diff options
Diffstat (limited to 'tests/bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.cpp')
-rw-r--r-- | tests/bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.cpp | 842 |
1 files changed, 842 insertions, 0 deletions
diff --git a/tests/bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.cpp b/tests/bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.cpp new file mode 100644 index 00000000..3ebe3ed8 --- /dev/null +++ b/tests/bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.cpp @@ -0,0 +1,842 @@ +#include "btInternalEdgeUtility.h" + +#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" +#include "BulletCollision/CollisionShapes/btScaledBvhTriangleMeshShape.h" +#include "BulletCollision/CollisionShapes/btTriangleShape.h" +#include "BulletCollision/CollisionDispatch/btCollisionObject.h" +#include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h" +#include "LinearMath/btIDebugDraw.h" + + +//#define DEBUG_INTERNAL_EDGE + +#ifdef DEBUG_INTERNAL_EDGE +#include <stdio.h> +#endif //DEBUG_INTERNAL_EDGE + + +#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW +static btIDebugDraw* gDebugDrawer = 0; + +void btSetDebugDrawer(btIDebugDraw* debugDrawer) +{ + gDebugDrawer = debugDrawer; +} + +static void btDebugDrawLine(const btVector3& from,const btVector3& to, const btVector3& color) +{ + if (gDebugDrawer) + gDebugDrawer->drawLine(from,to,color); +} +#endif //BT_INTERNAL_EDGE_DEBUG_DRAW + + +static int btGetHash(int partId, int triangleIndex) +{ + int hash = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | triangleIndex; + return hash; +} + + + +static btScalar btGetAngle(const btVector3& edgeA, const btVector3& normalA,const btVector3& normalB) +{ + const btVector3 refAxis0 = edgeA; + const btVector3 refAxis1 = normalA; + const btVector3 swingAxis = normalB; + btScalar angle = btAtan2(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1)); + return angle; +} + + +struct btConnectivityProcessor : public btTriangleCallback +{ + int m_partIdA; + int m_triangleIndexA; + btVector3* m_triangleVerticesA; + btTriangleInfoMap* m_triangleInfoMap; + + + virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex) + { + //skip self-collisions + if ((m_partIdA == partId) && (m_triangleIndexA == triangleIndex)) + return; + + //skip duplicates (disabled for now) + //if ((m_partIdA <= partId) && (m_triangleIndexA <= triangleIndex)) + // return; + + //search for shared vertices and edges + int numshared = 0; + int sharedVertsA[3]={-1,-1,-1}; + int sharedVertsB[3]={-1,-1,-1}; + + ///skip degenerate triangles + btScalar crossBSqr = ((triangle[1]-triangle[0]).cross(triangle[2]-triangle[0])).length2(); + if (crossBSqr < m_triangleInfoMap->m_equalVertexThreshold) + return; + + + btScalar crossASqr = ((m_triangleVerticesA[1]-m_triangleVerticesA[0]).cross(m_triangleVerticesA[2]-m_triangleVerticesA[0])).length2(); + ///skip degenerate triangles + if (crossASqr< m_triangleInfoMap->m_equalVertexThreshold) + return; + +#if 0 + printf("triangle A[0] = (%f,%f,%f)\ntriangle A[1] = (%f,%f,%f)\ntriangle A[2] = (%f,%f,%f)\n", + m_triangleVerticesA[0].getX(),m_triangleVerticesA[0].getY(),m_triangleVerticesA[0].getZ(), + m_triangleVerticesA[1].getX(),m_triangleVerticesA[1].getY(),m_triangleVerticesA[1].getZ(), + m_triangleVerticesA[2].getX(),m_triangleVerticesA[2].getY(),m_triangleVerticesA[2].getZ()); + + printf("partId=%d, triangleIndex=%d\n",partId,triangleIndex); + printf("triangle B[0] = (%f,%f,%f)\ntriangle B[1] = (%f,%f,%f)\ntriangle B[2] = (%f,%f,%f)\n", + triangle[0].getX(),triangle[0].getY(),triangle[0].getZ(), + triangle[1].getX(),triangle[1].getY(),triangle[1].getZ(), + triangle[2].getX(),triangle[2].getY(),triangle[2].getZ()); +#endif + + for (int i=0;i<3;i++) + { + for (int j=0;j<3;j++) + { + if ( (m_triangleVerticesA[i]-triangle[j]).length2() < m_triangleInfoMap->m_equalVertexThreshold) + { + sharedVertsA[numshared] = i; + sharedVertsB[numshared] = j; + numshared++; + ///degenerate case + if(numshared >= 3) + return; + } + } + ///degenerate case + if(numshared >= 3) + return; + } + switch (numshared) + { + case 0: + { + break; + } + case 1: + { + //shared vertex + break; + } + case 2: + { + //shared edge + //we need to make sure the edge is in the order V2V0 and not V0V2 so that the signs are correct + if (sharedVertsA[0] == 0 && sharedVertsA[1] == 2) + { + sharedVertsA[0] = 2; + sharedVertsA[1] = 0; + int tmp = sharedVertsB[1]; + sharedVertsB[1] = sharedVertsB[0]; + sharedVertsB[0] = tmp; + } + + int hash = btGetHash(m_partIdA,m_triangleIndexA); + + btTriangleInfo* info = m_triangleInfoMap->find(hash); + if (!info) + { + btTriangleInfo tmp; + m_triangleInfoMap->insert(hash,tmp); + info = m_triangleInfoMap->find(hash); + } + + int sumvertsA = sharedVertsA[0]+sharedVertsA[1]; + int otherIndexA = 3-sumvertsA; + + + btVector3 edge(m_triangleVerticesA[sharedVertsA[1]]-m_triangleVerticesA[sharedVertsA[0]]); + + btTriangleShape tA(m_triangleVerticesA[0],m_triangleVerticesA[1],m_triangleVerticesA[2]); + int otherIndexB = 3-(sharedVertsB[0]+sharedVertsB[1]); + + btTriangleShape tB(triangle[sharedVertsB[1]],triangle[sharedVertsB[0]],triangle[otherIndexB]); + //btTriangleShape tB(triangle[0],triangle[1],triangle[2]); + + btVector3 normalA; + btVector3 normalB; + tA.calcNormal(normalA); + tB.calcNormal(normalB); + edge.normalize(); + btVector3 edgeCrossA = edge.cross(normalA).normalize(); + + { + btVector3 tmp = m_triangleVerticesA[otherIndexA]-m_triangleVerticesA[sharedVertsA[0]]; + if (edgeCrossA.dot(tmp) < 0) + { + edgeCrossA*=-1; + } + } + + btVector3 edgeCrossB = edge.cross(normalB).normalize(); + + { + btVector3 tmp = triangle[otherIndexB]-triangle[sharedVertsB[0]]; + if (edgeCrossB.dot(tmp) < 0) + { + edgeCrossB*=-1; + } + } + + btScalar angle2 = 0; + btScalar ang4 = 0.f; + + + btVector3 calculatedEdge = edgeCrossA.cross(edgeCrossB); + btScalar len2 = calculatedEdge.length2(); + + btScalar correctedAngle(0); + btVector3 calculatedNormalB = normalA; + bool isConvex = false; + + if (len2<m_triangleInfoMap->m_planarEpsilon) + { + angle2 = 0.f; + ang4 = 0.f; + } else + { + + calculatedEdge.normalize(); + btVector3 calculatedNormalA = calculatedEdge.cross(edgeCrossA); + calculatedNormalA.normalize(); + angle2 = btGetAngle(calculatedNormalA,edgeCrossA,edgeCrossB); + ang4 = SIMD_PI-angle2; + btScalar dotA = normalA.dot(edgeCrossB); + ///@todo: check if we need some epsilon, due to floating point imprecision + isConvex = (dotA<0.); + + correctedAngle = isConvex ? ang4 : -ang4; + btQuaternion orn2(calculatedEdge,-correctedAngle); + calculatedNormalB = btMatrix3x3(orn2)*normalA; + + + } + + + + + + //alternatively use + //btVector3 calculatedNormalB2 = quatRotate(orn,normalA); + + + switch (sumvertsA) + { + case 1: + { + btVector3 edge = m_triangleVerticesA[0]-m_triangleVerticesA[1]; + btQuaternion orn(edge,-correctedAngle); + btVector3 computedNormalB = quatRotate(orn,normalA); + btScalar bla = computedNormalB.dot(normalB); + if (bla<0) + { + computedNormalB*=-1; + info->m_flags |= TRI_INFO_V0V1_SWAP_NORMALB; + } +#ifdef DEBUG_INTERNAL_EDGE + if ((computedNormalB-normalB).length()>0.0001) + { + printf("warning: normals not identical\n"); + } +#endif//DEBUG_INTERNAL_EDGE + + info->m_edgeV0V1Angle = -correctedAngle; + + if (isConvex) + info->m_flags |= TRI_INFO_V0V1_CONVEX; + break; + } + case 2: + { + btVector3 edge = m_triangleVerticesA[2]-m_triangleVerticesA[0]; + btQuaternion orn(edge,-correctedAngle); + btVector3 computedNormalB = quatRotate(orn,normalA); + if (computedNormalB.dot(normalB)<0) + { + computedNormalB*=-1; + info->m_flags |= TRI_INFO_V2V0_SWAP_NORMALB; + } + +#ifdef DEBUG_INTERNAL_EDGE + if ((computedNormalB-normalB).length()>0.0001) + { + printf("warning: normals not identical\n"); + } +#endif //DEBUG_INTERNAL_EDGE + info->m_edgeV2V0Angle = -correctedAngle; + if (isConvex) + info->m_flags |= TRI_INFO_V2V0_CONVEX; + break; + } + case 3: + { + btVector3 edge = m_triangleVerticesA[1]-m_triangleVerticesA[2]; + btQuaternion orn(edge,-correctedAngle); + btVector3 computedNormalB = quatRotate(orn,normalA); + if (computedNormalB.dot(normalB)<0) + { + info->m_flags |= TRI_INFO_V1V2_SWAP_NORMALB; + computedNormalB*=-1; + } +#ifdef DEBUG_INTERNAL_EDGE + if ((computedNormalB-normalB).length()>0.0001) + { + printf("warning: normals not identical\n"); + } +#endif //DEBUG_INTERNAL_EDGE + info->m_edgeV1V2Angle = -correctedAngle; + + if (isConvex) + info->m_flags |= TRI_INFO_V1V2_CONVEX; + break; + } + } + + break; + } + default: + { + // printf("warning: duplicate triangle\n"); + } + + } + } +}; +///////////////////////////////////////////////////////// +///////////////////////////////////////////////////////// + +void btGenerateInternalEdgeInfo (btBvhTriangleMeshShape*trimeshShape, btTriangleInfoMap* triangleInfoMap) +{ + //the user pointer shouldn't already be used for other purposes, we intend to store connectivity info there! + if (trimeshShape->getTriangleInfoMap()) + return; + + trimeshShape->setTriangleInfoMap(triangleInfoMap); + + btStridingMeshInterface* meshInterface = trimeshShape->getMeshInterface(); + const btVector3& meshScaling = meshInterface->getScaling(); + + for (int partId = 0; partId< meshInterface->getNumSubParts();partId++) + { + const unsigned char *vertexbase = 0; + int numverts = 0; + PHY_ScalarType type = PHY_INTEGER; + int stride = 0; + const unsigned char *indexbase = 0; + int indexstride = 0; + int numfaces = 0; + PHY_ScalarType indicestype = PHY_INTEGER; + //PHY_ScalarType indexType=0; + + btVector3 triangleVerts[3]; + meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts, type,stride,&indexbase,indexstride,numfaces,indicestype,partId); + btVector3 aabbMin,aabbMax; + + for (int triangleIndex = 0 ; triangleIndex < numfaces;triangleIndex++) + { + unsigned int* gfxbase = (unsigned int*)(indexbase+triangleIndex*indexstride); + + for (int j=2;j>=0;j--) + { + + int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j]; + if (type == PHY_FLOAT) + { + float* graphicsbase = (float*)(vertexbase+graphicsindex*stride); + triangleVerts[j] = btVector3( + graphicsbase[0]*meshScaling.getX(), + graphicsbase[1]*meshScaling.getY(), + graphicsbase[2]*meshScaling.getZ()); + } + else + { + double* graphicsbase = (double*)(vertexbase+graphicsindex*stride); + triangleVerts[j] = btVector3( btScalar(graphicsbase[0]*meshScaling.getX()), btScalar(graphicsbase[1]*meshScaling.getY()), btScalar(graphicsbase[2]*meshScaling.getZ())); + } + } + aabbMin.setValue(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT)); + aabbMax.setValue(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT)); + aabbMin.setMin(triangleVerts[0]); + aabbMax.setMax(triangleVerts[0]); + aabbMin.setMin(triangleVerts[1]); + aabbMax.setMax(triangleVerts[1]); + aabbMin.setMin(triangleVerts[2]); + aabbMax.setMax(triangleVerts[2]); + + btConnectivityProcessor connectivityProcessor; + connectivityProcessor.m_partIdA = partId; + connectivityProcessor.m_triangleIndexA = triangleIndex; + connectivityProcessor.m_triangleVerticesA = &triangleVerts[0]; + connectivityProcessor.m_triangleInfoMap = triangleInfoMap; + + trimeshShape->processAllTriangles(&connectivityProcessor,aabbMin,aabbMax); + } + + } + +} + + + + +// Given a point and a line segment (defined by two points), compute the closest point +// in the line. Cap the point at the endpoints of the line segment. +void btNearestPointInLineSegment(const btVector3 &point, const btVector3& line0, const btVector3& line1, btVector3& nearestPoint) +{ + btVector3 lineDelta = line1 - line0; + + // Handle degenerate lines + if ( lineDelta.fuzzyZero()) + { + nearestPoint = line0; + } + else + { + btScalar delta = (point-line0).dot(lineDelta) / (lineDelta).dot(lineDelta); + + // Clamp the point to conform to the segment's endpoints + if ( delta < 0 ) + delta = 0; + else if ( delta > 1 ) + delta = 1; + + nearestPoint = line0 + lineDelta*delta; + } +} + + + + +bool btClampNormal(const btVector3& edge,const btVector3& tri_normal_org,const btVector3& localContactNormalOnB, btScalar correctedEdgeAngle, btVector3 & clampedLocalNormal) +{ + btVector3 tri_normal = tri_normal_org; + //we only have a local triangle normal, not a local contact normal -> only normal in world space... + //either compute the current angle all in local space, or all in world space + + btVector3 edgeCross = edge.cross(tri_normal).normalize(); + btScalar curAngle = btGetAngle(edgeCross,tri_normal,localContactNormalOnB); + + if (correctedEdgeAngle<0) + { + if (curAngle < correctedEdgeAngle) + { + btScalar diffAngle = correctedEdgeAngle-curAngle; + btQuaternion rotation(edge,diffAngle ); + clampedLocalNormal = btMatrix3x3(rotation)*localContactNormalOnB; + return true; + } + } + + if (correctedEdgeAngle>=0) + { + if (curAngle > correctedEdgeAngle) + { + btScalar diffAngle = correctedEdgeAngle-curAngle; + btQuaternion rotation(edge,diffAngle ); + clampedLocalNormal = btMatrix3x3(rotation)*localContactNormalOnB; + return true; + } + } + return false; +} + + + +/// Changes a btManifoldPoint collision normal to the normal from the mesh. +void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObject* colObj0,const btCollisionObject* colObj1, int partId0, int index0, int normalAdjustFlags) +{ + //btAssert(colObj0->getCollisionShape()->getShapeType() == TRIANGLE_SHAPE_PROXYTYPE); + if (colObj0->getCollisionShape()->getShapeType() != TRIANGLE_SHAPE_PROXYTYPE) + return; + + btBvhTriangleMeshShape* trimesh = 0; + + if( colObj0->getRootCollisionShape()->getShapeType() == SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE ) + trimesh = ((btScaledBvhTriangleMeshShape*)colObj0->getRootCollisionShape())->getChildShape(); + else + trimesh = (btBvhTriangleMeshShape*)colObj0->getRootCollisionShape(); + + btTriangleInfoMap* triangleInfoMapPtr = (btTriangleInfoMap*) trimesh->getTriangleInfoMap(); + if (!triangleInfoMapPtr) + return; + + int hash = btGetHash(partId0,index0); + + + btTriangleInfo* info = triangleInfoMapPtr->find(hash); + if (!info) + return; + + btScalar frontFacing = (normalAdjustFlags & BT_TRIANGLE_CONVEX_BACKFACE_MODE)==0? 1.f : -1.f; + + const btTriangleShape* tri_shape = static_cast<const btTriangleShape*>(colObj0->getCollisionShape()); + btVector3 v0,v1,v2; + tri_shape->getVertex(0,v0); + tri_shape->getVertex(1,v1); + tri_shape->getVertex(2,v2); + + btVector3 center = (v0+v1+v2)*btScalar(1./3.); + + btVector3 red(1,0,0), green(0,1,0),blue(0,0,1),white(1,1,1),black(0,0,0); + btVector3 tri_normal; + tri_shape->calcNormal(tri_normal); + + //btScalar dot = tri_normal.dot(cp.m_normalWorldOnB); + btVector3 nearest; + btNearestPointInLineSegment(cp.m_localPointB,v0,v1,nearest); + + btVector3 contact = cp.m_localPointB; +#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + const btTransform& tr = colObj0->getWorldTransform(); + btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,red); +#endif //BT_INTERNAL_EDGE_DEBUG_DRAW + + + + bool isNearEdge = false; + + int numConcaveEdgeHits = 0; + int numConvexEdgeHits = 0; + + btVector3 localContactNormalOnB = colObj0->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB; + localContactNormalOnB.normalize();//is this necessary? + + // Get closest edge + int bestedge=-1; + float disttobestedge=BT_LARGE_FLOAT; + // + // Edge 0 -> 1 + if (btFabs(info->m_edgeV0V1Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold) + { + btVector3 nearest; + btNearestPointInLineSegment( cp.m_localPointB, v0, v1, nearest ); + float len=(contact-nearest).length(); + // + if( len < disttobestedge ) + { + bestedge=0; + disttobestedge=len; + } + } + // Edge 1 -> 2 + if (btFabs(info->m_edgeV1V2Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold) + { + btVector3 nearest; + btNearestPointInLineSegment( cp.m_localPointB, v1, v2, nearest ); + float len=(contact-nearest).length(); + // + if( len < disttobestedge ) + { + bestedge=1; + disttobestedge=len; + } + } + // Edge 2 -> 0 + if (btFabs(info->m_edgeV2V0Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold) + { + btVector3 nearest; + btNearestPointInLineSegment( cp.m_localPointB, v2, v0, nearest ); + float len=(contact-nearest).length(); + // + if( len < disttobestedge ) + { + bestedge=2; + disttobestedge=len; + } + } + +#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + btVector3 upfix=tri_normal * btVector3(0.1f,0.1f,0.1f); + btDebugDrawLine(tr * v0 + upfix, tr * v1 + upfix, red ); +#endif + if (btFabs(info->m_edgeV0V1Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold) + { +#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black); +#endif + btScalar len = (contact-nearest).length(); + if(len<triangleInfoMapPtr->m_edgeDistanceThreshold) + if( bestedge==0 ) + { + btVector3 edge(v0-v1); + isNearEdge = true; + + if (info->m_edgeV0V1Angle==btScalar(0)) + { + numConcaveEdgeHits++; + } else + { + + bool isEdgeConvex = (info->m_flags & TRI_INFO_V0V1_CONVEX); + btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1); + #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white); + #endif //BT_INTERNAL_EDGE_DEBUG_DRAW + + btVector3 nA = swapFactor * tri_normal; + + btQuaternion orn(edge,info->m_edgeV0V1Angle); + btVector3 computedNormalB = quatRotate(orn,tri_normal); + if (info->m_flags & TRI_INFO_V0V1_SWAP_NORMALB) + computedNormalB*=-1; + btVector3 nB = swapFactor*computedNormalB; + + btScalar NdotA = localContactNormalOnB.dot(nA); + btScalar NdotB = localContactNormalOnB.dot(nB); + bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon); + +#ifdef DEBUG_INTERNAL_EDGE + { + + btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red); + } +#endif //DEBUG_INTERNAL_EDGE + + + if (backFacingNormal) + { + numConcaveEdgeHits++; + } + else + { + numConvexEdgeHits++; + btVector3 clampedLocalNormal; + bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV0V1Angle,clampedLocalNormal); + if (isClamped) + { + if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0)) + { + btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal; + // cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB); + cp.m_normalWorldOnB = newNormal; + // Reproject collision point along normal. (what about cp.m_distance1?) + cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1; + cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB); + + } + } + } + } + } + } + + btNearestPointInLineSegment(contact,v1,v2,nearest); +#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,green); +#endif //BT_INTERNAL_EDGE_DEBUG_DRAW + +#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + btDebugDrawLine(tr * v1 + upfix, tr * v2 + upfix , green ); +#endif + + if (btFabs(info->m_edgeV1V2Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold) + { +#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black); +#endif //BT_INTERNAL_EDGE_DEBUG_DRAW + + + + btScalar len = (contact-nearest).length(); + if(len<triangleInfoMapPtr->m_edgeDistanceThreshold) + if( bestedge==1 ) + { + isNearEdge = true; +#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + btDebugDrawLine(tr*nearest,tr*(nearest+tri_normal*10),white); +#endif //BT_INTERNAL_EDGE_DEBUG_DRAW + + btVector3 edge(v1-v2); + + isNearEdge = true; + + if (info->m_edgeV1V2Angle == btScalar(0)) + { + numConcaveEdgeHits++; + } else + { + bool isEdgeConvex = (info->m_flags & TRI_INFO_V1V2_CONVEX)!=0; + btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1); + #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white); + #endif //BT_INTERNAL_EDGE_DEBUG_DRAW + + btVector3 nA = swapFactor * tri_normal; + + btQuaternion orn(edge,info->m_edgeV1V2Angle); + btVector3 computedNormalB = quatRotate(orn,tri_normal); + if (info->m_flags & TRI_INFO_V1V2_SWAP_NORMALB) + computedNormalB*=-1; + btVector3 nB = swapFactor*computedNormalB; + +#ifdef DEBUG_INTERNAL_EDGE + { + btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red); + } +#endif //DEBUG_INTERNAL_EDGE + + + btScalar NdotA = localContactNormalOnB.dot(nA); + btScalar NdotB = localContactNormalOnB.dot(nB); + bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon); + + if (backFacingNormal) + { + numConcaveEdgeHits++; + } + else + { + numConvexEdgeHits++; + btVector3 localContactNormalOnB = colObj0->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB; + btVector3 clampedLocalNormal; + bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV1V2Angle,clampedLocalNormal); + if (isClamped) + { + if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0)) + { + btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal; + // cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB); + cp.m_normalWorldOnB = newNormal; + // Reproject collision point along normal. + cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1; + cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB); + } + } + } + } + } + } + + btNearestPointInLineSegment(contact,v2,v0,nearest); +#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,blue); +#endif //BT_INTERNAL_EDGE_DEBUG_DRAW +#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + btDebugDrawLine(tr * v2 + upfix, tr * v0 + upfix , blue ); +#endif + + if (btFabs(info->m_edgeV2V0Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold) + { + +#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black); +#endif //BT_INTERNAL_EDGE_DEBUG_DRAW + + btScalar len = (contact-nearest).length(); + if(len<triangleInfoMapPtr->m_edgeDistanceThreshold) + if( bestedge==2 ) + { + isNearEdge = true; +#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + btDebugDrawLine(tr*nearest,tr*(nearest+tri_normal*10),white); +#endif //BT_INTERNAL_EDGE_DEBUG_DRAW + + btVector3 edge(v2-v0); + + if (info->m_edgeV2V0Angle==btScalar(0)) + { + numConcaveEdgeHits++; + } else + { + + bool isEdgeConvex = (info->m_flags & TRI_INFO_V2V0_CONVEX)!=0; + btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1); + #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW + btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white); + #endif //BT_INTERNAL_EDGE_DEBUG_DRAW + + btVector3 nA = swapFactor * tri_normal; + btQuaternion orn(edge,info->m_edgeV2V0Angle); + btVector3 computedNormalB = quatRotate(orn,tri_normal); + if (info->m_flags & TRI_INFO_V2V0_SWAP_NORMALB) + computedNormalB*=-1; + btVector3 nB = swapFactor*computedNormalB; + +#ifdef DEBUG_INTERNAL_EDGE + { + btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red); + } +#endif //DEBUG_INTERNAL_EDGE + + btScalar NdotA = localContactNormalOnB.dot(nA); + btScalar NdotB = localContactNormalOnB.dot(nB); + bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon); + + if (backFacingNormal) + { + numConcaveEdgeHits++; + } + else + { + numConvexEdgeHits++; + // printf("hitting convex edge\n"); + + + btVector3 localContactNormalOnB = colObj0->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB; + btVector3 clampedLocalNormal; + bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB,info->m_edgeV2V0Angle,clampedLocalNormal); + if (isClamped) + { + if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0)) + { + btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal; + // cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB); + cp.m_normalWorldOnB = newNormal; + // Reproject collision point along normal. + cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1; + cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB); + } + } + } + } + + + } + } + +#ifdef DEBUG_INTERNAL_EDGE + { + btVector3 color(0,1,1); + btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+cp.m_normalWorldOnB*10,color); + } +#endif //DEBUG_INTERNAL_EDGE + + if (isNearEdge) + { + + if (numConcaveEdgeHits>0) + { + if ((normalAdjustFlags & BT_TRIANGLE_CONCAVE_DOUBLE_SIDED)!=0) + { + //fix tri_normal so it pointing the same direction as the current local contact normal + if (tri_normal.dot(localContactNormalOnB) < 0) + { + tri_normal *= -1; + } + cp.m_normalWorldOnB = colObj0->getWorldTransform().getBasis()*tri_normal; + } else + { + btVector3 newNormal = tri_normal *frontFacing; + //if the tri_normal is pointing opposite direction as the current local contact normal, skip it + btScalar d = newNormal.dot(localContactNormalOnB) ; + if (d< 0) + { + return; + } + //modify the normal to be the triangle normal (or backfacing normal) + cp.m_normalWorldOnB = colObj0->getWorldTransform().getBasis() *newNormal; + } + + // Reproject collision point along normal. + cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1; + cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB); + } + } +} |