw before that Emscripten’s memory usage
allocates the usual number of bytes on the stack
for variables (4 bytes for a 32-bit integer, etc.).
However, we only wrote values into the first lo-
cation, which appeared odd. We will now see the
reason for that.

To get there, we must first step back, and note
that Emscripten does not aim to achieve perfect
compatibility with all possible LLVM assembly
(and correspondingly, with all possible C or C++
code, etc.); instead, Emscripten targets a subset
of LLVM assembly code, which is portable and

does not make crucial assumptions about the un-
derlying CPU architecture on which the code is
meant to run. That subset is meant to encom-
pass the vast majority of real-world code that
would be compiled into LLVM, while also being
compilable into very performant JavaScript.

More specifically, Emscripten assumes that the

LLVM assembly code it is compiling has Load-
Store Consistency (LSC), which is the require-
ment that loads from and stores to a specific
memory address will use the same type. Nor-
mal C and C++ code generally does so: If x is a
variable containing a 32-bit floating point num-
ber, then both loads and stores of x will be of
32-bit floating point values, and not 16-bit un-
signed integers or anything else.

To see why this is important for performance,

consider the following C code fragment, which
does not have LSC:

int x = 12345;
printf("first byte: %d\n", *((char*)&x));

Assuming an architecture with more than 8 bits,
this code will read the first byte of z. (This
might, for example, be used to detect the endian-
ness of the CPU.) To compile this into JavaScript
in a way that will run properly, we must do more
than a single operation for either the read or the
write, for example we could do this:

var x_value = 12345;

var x_addr = stackAlloc(4);

HEAP [x_addr] = (x_value >> 0) & 255;
HEAP [x_addr+1] (x_value >> 8) & 255;
HEAP [x_addr+2] (x_value >> 16) & 255;
HEAP [x_addr+3] (x_value >> 24) & 255;
[...]

printf("first byte: %d\n", HEAP[x_addr]);

Here we allocate space for the value of z on the
stack, and store that address in z_addr. The
stack itself is part of the ‘memory space’, which
is the array HEAP. In order for the read on the
final line to give the proper value, we must go to
the effort of doing 4 store operations, each of the
value of a particular byte. In other words, HEAP
is an array of bytes, and for each store into mem-
ory, we must deconstruct the value into bytes.!

Note that we can use JavaScript typed arrays with

Page 5

Alternatively, we can store the value in a single
operation, and deconstruct into bytes as we load.
This will be faster in some cases and slower in
others, but is still more overhead than we would
like, generally speaking — for if the code does
have LSC, then we can translate that code frag-
ment into the far more optimal

var x_value = 12345;

var x_addr = stackAlloc(4);
HEAP [x_addr] = x_value;
[...]

printf("first byte: %d\n", HEAP[x_addr]);

(Note that even this can be optimized even more
— we can store z in a normal JavaScript variable.
For now though we are just clarifying why it is
useful to assume we are compiling code that has
LSC.)

In practice the vast majority of C and C++
code does have LSC. Exceptions do exist, how-
ever, for example:

e Code that detects CPU features like endian-
ness, the behavior of floats, etc. In general
such code can be disabled before running
it through Emscripten, as it is not actually
needed.

e memset and related functions typically work
on values of one kind, regardless of the un-
derlying values. For example, memset may
write 64-bit values on a 64-bit CPU since
that is usually faster than writing individual
bytes. This tends to not be a problem, as
with memset the most common case is set-
ting to 0, and with memcpy, the values end
up copied properly anyhow (with a proper
implementation of memcpy in Emscripten’s
generated code).

e Even LSC-obeying C or C4++ code may turn
into LLVM assembly that does not, after be-
ing optimized. For example, when storing

a shared memory buffer, which would work as expected,
assuming (1) we are running in a JavaScript engine which
supports typed arrays, and (2) we are running on a CPU
with the same architecture as we expect. This is there-
fore dangerous as the generated code may run differently
on different JavaScript engines and different CPUs. Em-
scripten currently has optional experimental support for
typed arrays.

two 32-bit integers constants into adjoining
locations in a structure, the optimizer may
generate a single 64-bit store of an appro-
priate constant. In other words, optimiza-
tion can generate nonportable code, which
runs faster on the current CPU, but nowhere
else. Emscripten currently assumes that op-
timizations of this form are not being used.

In practice it may be hard to know if code has
LSC or not, and requiring a time-consuming code
audit is obviously impractical. Emscripten there-
fore has a compilation option, SAFE_HEAP,
which generates code that checks that LSC holds,
and warns if it doesn’t. It also warns about other
memory-related issues like reading from memory
before a value was written (somewhat similarly
to tools like Valgrind). When such problems are
detected, possible solutions are to ignore the is-
sue (if it has no actual consqeuences), or altering
the source code.

Note that it is somewhat wasteful to allocation
4 memory locations for a 32-bit integer, and use
only one of them. It is possible to change that be-
havior with the QUANTUM_SIZE parameter to
Emscripten, however, the difficulty is that LLVM
assembly has hardcoded values that depend on
the usual memory sizes being used. For example,
memcpy can be called with the normal size each
the value would have, and not a single memory
address each as Emscripten would prefer. We
are looking into modifications to LLVM itself to
remedy that.

2.2.1 Emulating Code Semantics

The semantics of LLVM assembly and JavaScript
are not identical: The former is very close to that
of a modern CPU, while the latter is a high-level
dynamic language. Both are of course Turing-
complete, so it is possible to precisely emulate
each in the other, but doing so with good perfor-
mance is more challenging. For example, if we
want to convert

add i8 %1, %2

to JavaScript, then to be completely accurate we
must emulate the exact same behavior, in partic-
ular, we must handle overflows properly, which

Page 6

would not be the case if we just implement this as
%1+ %2 in JavaScript. For example, with inputs
of 255 and 1, the correct output is 0, but sim-
ple addition in JavaScript will give us 256. We
can emulate the proper behavior by adding ad-
ditional code, one way (not necessarily the most
optimal) would be to check for overflows after
each addition, and correct them as necessary.
This however makes each operation take signifi-
cantly more CPU time that the original code.

Emscripten’s approach to this problem is to al-
low the generation of both accurate code, that is
identical in behavior to LLVM assembly, and in-
accurate code which is faster. In practice, most
addition operations in LLVM do not overflow,
and can be translated into %1+ %2 in JavaScript
which is fast. Emscripten provides tools that
make it straightforward to find which code does
require the slower, more accurate code, and to
generate that code in those locations. In prac-
tice, this is done as follows:

e Compile the code using Emscripten with
special options that generate runtime
checking. CHECK_OVERFLOWS adds
runtime checks for integer overflows,
CHECK_SIGNS checks for signing issues
(the behavior of signed and unsigned inte-
gers can be different, and JavaScript does
not natively support that difference), and
CHECK_ROUNDINGS checks for rounding
issues (in C and C++, the convention is to
round towards 0, while in JavaScript there
is no simple operation that does the same).

e Run the compiled code on a representative
sample of inputs, and notice which lines are
warned about by the runtime checks.

e Recompile the code, telling Emscripten to
add corrections (using CORRECT_SIGNS,
CORRECT_OVERFLOWS or COR-
RECT_ROUNDINGS) only on the specific
lines that actually need it.

This method is not guaranteed to work, as if
we do not run on a truly representative sam-
ple of possible inputs, we may not compile with

all necessary corrections. It is of course possi-
ble to compile with all corrections applied to all
the code, to make sure things will work properly
(this is the default compilation setting), however,
in practice the procedure above appears to work
quite well, and can result in code that runs very
significantly faster.

2.2.2 Code Optimizations

When comparing the example program from
page 4, the generated code was fairly complicated
and cumbersome, and unsurprisingly it performs
quite poorly. There are two main reasons for
that: First, that the code is simply unoptimized
— there are many variables declared when fewer
could suffice, for example, and second, that the
code does not use ‘normal’ JavaScript, which
JavaScript engines are optimized for — it stores
all variables in an array (not normal JavaScript
variables), and it controls the flow of execution
using a switch-in-a-loop, not normal JavaScript
loops and ifs.

Emscripten’s approach to generating fast-
performing code is as follows. Emscripten
doesn’t do any optimizations that can be done
by other tools: LLVM can be used to perform
optimizations before Emscripten, and the Clo-
sure Compiler [Closure Compiler] can perform
optimizations on the generated JavaScript after-
wards. Those tools will perform standard useful
optimizations like removing unneeded variables,
dead code, function inlining, etc. That leaves two
major optimizations that are left for Emscripten
to perform:

e Variable nativization: Convert variables
that are on the stack — which is implemented
using addresses in the HEAP array as men-
tioned earlier — into native JavaScript vari-
ables (that is to say, var z; and so forth).
In general, a variable will be nativized un-
less it is used outside that function, e.g., if
its address is taken and stored somewhere
or passed to another function. When opti-
mizing, Emscripten tries to nativize as many
variables as possible.

e Relooping: Recreate high-level loop and

Page 7

if structures from the low-level labels and
branches that appear in LLVM assembly.
We detail the algorithm Emscripten uses for
this purpose in Section 3.2.

When run with Emscripten’s optimizations,
the code on page 4 looks like this:

function _main() {

var __label__;

var $1;

var $sum;

var $i;

$1 = 0;

$sum = 0;

$i = 0;

$2$2: while(1) {
var $3 = $i;
var $4 = $3 < 100;
if (1($4)) { __label_
var $6 = $i;
var $7 = $sum;
var $8 = $7 + $6;

$sum = $8;

var $10 = $i;

var $11 = $10 + 1;

$i = $11;

__label__ = 0; continue $2%$2;
}
var $13 = $sum;
var $14 = _printf(__str, $13);
return O;

}

If in addition the Closure Compiler is run on that
output, we get

function K() {

var a, b;
b=a-=0;
a:for(;;) {
if (1 (b < 100)) {
break a
}
a += b;
b += 1;
}
_printf(J, a);
return O;

}

= 2; break $2$2; }

which is fairly close to the original C++ (the
differences, of having the loop’s condition inside
the loop instead of inside the for() expression at
the top of the original loop, are not important
to performance). Thus, it is possible to recre-
ate the original high-level structure of the code
that was compiled into LLVM assembly, despite
that structure not being explicitly available to
Emscripten.

2.3 Benchmarks

We will now take a look at some performance
benchmarks:

benchmark JS gce | ratio
fannkuch (9) 0.577 | 0.054 | 10.68
fasta (100,000) | 0.640 | 0.055 | 11.63
primes 0.490 | 0.160 | 3.06
raytrace (5, 64) | 1.078 | 0.033 | 32.66

The first column is the name of the bench-
mark, and in parentheses any parameters used
in running it. The source code to all the
benchmarks can be found at https://github.
com/kripken/emscripten/tree/master/tests
(each in a separate file with its name, except for
‘primes’, which is embedded inside runner.py in
the function test_primes). The second column
is of running the compiled code (using all
Emscripten and LLVM optimizations, as well
as the closure compiler) in the SpiderMonkey
JavaScript engine (specifically, the JaegerMon-
key branch, running with -m -n -a). The third
column is the results when compiling the original
code with gec -03. The last column is the ratio,
that is, how much slower the JavaScript code is
when compared to gcc.

3 Emscripten’s Architecture

In the previous section we saw a general overview
of Emscripten’s approach to compiling LLVM as-
sembly into JavaScript. We will now get into
more detail into how Emscripten itself is imple-
mented.

Emscripten is written in JavaScript. A main
reason for that decision was to simplify shar-
ing code between the compiler and the runtime,

Page 8

and to enable various dynamic compilation tech-
niques. Two simple benefits of this approach are
that (1) the compiler can create JavaScript ob-
jects that represent structures from the original
assembly code, and convert them to a string us-
ing JSON.stringify() in a trivial manner, and (2)
the compiler can simplify numerical operations
by simply eval()ing the code (so “14+2” would
become “3”, etc.). In both examples, the de-
velopment of Emscripten was made simpler by
having the exact same environment during com-
pilation as the executing code will have.

Emscripten’s compilation has three main
phases:

e The intertyper, which converts from
LLVM assembly into Emscripten’s internal
representation.

e The analyzer, which inspects the internal
representation and generates various use-
ful information for the final phase, includ-
ing type and variable information, stack us-
age analysis, optional data for optimizations
(variable nativization and relooping), etc.

e The jsifier, which does the final conver-
sion of the internal representation plus ad-
ditional analyzed data into JavaScript.

3.1 The Runtime Environment

Code generated from Emscripten is meant to
run in a JavaScript engine, typically in a web
browser. This has implications for the kind of
runtime environment we can generate for it, for
example, there is no direct access to the local
filesystem.

Emscripten comes with a partial implementa-
tion of a C library, mostly written from scratch
in JavaScript, which parts compiled from an ex-
isting C library (newlib [newlib]). Some aspects
of the runtime environment, as implemented in
that C library, are:

e Files to be read must be ‘preloaded’ in
JavaScript. They can then be accessed using
the usual C library methods (fopen, fread,
etc.). Files that are written are cached, and

can be read by JavaScript later. While lim-
iting, this approach can often be sufficient
for many purposes.

e Emscripten allows writing pixel data to
an HTML5 canvas element, using a sub-
set of the SDL API. That is, one can write
an application in C or C++ using SDL,
and that same application can be com-
piled normally and run locally, or com-
piled using Emscripten and run on the web.
See, for example, Emscripten’s raytracing
demo at http://syntensity.com/static/
raytrace.html.

e sbrk is implemented using the HEAP array
which was mentioned previously. This al-
lows a normal malloc implementation writ-
ten in C to be compiled to JavaScript.

3.2 The Relooper: Recreating high-
level loop structures

The Relooper is among the most complicated
components in Emscripten. It receives a ‘soup
of blocks’, which is a set of labeled fragments
of code, each ending with a branch operation,
and the goal is to generate normal high-level
JavaScript code flow structures such as loops and
ifs. As we saw before, generating such code struc-
tures is essential to generating good-performing
code.

For example, the LLVM assembly on page 3
has the following block structure:

ENTRY --=> 2 -=-=> 56 --> 9
|
V
12

In this simple example, it is fairly straightfor-
ward to see that a natural way to implement it
using normal loop structures is

ENTRY
while (true) do
2

Page 9

if (condition) break
5
9

12

In general though, this is not always easy or
even practical — there may not be a straightfor-
ward high-level loop structure corresponding to
the low-level one, if for example the original C
code relied heavily on goto instructions. In prac-
tice, however, almost all real-world C and C++
code tends to be amenable to loop recreation.

Emscripten’s Relooper takes as input a ‘soup
of LLVM blocks’ as described above, and gener-
ates a structured set of Emscripten code blocks,
which are each a set of LLVM blocks with some
logical structure. For simplicity we call LLVM
blocks ‘labels’ and Emscripten blocks ‘blocks’ in
the following.

There are three types of Emscripten blocks:

e Simple block: A block with one internal
label, and a Next block, which the internal
label branches to. The block is later trans-
lated simply into the code for that label, and
the Next block appears right after it.

e Loop: A block that represents a basic loop,
comprised of two internal sub-blocks:

— Inner: A block that will appear inside
the loop, i.e., when execution reaches
the end of that block, flow will re-
turn to the beginning. Typically a loop
will contain a conditional break defin-
ing where it is exited. When we exit,
we reach the Next block, below.

— Next: A block that will appear just
outside the loop, in other words, that
will be reached when the loop is exited.

e Multiple: A block that represents an di-
vergence into several possible branches, that
eventually rejoin. A Multiple block can im-
plement an ‘if’, an ‘if-else’, a ‘switch’, etc.
It is comprised of:

— Handled blocks: A set of blocks
to which execution can enter. When
we reach the multiple block, we check

which of them should execute, and go
there. When execution of that block
is complete, or if none of the handled
blocks was selected for execution, we
proceed to the Next block, below.

— Next: A block that will appear just af-
ter the Handled blocks, in other words,
that will be reached after code flow ex-
its the Handled blocks.

Remember that we have a __label__ variable that
helps control the flow of execution: Whenever we
enter a block with more than one entry, we set
__label__ before we branch into it, and we check
its value when we enter that block. So, for ex-
ample, when we create a Loop block, its Next
block can have multiple entries — any label to
which we branch out from the loop. By creating
a Multiple block after the loop, we can enter the
proper label when the loop is exited. (Having a
__label__ variable does add some overhead, but it
greatly simplifies the problem that the Relooper
needs to solve and allows us to only need three
kinds of blocks as described above. Of course, it
is possible to optimize away writes and reads to
__label__ in many or even most cases.)

We will use the term ‘entry’ to mean a label
that can be reached immediately in a block. In
other words, a block consists of labels [1,..,1,,
and the entries are a subset of those labels,
specifically the ones that execution can directly
reach when we reach that block. With that defi-
nition, the Relooper algorithm can then be writ-
ten as follows:

e Receive a set of labels and which of
them are entry points. We wish to create
a block comprised of all those labels.

e Calculate, for each label, which other
labels it can reach, i.e., which labels we
are able to reach if we start at the current
label and follow one of the possible paths of
execution.

e If we have a single entry, and cannot
return to it (by some other label later
on branching to it) then create a Sim-
ple block, with the entry as its internal la-

Page 10

bel, and the Next block comprised of all the
other labels. The entries for the Next block
are the entries to which the internal label
can branch.

e If we can return to all of the entries,
return a Loop block, whose Inner block
is comprised of all labels that can reach one
of the entries, and whose Next block is com-
prised of all the others. The entry labels for
the current block become entry labels for the
Inner block (note that they must be in the
Inner block by definition, as each one can
reach itself). The Next block’s entry labels
are all the labels in the Next block that can
be reached by the Inner block.

e If we have more than one entry, try
to create a Multiple block: For each en-
try, find all the labels it reaches that cannot
be reached by any other entry. If at least
one entry has such labels, return a Multiple
block, whose Handled blocks are blocks for
those labels (and whose entries are those la-
bels), and whose Next block is all the rest.
Entries for the next block are entries that
did not become part of the Handled blocks,
and also labels that can be reached from the
Handled blocks.

e If we could not create a Multiple
block, then create a Loop block as de-
scribed above (see proof below of why cre-
ating a Loop block is possible, i.e., why the
labels contain a loop).

Note that we first create a Loop only if we must,
then try to create a Multiple, then create a Loop
if we have no other choice. We could have slightly
simplified this in various ways, but the algorithm
as presented above has given overall better re-
sults in practice, in terms of the ‘niceness’ of the
shape of the generated code, both subjectively
and at least in some simple benchmarks.
Additional details of the algorithm include ‘fix-
ing’ branch instructions accordingly. For exam-
ple, when we create a Loop block, then all branch
instructions outside of the loop are converted

into break commands, and all branch instruc-
tions to the beginning of the loop are converted
into continue commands. Those commands are
then ignored when called recursively to generate
the Inner block (that is, the break and continue
commands are guaranteed, by the semantics of
JavaScript, to get us to where we need to go —
they do not need any further work for them to
work properly).

Emscripten also does an additional pass af-
ter running the Relooper algorithm which has
been described. The Relooper is guaranteed to
produce valid output (see below). The second
pass takes that valid output and optimizes it, by
making minor changes such as removing continue
commands that occur at the very end of loops
(where they are not needed), etc. In other words,
the first pass focuses on generating high-level
code flow structures that are correct, while the
second pass simplifies and optimizes that struc-
ture.

We now turn to an analysis of the Relooper
algorithm. It is straightforward to see that the
output of the algorithm, assuming it completes
successfully — that is, that if finishes in finite
time, and does not run into an error in the last
part (where it is claimed that if we reach it we
can return to at least one of the entry labels) —
is correct in the sense of code execution being
carried out as in the original data. We will now
prove that the algorithm must in fact complete
successfully.

First, note that if we successfully create a
block, then we simplify the remaining problem,
where the ‘complexity’ of the problem for our
purposes here is the sum of labels plus the sum
of branching operations:

e This is trivial for Simple blocks (since we
now have a Next block which is strictly
smaller).

e It is true for Loop blocks simply by remov-
ing branching operations (there must be a
branching back to an entry, which becomes
a continue).

e For Multiple blocks, if the Next block is
non-empty then we have split into strictly

Page 11

smaller blocks (in number of labels) than be-
fore. If the next block is empty, then since
we built the Multiple block from a set of
labels with more than one entry, then the
Handled blocks are strictly smaller than the
current one.

We have seen that whenever we successfully cre-
ate a block, we simplify the remaining problem as
defined above, which means that we must eventu-
ally halt successfully (since we strictly decrease
a nonnegative integer). The remaining issue is
whether we can reach a situation where we can-
not successfully create a block, which is if we
reach the final part of the relooper algorithm, but
cannot create a Loop block there. For that to oc-
cur, we must not be able to return to any of the
entries (or else we would create a Loop block).
But if that is so, we can, at minimum, create a
Multiple block with entries for all the current en-
tries, since the entry labels themselves cannot be
reached by the others as we have just assumed
(when we ruled out creating a Loop block here),
contradicting the assumption and concluding the
proof.

(We have not, of course, proven that the shape
of the blocks is optimal in any sense. However,
even if it is possible to optimize them further,
the Relooper already gives a very substantial
speedup due to the move from the switch-in-
a-loop construction to more natural JavaScript
code flow structures.)

4 Example Uses

Emscripten has been run successfully on several
real-world codebases, including the following;:

e Python. It is possible to run variants of
Python on the web in various ways, includ-
ing pyjamas, IronPython on SilverLight and
Jython in Java. However, all of these are
slightly nonstandard in the the Python code
they run, while the latter two also require
plugins to be installed. With Emscripten,
on the other hand, it is possible to com-
pile CPython itself — the standard, refer-
ence implementation of Python — and run

that on the web, which allows running stan-
dard Python code. An online demo is avail-
able at http://syntensity.com/static/
python.html.

e Poppler and FreeType
e zlib
e Bullet

e Lua

4.1 CPython

Other ways to run Python on web: pyja-
mas/pyjs, old pypy-js backend, ?7 also Iron-
Python on Silverlight and Jython in Java. Lim-
itations etc.

CPython is the standard implementation of
the Python programming language written in C.
Compiling it in Emscripten is straightforward,
except for needing to change some #defines,
without which CPython creates platform-specific
assembly code.

Compilation using llvm-gcc generates approx-
imately 27.9MB of LLVM assembly. After
running Emscripten and the Closure Compiler,
the generated JavaScript code is approximately
2.76MB in size. For comparison, a native binary
version of CPython is approxiately 2.28MB in
size, so the two differ by only 21%.

The CORRECT_OVERFLOWS option in
Emscripten is necessary for proper operation of
the generated code, as Python hash code relies
on integer overflows to work normally.

The demo can be seen live at http://www.
syntensity.com/static/python.html. Poten-
tial uses include ... etc.

4.2 Bullet Physics Engine

Mention other bullet-;js manual port, via Java

4.3 Lua

Mention other lua-;js compilers

Page 12

5 Summary

We presented Emscripten, an LLVM-to-
JavaScript compiler, which opens up numerous
opportunities for running code written in
languages other than JavaScript on the web,
including some not previously possible. Em-
scripten can be used to, among other things,
compile real-world C and C++ code and run
that on the web. In addition, by compiling the
runtimes of languages which are implemented
in C and C++, we can run them on the web as
well, for example Python and Lua.

One of the main tasks for future work in
Emscripten is to broaden it’s standard library.
Emscripten currently includes portions of libc
and other standard C libraries, implemented in
JavaScript. Portions of existing libc implemen-
tations written themselves in C can also be com-
piled into JavaScript using Emscripten, but in
general the difficulty is in creating a suitable
runtime environment on the web. For example,
there is no filesystem accessible, nor normal sys-
tem calls and so forth. Some of those features can
be implemented in JavaScript, in particular new
HTML features like the File API should help.

Another important task is to support multi-
threading. Emscripten currently assumes the
code being compiled is single-threaded, since
JavaScript does not have support for multi-
threading (Web Workers allow multiprocessing,
but they do not have shared state, so implement-
ing threads with them is not trivial). However, it
would be possible to emulate multithreading in a
single thread. One approach could be to not gen-
erate native JavaScript control flow structures,
and instead to use a switch-in-a-loop for the en-
tire program. Code can then be added in the
loop to switch every so often between ‘threads’,
while maintaining their state and so forth.

A third important task is to improve the speed
of generated code. An optimal situation would
be for code compiled by Emscripten to run at or
near the speed of native code. In that respect it
is worth comparing Emscripten to Portable Na-
tive Client (PNaCl), a project in development
which aims to allow an LLVM-like format to be
distributed and run securely on the web, with

speed comparable to native code.

Both Emscripten and PNaCl allow running
compiled native code on the web, Emscripten by
compiling that code into JavaScript, and PNaCl
by compiling it into an LLVM-like format, which
is then run in a special PNaCl runtime. The
major differences are that Emscripten’s gener-
ated code can run on all web browsers, since it
is standard JavaScript, while PNaCl’s generated
code requires the PNaCl runtime to be installed;
another major difference is that JavaScript en-
gines do not yet run code at near-native speeds,
while PNaCl does. In a broad summary, Em-
scripten’s approach allows the code to be run in
more places, while PNaCl’s allows the code to
run faster.

However, improvements in JavaScript engines
may narrow the speed gap. In particular, for
purposes of Emscripten we do not need to care
about all JavaScript, but only the kind gener-
ated by Emscripten. Such code is implicitly
statically typed, that is, types are not mixed,
despite JavaScript in general allowing assigning,
e.g., an integer to a variable and later a floating
point value or even an object to that same vari-
able. Implicitly statically typed code can be stat-
ically analyzed and converted into machine code
that has no runtime type checks at all. While
such static analysis can be time-consuming, there
are practical ways for achieving similar results
quickly, such as tracing and type inference, which
would help on such code very significantly, and
are already in use or being worked on in main-
stream JavaScript engines (e.g., SpiderMonkey).

The limit of such an approach is to perform
static analysis on an entire program compiled
by Emscripten, generating highly-optimized ma-
chine code from that. As evidence of the poten-
tial in such an approach, the PyPy project can
compile RPython — something very close to im-
plicitly statically typed Python — into C, which
can then be compiled and run at native speed.
We may in the future see JavaScript engines per-
form such static compilation, when the code they
run is implicitly statically typed, which would
allow Emscripten’s generated code to run at na-
tive speeds as well. While not trivial, such an
approach is possible, and if accomplished, would

Page 13

mean that the combination of Emscripten and
suitable JavaScript engines will let people write
code in their languages of choice, and run them
at native speeds on the web.

Finally, we conclude with another another av-
enue for optimization. Assume that we are com-
piling a C or C++ runtime of a language into
JavaScript, and that that runtime uses JIT com-
pilation to generate machine code. Typically
code generators for JITs are written for the main
CPU architectures, today x86, x86_64 and ARM.
However, it would be possible for a JIT to gener-
ate JavaScript instead. Thus, the runtime would
be compiled using Emscripten, and at runtime it
would pass the JIT-generated JavaScript to eval.
In this scenario, JavaScript is used as a low-level
intermediate representation in the runtime, and
the final conversion to machine code is left to the
underlying JavaScript engine. This approach can
potentially allow languages that greatly benefit
from a JIT (such as Java, Lua, etc.) to be run
on the web efficiently.

Thank you to the following people: Brian
Crowder (multithreading), Robert O’Callahan
(JIT into JS), add people that contributed

References

[SOME REF et al.(2009)Someone, Another| A.
B. Someone, and X. Y. Another. ...reference
text...

[Ashkenas| Jeremy Ashkenas’ list of languages
that compile to JavaScript https://github.
com/jashkenas/coffee-script/wiki/
List-of-languages-that-compile-to-JS

[Closure Compiler] Google, Inc.http://code.
google.com/closure/compiler/

[Google Web Toolkit] http://code.google.
com/webtoolkit/

[Low Level Virtual Machine] http://11lvm.
org/

[newlib] Red Hat, Inc.http://sourceware.
org/newlib/

[Pyjamas] http://pyjs.org/

Page 14

