
Emscripten: An LLVM-to-JavaScript Compiler

Alon Zakai
Mozilla

azakai@mozilla.com

Abstract

JavaScript is the standard language of the web,
supported on essentially all web browsers. De-
spite efforts to allow other languages to be run as
well, none have come close to being universally
available on all browsers, which severely limits
their usefulness on the web. However, there are
reasonable reasons why allowing other languages
would be beneficial, including reusing existing
code and allowing developers to use their lan-
guages of choice.

We present Emscripten, an LLVM-to-
JavaScript compiler. Emscripten compiles
LLVM assembly code into standard JavaScript,
which opens up two avenues for running code
written in other languages on the web: (1) Com-
pile a language directly into LLVM, and then
compile that into JavaScript using Emscripten,
or (2) Compiling a language’s entire runtime
(typically written in C or C++) into JavaScript
using Emscripten, and using the compiled
runtime to run code written in that language.
Examples of languages that can use the first
approach are C and C++, as compilers exist
for them into LLVM. An example of a language
that can use the second approach is Python, and
Emscripten has been used to compile CPython
(the standard C implementation of Python) into
JavaScript, allowing standard Python code to
be run on the web, which was not previously
possible.

Emscripten itself is written in JavaScript (to
enable various dynamic compilation techniques),
and is available under the MIT license (a per-
missive open source license), at http://www.

emscripten.org. As an LLVM-to-JavaScript
compiler, the challenges in designing Emscripten
are somewhat the reverse of the norm – one must
go from a low-level assembly into a high-level
language, and recreate parts of the original high-
level structure of the code that were lost in the
compilation to low-level LLVM. We detail the al-
gorithms used in Emscripten to deal with those
challenges.

c©2011 Alon Zakai. License: Creative Com-
mons Attribution-ShareAlike (CC BY-SA),
http://creativecommons.org/licenses/

by-sa/3.0/

1 Introduction

Since the mid 1990’s, JavaScript has been
present in most web browsers (sometimes with
minor variations and under slightly different
names, e.g., JScript in Internet Explorer), and
today it is well-supported on essentially all web
browsers, from desktop browsers like Internet
Explorer, Firefox, Chrome and Safari, to mo-
bile browsers on smartphones and tablets. To-
gether with HTML and CSS, JavaScript is the
standards-based foundation of the web.

Running other programming languages on the
web has been suggested many times, and browser
plugins have allowed doing so, e.g., via the Java
and Flash plugins. However, plugins must be
manually installed and do not integrate in a per-
fect way with the outside HTML. Perhaps more
problematic is that they cannot run at all on
some platforms, for example, Java and Flash can-
not run on iOS devices such as the iPhone and

Page 1

iPad. For those reasons, JavaScript remains the
primary programming language of the web.

There are, however, justifiable motivations for
running code from other programming languages
on the web, for example, if one has a large
amount of existing code already written in an-
other language, or if one simply has a strong
preference for another language (and perhaps is
more productive in it).

As a consequence, there have been some
efforts to compile languages into JavaScript.
Since JavaScript is present in essentially all web
browsers, by compiling one’s language of choice
into JavaScript, one can still generate content
that will run practically everywhere. Examples
of this approach include the Google Web Toolkit,
which compiles Java into JavaScript; Pyjamas,
which compiles Python into JavaScript; and ru-
mors have it that projects in Oracle and Mi-
crosoft, respectively, allow running JVM and
CLR bytecode in JavaScript (which would allow
running the languages of the JVM and CLR, re-
spectively).

In this paper we present another project along
those lines: Emscripten, which compiles LLVM
assembly into JavaScript. LLVM (Low Level Vir-
tual Machine) is a compiler project primarily fo-
cused on C, C++ and Objective-C. It compiles
those languages through a frontend (the main
ones of which are Clang and LLVM-GCC) into
the LLVM intermediary representation (which
can be machine-readable bitcode, or human-
readable assembly), and then passes it through
a backend which generates actual machine code
for a particular architecure. Emscripten plays
the role of a backend which targets JavaScript.

By using Emscripten, potentially many lan-
guages can be run on the web, using one of the
following methods:

• Compile code in a language recognized
by one of the existing LLVM frontends
into LLVM, and then compile that into
JavaScript using Emscripten. Frontends for
various languages exist, including many of
the most popular programming languages
such as C and C++, and also various new
and emerging languages (e.g., Rust).

• Compile the runtime used to parse and
execute code in a particular language into
LLVM, then compile that into JavaScript
using Emscripten. It is then possible to run
code in that runtime on the web. This is
a useful approach if a language’s runtime is
written in a language for which an LLVM
frontend exists, but the language iself has no
such frontend. For example, no currently-
supported frontend exists for Python, how-
ever it is possible to compile CPython – the
standard implementation of Python, written
in C – into JavaScript, and run Python code
on that (see Subsection X.Y).

From a technical standpoint, the main chal-
lenges in designing and implementing Em-
scripten are that it compiles a low-level lan-
guage – LLVM assembly – into a high-level one
– JavaScript. This is somethat the reverse of the
usual situation one is in when building a com-
piler, and leads to some unique difficulties. For
example, to get good performance in JavaScript
one must use natural JavaScript code flow struc-
tures, like loops and ifs, but those structures do
not exist in LLVM assembly (instead, what is
present there is essentially ‘flat’ code with goto
commands). Emscripten must therefore recon-
struct a high-level representation from the low-
level data it receives.

In theory that issue could have been avoided
by compiling a higher-level language into
JavaScript. For example, if compiling Java into
JavaScript (as the Google Web Toolkit does),
then one can benefit from the fact that Java’s
loops, ifs and so forth generally have a very di-
rect parallel in JavaScript (of course the down-
side is that this approach yields a compiler only
for Java). Compiling LLVM into JavaScript is
less straightforward, but wee will see later that
it is possible to reconstruct a substantial part of
the high-level structure of the original code.

We conclude this introduction with a list of
this paper’s main contributions:

• We describe Emscripten itself, during which
we detail its approach in compiling LLVM
into JavaScript.

Page 2

• We give details of Emscripten’s ‘Relooper’
algorithm, which generates high-level loop
structures from low-level branching data.
We are unaware of related results in the lit-
erature.

In addition, the following are the main contribu-
tions of Emscripten itself, that to our knowledge
were not previously possible:

• It allows compiling a very large subset of C
and C++ code into JavaScript, which can
then be run on the web.

• By compiling their runtimes, it allows run-
ning languages such as Python on the web.

The remainder of this paper is structured as
follows. In Section 2 we describe, from a high
level, the approach taken to compiling LLVM as-
sembly into JavaScript. In Section 3 we describe
the workings of Emscripten on a lower, more con-
crete level. In Section 4 we give an overview of
some uses of Emscripten. In Section 5 we sum-
marize and give directions for future work on
Emscripten and uses of it.

2 Compilation Approach

Let us begin by considering what the challenge
is, when we want to compile something into
JavaScript. Assume we are given the following
simple example of a C program, which we want
to compile into JavaScript:

#include <stdio.h>

int main()

{

int sum = 0;

for (int i = 1; i < 100; i++)

sum += i;

printf("1+...+100=%d\n", sum);

return 0;

}

This program calculates the sum of the integers
from 1 to 100. When compiled by Clang, the
generated LLVM assembly code includes the fol-
lowing:

@.str = private constant [14 x i8]

c"1+...+100=%d\0A\00"

define i32 @main() {

%1 = alloca i32, align 4

%sum = alloca i32, align 4

%i = alloca i32, align 4

store i32 0, i32* %1

store i32 0, i32* %sum, align 4

store i32 1, i32* %i, align 4

br label %2

; <label>:2

%3 = load i32* %i, align 4

%4 = icmp slt i32 %3, 100

br i1 %4, label %5, label %12

; <label>:5

%6 = load i32* %i, align 4

%7 = load i32* %sum, align 4

%8 = add nsw i32 %7, %6

store i32 %8, i32* %sum, align 4

br label %9

; <label>:9

%10 = load i32* %i, align 4

%11 = add nsw i32 %10, 1

store i32 %11, i32* %i, align 4

br label %2

; <label>:12

%13 = load i32* %sum, align 4

%14 = call i32 (i8*, ...)*

@printf(i8* getelementptr inbounds

([14 x i8]* @.str, i32 0, i32 0),

i32 %13)

ret i32 0

}

At first glance, this may look more difficult
to translate into JavaScript than the original
C++. However, compiling C++ in general
would require writing code to handle prepro-
cessing, classes, templates, and all the idiosyn-
crasies and complexities of C++. LLVM assem-
bly, while more verbose in this example, is lower-
level and simpler to work on. It also has the
benefit we mentioned earlier, which is one of the

Page 3

main goals of Emscripten, that many languages
can be compiled into LLVM.

A detailed overview of LLVM assembly is be-
yond our scope here. Briefly, though, the ex-
ample assembly above can easily be seen to de-
fine a function main(), then allocate some values
on the stack (alloca), then load and store var-
ious values (load and store). We do not have
the high-level code structure as we had in C++,
with a loop, instead we have code ‘fragments’,
each with a label, and code flow moves from one
to another by branch (br) instructions. (Label
2 is the condition check in the loop; label 5 is
the body, label 9 is the increment, and label 12
is the final part of the function, outside of the
loop). Conditional branches can depend on cal-
culations, for example the results of comparing
two values (icmp). Other numerical operations
include addition (add). Finally, printf is called
(call). The challenge, then, is to convert this and
things like it into JavaScript.

In general, Emscripten’s approach is to trans-
late each line of LLVM assembly into JavaScript,
1 for 1, into ‘normal’ JavaScript as much as pos-
sible. So, for example, an add operation becomes
a normal JavaScript addition, a function call be-
comes a JavaScript function call, etc. This 1 to
1 translation generates JavaScript that resembles
assembly code, for example, the LLVM assembly
shown before for main() would be compiled into
the following:

function _main() {

var __stackBase__ = STACKTOP;

STACKTOP += 12;

var __label__ = -1;

while(1) switch(__label__) {

case -1:

var $1 = __stackBase__;

var $sum = __stackBase__+4;

var $i = __stackBase__+8;

HEAP[$1] = 0;

HEAP[$sum] = 0;

HEAP[$i] = 0;

__label__ = 0; break;

case 0:

var $3 = HEAP[$i];

var $4 = $3 < 100;

if ($4) { __label__ = 1; break; }

else { __label__ = 2; break; }

case 1:

var $6 = HEAP[$i];

var $7 = HEAP[$sum];

var $8 = $7 + $6;

HEAP[$sum] = $8;

__label__ = 3; break;

case 3:

var $10 = HEAP[$i];

var $11 = $10 + 1;

HEAP[$i] = $11;

__label__ = 0; break;

case 2:

var $13 = HEAP[$sum];

var $14 = _printf(__str, $13);

STACKTOP = __stackBase__;

return 0;

}

}

Some things to take notice of:

• A switch-in-a-loop construction is used in
order to let the flow of execution move be-
tween fragments of code in an arbitrary
manner: We set label to the (numerical
representation of the) label of the fragment
we want to reach, and do a break, which
leads to the proper fragment being reached.
Inside each fragment, every line of code cor-
responds to a line of LLVM assembly, gen-
erally in a very straightforward manner.

• Memory is implemented by HEAP, a
JavaScript array. Reading from memory is
a read from that array, and writing to mem-
ory is a write. STACKTOP is the current
position of the stack. (Note that we allo-
cate 4 memory locations for 32-bit integers
on the stack, but only write to 1 of them.
See the Load-Store Consistency subsection
below for why.)

• LLVM assembly functions become
JavaScript functions, and function calls
are normal JavaScript function calls. In
general, we attempt to generate as ‘normal’
JavaScript as possible.

Page 4

2.1 Load-Store Consistency (LSC)

We saw before that Emscripten’s memory usage
allocates the usual number of bytes on the stack
for variables (4 bytes for a 32-bit integer, etc.).
However, we only wrote values into the first lo-
cation, which appeared odd. We will now see the
reason for that.

To get there, we must first step back, and note
that Emscripten does not aim to achieve perfect
compatibility with all possible LLVM assembly
(and correspondingly, with all possible C or C++
code, etc.); instead, Emscripten targets a subset
of LLVM assembly code, which is portable and
does not make crucial assumptions about the un-
derlying CPU architecture on which the code is
meant to run. That subset is meant to encom-
pass the vast majority of real-world code that
would be compiled into LLVM, while also being
compilable into very performant JavaScript.

More specifically, Emscripten assumes that the
LLVM assembly code it is compiling has Load-
Store Consistency (LSC), which is the require-
ment that loads from and stores to a specific
memory address will use the same type. Nor-
mal C and C++ code generally does so: If x is a
variable containing a 32-bit floating point num-
ber, then both loads and stores of x will be of
32-bit floating point values, and not 16-bit un-
signed integers or anything else. (Note that even
if we write something like

float x = 5

then the compiler will assign a 32-bit float with
the value of 5 to x, and not an integer.)

To see why this is important for performance,
consider the following C code fragment, which
does not have LSC:

int x = 12345;

[...]

printf("first byte: %d\n", *((char*)&x));

Assuming an architecture with more than 8 bits,
this code will read the first byte of x. (It might,
for example, be used to detect the endianness
of the CPU.) To compile this into JavaScript in
a way that will run properly, we must do more
than a single operation for either the read or the
write, for example we could do this:

var x_value = 12345;

var x_addr = stackAlloc(4);

HEAP[x_addr] = (x_value >> 0) & 255;

HEAP[x_addr+1] = (x_value >> 8) & 255;

HEAP[x_addr+2] = (x_value >> 16) & 255;

HEAP[x_addr+3] = (x_value >> 24) & 255;

[...]

printf("first byte: %d\n", HEAP[x_addr]);

Here we allocate space for the value of x on the
stack, and store that address in x addr. The
stack itself is part of the ‘memory space’, which
is the array HEAP. In order for the read on the
final line to give the proper value, we must go to
the effort of doing 4 store operations, each of the
value of a particular byte. In other words, HEAP
is an array of bytes, and for each store into mem-
ory, we must deconstruct the value into bytes.1

Alternatively, we can store the value in a single
operation, and deconstruct into bytes as we load.
This will be faster in some cases and slower in
others, but is still more overhead than we would
like, generally speaking – for if the code does
have LSC, then we can translate that code frag-
ment into the far more optimal

var x_value = 12345;

var x_addr = stackAlloc(4);

HEAP[x_addr] = x_value;

[...]

printf("first byte: %d\n", HEAP[x_addr]);

(Note that even this can be optimized even more
– we can store x in a normal JavaScript variable.
For now though we are just clarifying why it is
useful to assume we are compiling code that has
LSC – doing so lets us generate shorter and more
natural JavaScript.)

In practice the vast majority of C and C++
code does have LSC. Exceptions do exist, how-
ever, for example:

1Note that we can use JavaScript typed arrays with
a shared memory buffer, which would work as expected,
assuming (1) we are running in a JavaScript engine which
supports typed arrays, and (2) we are running on a CPU
with the same architecture as we expect. This is there-
fore dangerous as the generated code may run differently
on different JavaScript engines and different CPUs. Em-
scripten currently has optional experimental support for
typed arrays.

Page 5

• Code that detects CPU features like endian-
ness, the behavior of floats, etc. In general
such code can be disabled before running it
through Emscripten, as it is not needed.

• memset and related functions typically work
on values of one kind, regardless of the un-
derlying values. For example, memset may
write 64-bit values on a 64-bit CPU since
that is usually faster than writing individ-
ual bytes. This tends to not be a problem,
as with memset the most common case is
setting to 0, and with memcpy, the values
end up copied properly anyhow.

• Even LSC-obeying C or C++ code may turn
into LLVM assembly that does not, after be-
ing optimized. For example, when storing
two 32-bit integers constants into adjoining
locations in a structure, the optimizer may
generate a single 64-bit store of an appro-
priate constant. In other words, optimiza-
tion can generate nonportable code, which
runs faster on the current CPU, but nowhere
else. Emscripten currently assumes that op-
timizations of this form are not being used.

In practice it may be hard to know if code has
LSC or not, and requiring a time-consuming code
audit is obviously impractical. Emscripten there-
fore has automatic tools to detect violations of
LSC, see SAFE HEAP in Subsection X.Y.

Note that it is somewhat wasteful to allocation
4 memory locations for a 32-bit integer, and use
only one of them. It is possible to change that be-
havior with the QUANTUM SIZE parameter to
Emscripten, however, the difficulty is that LLVM
assembly has hardcoded values that depend on
the usual memory sizes being used. For example,
memcpy can be called with the normal size each
the value would have, and not a single memory
address each as Emscripten would prefer. We
are looking into modifications to LLVM itself to
remedy that.

2.2 Performance

When comparing the example program from be-
fore (that counts the integers from 1 to 100), the

generated code was fairly complicated and cum-
bersome, and unsurprisingly it performs quite
poorly. There are two main reasons for that:
First, that the code is simply unoptimized –
there are many variables declared when fewer
could suffice, for example, and second, that the
code does not use ‘normal’ JavaScript, which
JavaScript engines are optimized for – it stores
all variables in an array (not normal JavaScript
variables), and it controls the flow of execution
using a switch-in-a-loop, not normal JavaScript
loops and ifs.

Emscripten’s approach to generating fast-
performing code is as follows. Emscripten
doesn’t do any optimization that can otherwise
be done by additional tools: LLVM can be used
to perform optimizations before Emscripten, and
the Closure Compiler can perform optimizations
on the generated JavaScript afterwards. Those
tools will perform standard useful optimizations
like removing unneeded variables, dead code, etc.
That leaves two major optimizations that are left
for Emscripten to perform:

• Variable nativization: Convert variables
that are on the stack into native JavaScript
variables. In general, a variable will be na-
tivized unless it is used outside that func-
tion, e.g., if its address is taken and stored
somewhere or passed to another function.
When optimizing, Emscripten tries to na-
tivize as many variables as possible.

• ‘Relooping’: Recreate high-level loop and
if structures from the low-level labels and
branches that appear in LLVM assembly.
We detail the algorithm Emscripten uses for
this purpose in Section X.

When run with Emscripten’s optimizations,
the above code looks like this:

function _main() {

var __label__;

var $1;

var $sum;

var $i;

$1 = 0;

$sum = 0;

Page 6

$i = 0;

$2$2: while(1) { // $2

var $3 = $i;

var $4 = $3 < 100;

if (!($4)) { __label__ = 2; break $2$2; }

var $6 = $i;

var $7 = $sum;

var $8 = $7 + $6;

$sum = $8;

var $10 = $i;

var $11 = $10 + 1;

$i = $11;

__label__ = 0; continue $2$2;

}

var $13 = $sum;

var $14 = _printf(__str, $13);

return 0;

}

If in addition the Closure Compiler is run on that
output, we get

function K() {

var a, b;

b = a = 0;

a:for(;;) {

if(!(b < 100)) {

break a

}

a += b;

b += 1;

}

_printf(J, a);

return 0;

}

which is fairly close to the original C++ (the
differences, of having the loop’s condition inside
the loop instead of inside the for() expression at
the top of the original loop, are not important
to performance). Thus, it is possible to recre-
ate the original high-level structure of the code
that was compiled into LLVM assembly, despite
that structure not being explicitly available to
Emscripten.

We will see performance measurements in Sec-
tion 4.

2.3 Dealing with Real-World Code

As mentioned above, in practice it may be hard
to know if code has LSC or not, and other dif-
ficulties may arise as well. Accordingly, Em-
scripten has a set of tools to help detect if
compiled code has certain problems. These are
mainly compile-time options that lead to addi-
tional runtime checks. One then runs the code
and sees the warnings or errors generated. The
debugging tools include:

• SAFE HEAP: This option adds runtime
checks for LSC. It will raise an exception if
LSC does not hold, as well as related issues
like reading from memory before a value was
written (somewhat similarly to tools like
Valgrind). If such a problem occurs, possible
solutions are to ignore the issue (if it has no
actual consqeuences), or altering the source
code. In some cases, such nonportable code
can be avoided in a simple manner by chang-
ing the configutation under which the code
is built (see the examples in Section X).

• CHECK OVERFLOWS: This option
adds runtime checks for overflows in inte-
ger operations, which are an issue since all
JavaScript numbers are doubles, hence sim-
ple translation of LLVM numerical opera-
tions (addition, multiplication, etc.) into
JavaScript ones may lead to different results
than expected. CHECK OVERFLOWS
will add runtime checks for actual overflows
of this sort, that is, whether the result of an
operation is a value too large for the type
it defined as. Code that has such overflows
can enable CORRECT OVERFLOWS,
which fixes overflows at runtime. The cost,
however, is decreased speed due to the cor-
rection operations (which perform a bitwise
AND to force the value into the proper
range). Since such overflows are rare, it is
possible to use this option to find where they
occur, and modify the original code in a suit-
able way (see the examples in Section).

Page 7

3 Emscripten’s Architecture

In the previous section we saw a general overview
of Emscripten’s approach to compiling LLVM as-
sembly into JavaScript. We will now get into
more detail into how Emscripten implements
that approach and its architecture.

Emscripten is written in JavaScript. A main
reason for that decision was to simplify shar-
ing code between the compiler and the runtime,
and to enable various dynamic compilation tech-
niques. Two simple examples: (1) The compiler
can create JavaScript objects that represent con-
stants in the assembly code, and convert them to
a string using JSON.stringify() in a convenient
manner, and (2) The compiler can simplify nu-
merical operations by simply eval()ing the code
(so “1+2” would become “3”, etc.). In both ex-
amples, writing Emscripten is made simpler by
having the exact same environment during com-
pilation as the executing code will have.

Emscripten has three main phases:

• The intertyper, which converts from
LLVM assembly into Emscripten’s internal
representation.

• The analyzer, which inspects the internal
representation and generates various use-
ful information for the final phase, includ-
ing type and variable information, stack us-
age analysis, optional data for optimizations
(variable nativization and relooping), etc.

• The jsifier, which does the final conver-
sion of the internal representation plus ad-
ditional analyzed data into JavaScript.

3.1 The Runtime Environment

Code generated from Emscripten is meant to
run in a JavaScript engine, typically in a web
browser. This has implications for the kind of
runtime environment we can generate for it, for
example, there is no direct access to the local
filesystem.

Emscripten comes with a partial implementa-
tion of a C library, mostly written from scratch
in JavaScript, which parts compiled from the

newlib C library. Some aspects of the runtime
environment, as implemented in that C library,
are:

• Files to be read must be ‘preloaded’ in
JavaScript. They can then be accessed using
the usual C library methods (fopen, fread,
etc.). Files that are written are cached, and
can be read by JavaScript later. While lim-
iting, this approach can often be sufficient
for many purposes.

• Emscripten allows writing pixel data to an
HTML5 canvas element, using a subset of
the SDL API. That is, one can write an
application in C or C++ using SDL, and
that same application can be compiled nor-
mally and run locally, or compiled using
Emscripten and run on the web. See the ray-
tracing demo at http://syntensity.com/

static/raytrace.html.

• sbrk is implemented using the HEAP array
which was mentioned previously. This al-
lows a normal malloc implementation writ-
ten in C to be compiled to JavaScript.

3.2 The Relooper: Recreating high-
level loop structures

The Relooper is among the most complicated
components in Emscripten. It receives a ‘soup
of labels’, which is a set of labeled fragments of
code – for brevity we call such fragments simply
‘labels’ – each ending with a branch operation
(either a simple branch, a conditional branch,
or a switch), and the goal is to generate normal
high-level JavaScript code flow structures such
as loops and ifs.

For example, the LLVM assembly on page X
has the following label structure:

/-----------\

| |

V |

ENTRY --> 2 --> 5 --> 9

|

V

12

Page 8

In this simple example, it is fairly straightfor-
ward to see that a natural way to implement it
using normal loop structures is

ENTRY

while (true) do

2

if (condition) break

5

9

12

In general though, this is not always easy or even
possible – there may not be a reasonable high-
level loop structure corresponding to the low-
level one, if for example the original C code re-
lied heavily on goto instructions. In practice,
however, almost all real-world C and C++ code
tends to be amenable to loop recreation.

Emscripten’s Relooper takes as input a ‘soup
of labels’ as described above, and generates a
structured set of code ‘blocks’, which are each
a set of labels, with some logical structure, of
one of the following types:

• Simple block: A block with one internal
label and a Next block, which the internal
label branches to. The block is later trans-
lated simply into the code for that label, and
the Next block appears right after it.

• Loop: A block that represents an infinite
loop, comprised of two internal sub-blocks:

– Inner: A block of labels that will ap-
pear inside the loop, i.e., when execu-
tion reaches the end of that block, flow
will return to the beginning. Typically
a loop will contain a conditional break
defining where it is exited. When we
exit, we reach the Next block, below.

– Next: A block of labels that will ap-
pear just outside the loop, in other
words, that will be reached when the
loop is exited.

• Multiple: A block that represents an di-
vergence into several possible branches, that
eventually rejoin. A Multiple block can im-
plement an ‘if’, an ‘if-else’, a ‘switch’, etc.
It is comprised of

– Handled blocks: A set of blocks
to which execution can enter. When
we reach the multiple block, we check
which of them should execute, and go
there. When execution of that block
is complete, or if none of the handled
blocks was selected for execution, we
proceed to the Next block, below.

– Next: A block of labels that will ap-
pear just outside this one, in other
words, that will be reached after code
flow exits the Handled blocks, above.

Remember that we have a label variable that
helps control the flow of execution: Whenever we
enter a block with more than one entry, we set
label before we branch into it, and we check

its value when we enter that block. So, for ex-
ample, when we create a Loop block, it’s Next
block can have multiple entries – any label to
which we branch out from the loop. By creating
a Multiple block after the loop, we can enter the
proper label when the loop is exited. Having a
label variable does add some overhead, but it

greatly simplifies the problem that the Relooper
needs to solve. Of course, it is possible to opti-
mize away writes and reads to label in many
cases.

Emscripten uses the following recursive algo-
rithm for generating blocks from the soup of la-
bels:

• Receive a set of labels and which of them
are entry points. We wish to create a block
comprised of all those labels.

• Calculate, for each label, which other labels
it can reach, i.e., which labels we are able
to reach if we start at the current label and
follow one of the possible paths of branching.

• If we have a single entry, and cannot return
to it from any other label, then create a Sim-
ple block, with the entry as its internal la-
bel, and the Next block comprised of all the
other labels. The entries for the Next block
are the entry to which the internal label can
branch.

Page 9

• If we can return to all of the entries, return a
Loop block, whose Inner block is comprised
of all labels that can reach one of the en-
tries, and whose Next block is comprised of
all the others. The entry labels for the cur-
rent block become entry labels for the Inner
block (note that they must be in the Inner
block, as each one can reach itself). The
Next block’s entry labels are all the labels
in the Next block that can be reached by
the Inner block.

• If we have more than one entry, try to create
a Multiple block: For each entry, find all the
labels it reaches that cannot be reached by
any other entry. If at least one entry has
such labels, return a Multiple block, whose
Handled blocks are blocks for those labels,
and whose Next block is all the rest. Entry
labels for those two blocks become entries
of the new block they are now part of. We
may have additional entry labels in the Next
block, for each entry in the Next block that
can be reached from the Handled ones.

• We must be able to return to at least one
of the entries (see proof below), so create a
Loop block as described above.

Note that we first create a loop only if we must,
then try to create a multiple, then create a loop
if we can. We could have slightly simplified this
in various ways. The algorithm as presented
above has given overall better results in prac-
tice, in terms of the ‘niceness’ of the shape of the
generated code, both subjectively and in some
benchmarks (however, the benchmarks are lim-
ited, and we cannot be sure the result will remain
true for all possible inputs to the Relooper).

Additional details of the algorithm include ‘fix-
ing’ branch instructions accordingly. For exam-
ple, when we create a Loop block, then all branch
instructions outside of the loop are converted
into break commands, and all branch instruc-
tions to the beginning of the loop are converted
into continue commands. Those commands are
then ignored when called recursively to generate
the Inner block (that is, the break and continue
commands are guaranteed, by the semantics of

JavaScript, to get us to where we need to go –
they do not need any further consideration for
them to work properly).

Emscripten also does an additional pass af-
ter running the Relooper algorithm which has
been described. The Relooper is guaranteed to
produce valid output (see below). The second
pass takes that valid output and optimizes it, by
making minor changes such as removing continue
commands that occur at the very end of loops
(where they are not needed), etc. In other words,
the first pass focuses on generating high-level
code flow structures that are correct, while the
second pass simplifies and optimizes that struc-
ture.

We now turn to an analysis of the Relooper
algorithm. It is straightforward to see that the
output of the algorithm, assuming it completes
successfully – that is, that if finishes in finite
time, and does not run into an error in the last
part (where it is claimed that if we reach it we
can return to at least one of the entry labels) –
is correct in the sense of code execution being
carried out as in the original data. We will now
prove that the algorithm must in fact complete
successfully.

First, note that if we successfully create a
block, then we simplify the remaining problem,
where the ‘complexity’ of the problem for our
purposes now is the sum of labels plus the some
of branching operations:

• This is trivial for Simple blocks (since we
now have a Next block which is strictly
smaller).

• It is true for loop blocks simply by remov-
ing branching operations (there must be a
branching back to an entry, which becomes
a continue).

• For multiple blocks, if the Next block is
non-empty then we have split into strictly
smaller blocks (in number of labels) than be-
fore. If the next block is empty, then since
we built the Multiple block from a set of
labels with more than one entry, then the
Handled blocks are strictly smaller than the

Page 10

current one. The remaining case is when we
have a single entry.

The remaining issue is whether we can reach a
situation where we fail to create a block due to
an error, that is, that the claim in the last part
does not hold. For that to occur, we must not
be able to return to any of the entries (or else
we would create a Loop block). But since that is
so, we can, at minimum, create a Multiple block
with entries for all the current entries, since the
entry labels themselves cannot be reached, con-
tradicting the assumption that we cannot create
a block, and concluding the proof.

We have not, of course, proven that the shape
of the blocks is optimal in any sense. How-
ever, even if it is possible to optimize them,
the Relooper already gives a very substantial
speedup due to the move from the switch-in-
a-loop construction to more natural JavaScript
code flow structures. TODO: A little data here.

4 Example Uses

Emscripten has been run successfully on several
real-world codebases, including the following:

TODO: Performance data

4.1 CPython

Other ways to run Python on web: pyja-
mas/pyjs, old pypy-js backend, ?? also Iron-
Python on Silverlight and Jython in Java. Lim-
itations etc.

CPython is the standard implementation of
the Python programming language written in C.
Compiling it in Emscripten is straightforward,
except for needing to change some #defines,
without which CPython creates platform-specific
assembly code.

Compilation using llvm-gcc generates approx-
imately 27.9MB of LLVM assembly. After
running Emscripten and the Closure Compiler,
the generated JavaScript code is approximately
2.76MB in size. For comparison, a native binary
version of CPython is approxiately 2.28MB in
size, so the two differ by only 21%.

The CORRECT OVERFLOWS option in
Emscripten is necessary for proper operation of
the generated code, as Python hash code relies
on integer overflows to work normally.

The demo can be seen live at http://www.

syntensity.com/static/python.html. Poten-
tial uses include ... etc.

4.2 Bullet Physics Engine

Mention other bullet-¿js manual port, via Java

4.3 Lua

Mention other lua-¿js compilers

5 Summary

We presented Emscripten, an LLVM-to-
JavaScript compiler, which opens up numerous
opportunities for running code written in
languages other than JavaScript on the web,
including some not previously possible. Em-
scripten can be used to, among other things,
compile real-world C and C++ code and run
that on the web. In turn, by compiling the
runtimes of languages implemented in C and
C++, we can run them on the web as well.
Examples were shown for Python and Lua.

One of the main tasks for future work in
Emscripten is to broaden it’s standard library.
Emscripten currently includes portions of libc
and other standard C libraries, implemented in
JavaScript. Portions of existing libc implemen-
tations written themselves in C can also be com-
piled into JavaScript using Emscripten, but in
general the difficulty is in creating a suitable
runtime environment on the web. For example,
there is no filesystem accessible, nor normal sys-
tem calls and so forth. Some of those features can
be implemented in JavaScript, in particular new
HTML features like the File API should help.

Another important task is to support multi-
threading. Emscripten currently assumes the
code being compiled is single-threaded, since
JavaScript does not have support for multi-
threading (Web Workers allow multiprocessing,

Page 11

but they do not have shared state, so implement-
ing threads with them is not trivial). However, it
would be possible to emulate multithreading in a
single thread. One approach could be to not gen-
erate native JavaScript control flow structures,
and instead to use a switch-in-a-loop for the en-
tire program. Code can then be added in the
loop to switch every so often between ‘threads’,
while maintaining their state and so forth.

A third important task is to improve the speed
of generated code. An optimal situation would
be for code compiled by Emscripten to run at or
near the speed of native code. In that respect it
is worth comparing Emscripten to Portable Na-
tive Client (PNaCl), a project in development
which aims to allow an LLVM-like format to be
distributed and run securely on the web, with
speed comparable to native code.

Both Emscripten and PNaCl allow running
compiled native code on the web, Emscripten by
compiling that code into JavaScript, and PNaCl
by compiling it into an LLVM-like format, which
is then run in a special PNaCl runtime. The
major differences are that Emscripten’s gener-
ated code can run on all web browsers, since it
is standard JavaScript, while PNaCl’s generated
code requires the PNaCl runtime to be installed;
another major difference is that JavaScript en-
gines do not yet run code at near-native speeds,
while PNaCl does. To summarize this compar-
ison, Emscripten’s approach allows the code to
be run in more places, while PNaCl’s allows the
code to run faster.

However, improvements in JavaScript engines
may narrow the speed gap. In particular, for
purposes of Emscripten we do not need to care
about all JavaScript, but only the kind gener-
ated by Emscripten. Such code is implicitly
statically typed, that is, types are not mixed,
despite JavaScript in general allowing assigning,
e.g., an integer to a variable and later a floating
point value or even an object to that same vari-
able. Implicitly statically typed code can be stat-
ically analyzed and converted into machine code
that has no runtime type checks at all. While
such static analysis can be time-consuming, there
are practical ways for achieving similar results
quickly, such as tracing and local type inference,

which would help on such code very significantly,
and are already in use or being worked on in
mainstream JavaScript engines (e.g., SpiderMon-
key).

The limit of such an approach is to perform
static analysis on an entire program compiled
by Emscripten, generating highly-optimized ma-
chine code from that. As evidence of the poten-
tial in such an approach, the PyPy project can
compile RPython – something very close to im-
plicitly statically typed Python – into C, which
can then be compiled and run at native speed.
We may in the future see JavaScript engines per-
form such static compilation, when the code they
run is implicitly statically typed, which would
allow Emscripten’s generated code to run at na-
tive speeds as well. While not trivial, such an
approach is possible, and if accomplished, would
mean that the combination of Emscripten and
suitable JavaScript engines will let people write
code in their languages of choice, and run them
at native speeds on the web.

Finally, we conclude with another another av-
enue for optimization. Assume that we are com-
piling a C or C++ runtime of a language into
JavaScript, and that that runtime uses JIT com-
pilation to generate machine code. Typically
code generators for JITs are written for the main
CPU architectures, today x86, x86 64 and ARM.
However, it would be possible for a JIT to gener-
ate JavaScript instead. Thus, the runtime would
be compiled using Emscripten, and it would pass
the generated JavaScript to eval. In this sce-
nario, JavaScript is used as a low-level interme-
diate representation in the runtime, and the final
conversion to machine code is left to the underly-
ing JavaScript engine. This approach can poten-
tially allow languages that greatly benefit from
a JIT (such as Java, Lua, etc.) to be run on the
web efficiently.

Page 12

