aboutsummaryrefslogtreecommitdiff
path: root/system
diff options
context:
space:
mode:
Diffstat (limited to 'system')
-rw-r--r--system/include/emscripten/emscripten.h28
-rw-r--r--system/include/err.h95
-rw-r--r--system/include/stdbool.h3
-rw-r--r--system/lib/dlmalloc.c9123
-rw-r--r--system/lib/libc.symbols30
-rw-r--r--system/lib/libc/gen/err.c49
-rw-r--r--system/lib/libc/gen/errx.c49
-rw-r--r--system/lib/libc/gen/verr.c58
-rw-r--r--system/lib/libc/gen/verrx.c51
-rw-r--r--system/lib/libc/gen/vwarn.c55
-rw-r--r--system/lib/libc/gen/vwarnx.c48
-rw-r--r--system/lib/libc/gen/warn.c49
-rw-r--r--system/lib/libc/gen/warnx.c49
-rw-r--r--system/lib/libc/stdlib/getopt_long.c511
-rw-r--r--system/lib/libc/stdlib/strtod.c305
-rw-r--r--system/lib/libcxx/symbols9
-rw-r--r--system/lib/libcxxabi/symbols7
17 files changed, 6234 insertions, 4285 deletions
diff --git a/system/include/emscripten/emscripten.h b/system/include/emscripten/emscripten.h
index 93551f39..61634b0e 100644
--- a/system/include/emscripten/emscripten.h
+++ b/system/include/emscripten/emscripten.h
@@ -60,7 +60,7 @@ extern void emscripten_async_run_script(const char *script, int millis);
* that execution continues normally. Note that in both cases
* we do not run global destructors, atexit, etc., since we
* know the main loop will still be running, but if we do
- * not simulate an infinite loop then the stack will be unwinded.
+ * not simulate an infinite loop then the stack will be unwound.
* That means that if simulate_infinite_loop is false, and
* you created an object on the stack, it will be cleaned up
* before the main loop will be called the first time.
@@ -215,7 +215,7 @@ void emscripten_async_wget_data(const char* url, void *arg, void (*onload)(void*
* More feature-complete version of emscripten_async_wget. Note:
* this version is experimental.
*
- * The requestype is 'GET' or 'POST',
+ * The requesttype is 'GET' or 'POST',
* If is post request, param is the post parameter
* like key=value&key2=value2.
* The param 'arg' is a pointer will be pass to the callback
@@ -345,6 +345,30 @@ extern void EMSCRIPTEN_PROFILE_INIT(int max);
extern void EMSCRIPTEN_PROFILE_BEGIN(int id);
extern void EMSCRIPTEN_PROFILE_END(int id);
+/*
+ * jcache-friendly printf. printf in general will receive a string
+ * literal, which becomes a global constant, which invalidates all
+ * jcache entries. emscripten_jcache_printf is parsed before
+ * clang into something without any string literals, so you can
+ * add such printouts to your code and only the (chunk containing
+ * the) function you modify will be invalided and recompiled.
+ *
+ * Note in particular that you need to already have a call to this
+ * function in your code *before* you add one and do an incremental
+ * build, so that adding an external reference does not invalidate
+ * everything.
+ *
+ * This function assumes the first argument is a string literal
+ * (otherwise you don't need it), and the other arguments, if any,
+ * are neither strings nor complex expressions (but just simple
+ * variables). (You can create a variable to store a complex
+ * expression on the previous line, if necessary.)
+ */
+#ifdef __cplusplus
+void emscripten_jcache_printf(const char *format, ...);
+void emscripten_jcache_printf_(...); /* internal use */
+#endif
+
#ifdef __cplusplus
}
#endif
diff --git a/system/include/err.h b/system/include/err.h
new file mode 100644
index 00000000..a9b92ee6
--- /dev/null
+++ b/system/include/err.h
@@ -0,0 +1,95 @@
+/* $OpenBSD: err.h,v 1.10 2006/01/06 18:53:04 millert Exp $ */
+/* $NetBSD: err.h,v 1.11 1994/10/26 00:55:52 cgd Exp $ */
+
+/*-
+ * Copyright (c) 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)err.h 8.1 (Berkeley) 6/2/93
+ */
+
+#ifndef _ERR_H_
+#define _ERR_H_
+
+/*
+ * Don't use va_list in the err/warn prototypes. Va_list is typedef'd in two
+ * places (<machine/varargs.h> and <machine/stdarg.h>), so if we include one
+ * of them here we may collide with the utility's includes. It's unreasonable
+ * for utilities to have to include one of them to include err.h, so we get
+ * va_list from <machine/_types.h> and use it.
+ */
+#include <sys/cdefs.h>
+//#include <machine/_types.h>
+#include <stdarg.h>
+
+#define __dead __attribute__((__noreturn__))
+
+__BEGIN_DECLS
+
+__dead void err(int, const char *, ...)
+ __attribute__((__format__ (printf, 2, 3)));
+__dead void verr(int, const char *, va_list)
+ __attribute__((__format__ (printf, 2, 0)));
+__dead void errx(int, const char *, ...)
+ __attribute__((__format__ (printf, 2, 3)));
+__dead void verrx(int, const char *, va_list)
+ __attribute__((__format__ (printf, 2, 0)));
+void warn(const char *, ...)
+ __attribute__((__format__ (printf, 1, 2)));
+void vwarn(const char *, va_list)
+ __attribute__((__format__ (printf, 1, 0)));
+void warnx(const char *, ...)
+ __attribute__((__format__ (printf, 1, 2)));
+void vwarnx(const char *, va_list)
+ __attribute__((__format__ (printf, 1, 0)));
+
+/*
+ * The _* versions are for use in library functions so user-defined
+ * versions of err*,warn* do not get used.
+ */
+__dead void _err(int, const char *, ...)
+ __attribute__((__format__ (printf, 2, 3)));
+__dead void _verr(int, const char *, va_list)
+ __attribute__((__format__ (printf, 2, 0)));
+__dead void _errx(int, const char *, ...)
+ __attribute__((__format__ (printf, 2, 3)));
+__dead void _verrx(int, const char *, va_list)
+ __attribute__((__format__ (printf, 2, 0)));
+void _warn(const char *, ...)
+ __attribute__((__format__ (printf, 1, 2)));
+void _vwarn(const char *, va_list)
+ __attribute__((__format__ (printf, 1, 0)));
+void _warnx(const char *, ...)
+ __attribute__((__format__ (printf, 1, 2)));
+void _vwarnx(const char *, va_list)
+ __attribute__((__format__ (printf, 1, 0)));
+
+#undef __dead
+
+__END_DECLS
+
+#endif /* !_ERR_H_ */
diff --git a/system/include/stdbool.h b/system/include/stdbool.h
index f970ade8..561eed3f 100644
--- a/system/include/stdbool.h
+++ b/system/include/stdbool.h
@@ -2,12 +2,13 @@
#ifndef __stdbool_h__
#define __stdbool_h__
+#define __bool_true_false_are_defined 1
+
#ifndef __cplusplus
#define bool _Bool
#define true 1
#define false 0
-#define __bool_true_false_are_defined 1
#endif
diff --git a/system/lib/dlmalloc.c b/system/lib/dlmalloc.c
index 9ee3709e..7e04a726 100644
--- a/system/lib/dlmalloc.c
+++ b/system/lib/dlmalloc.c
@@ -5,492 +5,537 @@
/*
- This is a version (aka dlmalloc) of malloc/free/realloc written by
- Doug Lea and released to the public domain, as explained at
- http://creativecommons.org/licenses/publicdomain. Send questions,
- comments, complaints, performance data, etc to dl@cs.oswego.edu
-
-* Version 2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee)
-
- Note: There may be an updated version of this malloc obtainable at
- ftp://gee.cs.oswego.edu/pub/misc/malloc.c
- Check before installing!
-
-* Quickstart
-
- This library is all in one file to simplify the most common usage:
- ftp it, compile it (-O3), and link it into another program. All of
- the compile-time options default to reasonable values for use on
- most platforms. You might later want to step through various
- compile-time and dynamic tuning options.
-
- For convenience, an include file for code using this malloc is at:
- ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.4.h
- You don't really need this .h file unless you call functions not
- defined in your system include files. The .h file contains only the
- excerpts from this file needed for using this malloc on ANSI C/C++
- systems, so long as you haven't changed compile-time options about
- naming and tuning parameters. If you do, then you can create your
- own malloc.h that does include all settings by cutting at the point
- indicated below. Note that you may already by default be using a C
- library containing a malloc that is based on some version of this
- malloc (for example in linux). You might still want to use the one
- in this file to customize settings or to avoid overheads associated
- with library versions.
-
-* Vital statistics:
-
- Supported pointer/size_t representation: 4 or 8 bytes
- size_t MUST be an unsigned type of the same width as
- pointers. (If you are using an ancient system that declares
- size_t as a signed type, or need it to be a different width
- than pointers, you can use a previous release of this malloc
- (e.g. 2.7.2) supporting these.)
-
- Alignment: 8 bytes (default)
- This suffices for nearly all current machines and C compilers.
- However, you can define MALLOC_ALIGNMENT to be wider than this
- if necessary (up to 128bytes), at the expense of using more space.
-
- Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
- 8 or 16 bytes (if 8byte sizes)
- Each malloced chunk has a hidden word of overhead holding size
- and status information, and additional cross-check word
- if FOOTERS is defined.
-
- Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
- 8-byte ptrs: 32 bytes (including overhead)
-
- Even a request for zero bytes (i.e., malloc(0)) returns a
- pointer to something of the minimum allocatable size.
- The maximum overhead wastage (i.e., number of extra bytes
- allocated than were requested in malloc) is less than or equal
- to the minimum size, except for requests >= mmap_threshold that
- are serviced via mmap(), where the worst case wastage is about
- 32 bytes plus the remainder from a system page (the minimal
- mmap unit); typically 4096 or 8192 bytes.
-
- Security: static-safe; optionally more or less
- The "security" of malloc refers to the ability of malicious
- code to accentuate the effects of errors (for example, freeing
- space that is not currently malloc'ed or overwriting past the
- ends of chunks) in code that calls malloc. This malloc
- guarantees not to modify any memory locations below the base of
- heap, i.e., static variables, even in the presence of usage
- errors. The routines additionally detect most improper frees
- and reallocs. All this holds as long as the static bookkeeping
- for malloc itself is not corrupted by some other means. This
- is only one aspect of security -- these checks do not, and
- cannot, detect all possible programming errors.
-
- If FOOTERS is defined nonzero, then each allocated chunk
- carries an additional check word to verify that it was malloced
- from its space. These check words are the same within each
- execution of a program using malloc, but differ across
- executions, so externally crafted fake chunks cannot be
- freed. This improves security by rejecting frees/reallocs that
- could corrupt heap memory, in addition to the checks preventing
- writes to statics that are always on. This may further improve
- security at the expense of time and space overhead. (Note that
- FOOTERS may also be worth using with MSPACES.)
-
- By default detected errors cause the program to abort (calling
- "abort()"). You can override this to instead proceed past
- errors by defining PROCEED_ON_ERROR. In this case, a bad free
- has no effect, and a malloc that encounters a bad address
- caused by user overwrites will ignore the bad address by
- dropping pointers and indices to all known memory. This may
- be appropriate for programs that should continue if at all
- possible in the face of programming errors, although they may
- run out of memory because dropped memory is never reclaimed.
-
- If you don't like either of these options, you can define
- CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
- else. And if if you are sure that your program using malloc has
- no errors or vulnerabilities, you can define INSECURE to 1,
- which might (or might not) provide a small performance improvement.
-
- Thread-safety: NOT thread-safe unless USE_LOCKS defined
- When USE_LOCKS is defined, each public call to malloc, free,
- etc is surrounded with either a pthread mutex or a win32
- spinlock (depending on WIN32). This is not especially fast, and
- can be a major bottleneck. It is designed only to provide
- minimal protection in concurrent environments, and to provide a
- basis for extensions. If you are using malloc in a concurrent
- program, consider instead using nedmalloc
- (http://www.nedprod.com/programs/portable/nedmalloc/) or
- ptmalloc (See http://www.malloc.de), which are derived
- from versions of this malloc.
-
- System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
- This malloc can use unix sbrk or any emulation (invoked using
- the CALL_MORECORE macro) and/or mmap/munmap or any emulation
- (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
- memory. On most unix systems, it tends to work best if both
- MORECORE and MMAP are enabled. On Win32, it uses emulations
- based on VirtualAlloc. It also uses common C library functions
- like memset.
-
- Compliance: I believe it is compliant with the Single Unix Specification
- (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
- others as well.
-
-* Overview of algorithms
-
- This is not the fastest, most space-conserving, most portable, or
- most tunable malloc ever written. However it is among the fastest
- while also being among the most space-conserving, portable and
- tunable. Consistent balance across these factors results in a good
- general-purpose allocator for malloc-intensive programs.
-
- In most ways, this malloc is a best-fit allocator. Generally, it
- chooses the best-fitting existing chunk for a request, with ties
- broken in approximately least-recently-used order. (This strategy
- normally maintains low fragmentation.) However, for requests less
- than 256bytes, it deviates from best-fit when there is not an
- exactly fitting available chunk by preferring to use space adjacent
- to that used for the previous small request, as well as by breaking
- ties in approximately most-recently-used order. (These enhance
- locality of series of small allocations.) And for very large requests
- (>= 256Kb by default), it relies on system memory mapping
- facilities, if supported. (This helps avoid carrying around and
- possibly fragmenting memory used only for large chunks.)
-
- All operations (except malloc_stats and mallinfo) have execution
- times that are bounded by a constant factor of the number of bits in
- a size_t, not counting any clearing in calloc or copying in realloc,
- or actions surrounding MORECORE and MMAP that have times
- proportional to the number of non-contiguous regions returned by
- system allocation routines, which is often just 1. In real-time
- applications, you can optionally suppress segment traversals using
- NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
- system allocators return non-contiguous spaces, at the typical
- expense of carrying around more memory and increased fragmentation.
-
- The implementation is not very modular and seriously overuses
- macros. Perhaps someday all C compilers will do as good a job
- inlining modular code as can now be done by brute-force expansion,
- but now, enough of them seem not to.
-
- Some compilers issue a lot of warnings about code that is
- dead/unreachable only on some platforms, and also about intentional
- uses of negation on unsigned types. All known cases of each can be
- ignored.
-
- For a longer but out of date high-level description, see
- http://gee.cs.oswego.edu/dl/html/malloc.html
-
-* MSPACES
- If MSPACES is defined, then in addition to malloc, free, etc.,
- this file also defines mspace_malloc, mspace_free, etc. These
- are versions of malloc routines that take an "mspace" argument
- obtained using create_mspace, to control all internal bookkeeping.
- If ONLY_MSPACES is defined, only these versions are compiled.
- So if you would like to use this allocator for only some allocations,
- and your system malloc for others, you can compile with
- ONLY_MSPACES and then do something like...
- static mspace mymspace = create_mspace(0,0); // for example
- #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
-
- (Note: If you only need one instance of an mspace, you can instead
- use "USE_DL_PREFIX" to relabel the global malloc.)
-
- You can similarly create thread-local allocators by storing
- mspaces as thread-locals. For example:
- static __thread mspace tlms = 0;
- void* tlmalloc(size_t bytes) {
- if (tlms == 0) tlms = create_mspace(0, 0);
- return mspace_malloc(tlms, bytes);
- }
- void tlfree(void* mem) { mspace_free(tlms, mem); }
-
- Unless FOOTERS is defined, each mspace is completely independent.
- You cannot allocate from one and free to another (although
- conformance is only weakly checked, so usage errors are not always
- caught). If FOOTERS is defined, then each chunk carries around a tag
- indicating its originating mspace, and frees are directed to their
- originating spaces.
-
+ This is a version (aka dlmalloc) of malloc/free/realloc written by
+ Doug Lea and released to the public domain, as explained at
+ http://creativecommons.org/publicdomain/zero/1.0/ Send questions,
+ comments, complaints, performance data, etc to dl@cs.oswego.edu
+
+ * Version 2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea
+ Note: There may be an updated version of this malloc obtainable at
+ ftp://gee.cs.oswego.edu/pub/misc/malloc.c
+ Check before installing!
+
+ * Quickstart
+
+ This library is all in one file to simplify the most common usage:
+ ftp it, compile it (-O3), and link it into another program. All of
+ the compile-time options default to reasonable values for use on
+ most platforms. You might later want to step through various
+ compile-time and dynamic tuning options.
+
+ For convenience, an include file for code using this malloc is at:
+ ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.6.h
+ You don't really need this .h file unless you call functions not
+ defined in your system include files. The .h file contains only the
+ excerpts from this file needed for using this malloc on ANSI C/C++
+ systems, so long as you haven't changed compile-time options about
+ naming and tuning parameters. If you do, then you can create your
+ own malloc.h that does include all settings by cutting at the point
+ indicated below. Note that you may already by default be using a C
+ library containing a malloc that is based on some version of this
+ malloc (for example in linux). You might still want to use the one
+ in this file to customize settings or to avoid overheads associated
+ with library versions.
+
+ * Vital statistics:
+
+ Supported pointer/size_t representation: 4 or 8 bytes
+ size_t MUST be an unsigned type of the same width as
+ pointers. (If you are using an ancient system that declares
+ size_t as a signed type, or need it to be a different width
+ than pointers, you can use a previous release of this malloc
+ (e.g. 2.7.2) supporting these.)
+
+ Alignment: 8 bytes (minimum)
+ This suffices for nearly all current machines and C compilers.
+ However, you can define MALLOC_ALIGNMENT to be wider than this
+ if necessary (up to 128bytes), at the expense of using more space.
+
+ Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
+ 8 or 16 bytes (if 8byte sizes)
+ Each malloced chunk has a hidden word of overhead holding size
+ and status information, and additional cross-check word
+ if FOOTERS is defined.
+
+ Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
+ 8-byte ptrs: 32 bytes (including overhead)
+
+ Even a request for zero bytes (i.e., malloc(0)) returns a
+ pointer to something of the minimum allocatable size.
+ The maximum overhead wastage (i.e., number of extra bytes
+ allocated than were requested in malloc) is less than or equal
+ to the minimum size, except for requests >= mmap_threshold that
+ are serviced via mmap(), where the worst case wastage is about
+ 32 bytes plus the remainder from a system page (the minimal
+ mmap unit); typically 4096 or 8192 bytes.
+
+ Security: static-safe; optionally more or less
+ The "security" of malloc refers to the ability of malicious
+ code to accentuate the effects of errors (for example, freeing
+ space that is not currently malloc'ed or overwriting past the
+ ends of chunks) in code that calls malloc. This malloc
+ guarantees not to modify any memory locations below the base of
+ heap, i.e., static variables, even in the presence of usage
+ errors. The routines additionally detect most improper frees
+ and reallocs. All this holds as long as the static bookkeeping
+ for malloc itself is not corrupted by some other means. This
+ is only one aspect of security -- these checks do not, and
+ cannot, detect all possible programming errors.
+
+ If FOOTERS is defined nonzero, then each allocated chunk
+ carries an additional check word to verify that it was malloced
+ from its space. These check words are the same within each
+ execution of a program using malloc, but differ across
+ executions, so externally crafted fake chunks cannot be
+ freed. This improves security by rejecting frees/reallocs that
+ could corrupt heap memory, in addition to the checks preventing
+ writes to statics that are always on. This may further improve
+ security at the expense of time and space overhead. (Note that
+ FOOTERS may also be worth using with MSPACES.)
+
+ By default detected errors cause the program to abort (calling
+ "abort()"). You can override this to instead proceed past
+ errors by defining PROCEED_ON_ERROR. In this case, a bad free
+ has no effect, and a malloc that encounters a bad address
+ caused by user overwrites will ignore the bad address by
+ dropping pointers and indices to all known memory. This may
+ be appropriate for programs that should continue if at all
+ possible in the face of programming errors, although they may
+ run out of memory because dropped memory is never reclaimed.
+
+ If you don't like either of these options, you can define
+ CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
+ else. And if if you are sure that your program using malloc has
+ no errors or vulnerabilities, you can define INSECURE to 1,
+ which might (or might not) provide a small performance improvement.
+
+ It is also possible to limit the maximum total allocatable
+ space, using malloc_set_footprint_limit. This is not
+ designed as a security feature in itself (calls to set limits
+ are not screened or privileged), but may be useful as one
+ aspect of a secure implementation.
+
+ Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero
+ When USE_LOCKS is defined, each public call to malloc, free,
+ etc is surrounded with a lock. By default, this uses a plain
+ pthread mutex, win32 critical section, or a spin-lock if if
+ available for the platform and not disabled by setting
+ USE_SPIN_LOCKS=0. However, if USE_RECURSIVE_LOCKS is defined,
+ recursive versions are used instead (which are not required for
+ base functionality but may be needed in layered extensions).
+ Using a global lock is not especially fast, and can be a major
+ bottleneck. It is designed only to provide minimal protection
+ in concurrent environments, and to provide a basis for
+ extensions. If you are using malloc in a concurrent program,
+ consider instead using nedmalloc
+ (http://www.nedprod.com/programs/portable/nedmalloc/) or
+ ptmalloc (See http://www.malloc.de), which are derived from
+ versions of this malloc.
+
+ System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
+ This malloc can use unix sbrk or any emulation (invoked using
+ the CALL_MORECORE macro) and/or mmap/munmap or any emulation
+ (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
+ memory. On most unix systems, it tends to work best if both
+ MORECORE and MMAP are enabled. On Win32, it uses emulations
+ based on VirtualAlloc. It also uses common C library functions
+ like memset.
+
+ Compliance: I believe it is compliant with the Single Unix Specification
+ (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
+ others as well.
+
+ * Overview of algorithms
+
+ This is not the fastest, most space-conserving, most portable, or
+ most tunable malloc ever written. However it is among the fastest
+ while also being among the most space-conserving, portable and
+ tunable. Consistent balance across these factors results in a good
+ general-purpose allocator for malloc-intensive programs.
+
+ In most ways, this malloc is a best-fit allocator. Generally, it
+ chooses the best-fitting existing chunk for a request, with ties
+ broken in approximately least-recently-used order. (This strategy
+ normally maintains low fragmentation.) However, for requests less
+ than 256bytes, it deviates from best-fit when there is not an
+ exactly fitting available chunk by preferring to use space adjacent
+ to that used for the previous small request, as well as by breaking
+ ties in approximately most-recently-used order. (These enhance
+ locality of series of small allocations.) And for very large requests
+ (>= 256Kb by default), it relies on system memory mapping
+ facilities, if supported. (This helps avoid carrying around and
+ possibly fragmenting memory used only for large chunks.)
+
+ All operations (except malloc_stats and mallinfo) have execution
+ times that are bounded by a constant factor of the number of bits in
+ a size_t, not counting any clearing in calloc or copying in realloc,
+ or actions surrounding MORECORE and MMAP that have times
+ proportional to the number of non-contiguous regions returned by
+ system allocation routines, which is often just 1. In real-time
+ applications, you can optionally suppress segment traversals using
+ NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
+ system allocators return non-contiguous spaces, at the typical
+ expense of carrying around more memory and increased fragmentation.
+
+ The implementation is not very modular and seriously overuses
+ macros. Perhaps someday all C compilers will do as good a job
+ inlining modular code as can now be done by brute-force expansion,
+ but now, enough of them seem not to.
+
+ Some compilers issue a lot of warnings about code that is
+ dead/unreachable only on some platforms, and also about intentional
+ uses of negation on unsigned types. All known cases of each can be
+ ignored.
+
+ For a longer but out of date high-level description, see
+ http://gee.cs.oswego.edu/dl/html/malloc.html
+
+ * MSPACES
+ If MSPACES is defined, then in addition to malloc, free, etc.,
+ this file also defines mspace_malloc, mspace_free, etc. These
+ are versions of malloc routines that take an "mspace" argument
+ obtained using create_mspace, to control all internal bookkeeping.
+ If ONLY_MSPACES is defined, only these versions are compiled.
+ So if you would like to use this allocator for only some allocations,
+ and your system malloc for others, you can compile with
+ ONLY_MSPACES and then do something like...
+ static mspace mymspace = create_mspace(0,0); // for example
+ #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
+
+ (Note: If you only need one instance of an mspace, you can instead
+ use "USE_DL_PREFIX" to relabel the global malloc.)
+
+ You can similarly create thread-local allocators by storing
+ mspaces as thread-locals. For example:
+ static __thread mspace tlms = 0;
+ void* tlmalloc(size_t bytes) {
+ if (tlms == 0) tlms = create_mspace(0, 0);
+ return mspace_malloc(tlms, bytes);
+ }
+ void tlfree(void* mem) { mspace_free(tlms, mem); }
+
+ Unless FOOTERS is defined, each mspace is completely independent.
+ You cannot allocate from one and free to another (although
+ conformance is only weakly checked, so usage errors are not always
+ caught). If FOOTERS is defined, then each chunk carries around a tag
+ indicating its originating mspace, and frees are directed to their
+ originating spaces. Normally, this requires use of locks.
+
------------------------- Compile-time options ---------------------------
-
-Be careful in setting #define values for numerical constants of type
-size_t. On some systems, literal values are not automatically extended
-to size_t precision unless they are explicitly casted. You can also
-use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
-
-WIN32 default: defined if _WIN32 defined
- Defining WIN32 sets up defaults for MS environment and compilers.
- Otherwise defaults are for unix. Beware that there seem to be some
- cases where this malloc might not be a pure drop-in replacement for
- Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
- SetDIBits()) may be due to bugs in some video driver implementations
- when pixel buffers are malloc()ed, and the region spans more than
- one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
- default granularity, pixel buffers may straddle virtual allocation
- regions more often than when using the Microsoft allocator. You can
- avoid this by using VirtualAlloc() and VirtualFree() for all pixel
- buffers rather than using malloc(). If this is not possible,
- recompile this malloc with a larger DEFAULT_GRANULARITY.
-
-MALLOC_ALIGNMENT default: (size_t)8
- Controls the minimum alignment for malloc'ed chunks. It must be a
- power of two and at least 8, even on machines for which smaller
- alignments would suffice. It may be defined as larger than this
- though. Note however that code and data structures are optimized for
- the case of 8-byte alignment.
-
-MSPACES default: 0 (false)
- If true, compile in support for independent allocation spaces.
- This is only supported if HAVE_MMAP is true.
-
-ONLY_MSPACES default: 0 (false)
- If true, only compile in mspace versions, not regular versions.
-
-USE_LOCKS default: 0 (false)
- Causes each call to each public routine to be surrounded with
- pthread or WIN32 mutex lock/unlock. (If set true, this can be
- overridden on a per-mspace basis for mspace versions.) If set to a
- non-zero value other than 1, locks are used, but their
- implementation is left out, so lock functions must be supplied manually,
- as described below.
-
-USE_SPIN_LOCKS default: 1 iff USE_LOCKS and on x86 using gcc or MSC
- If true, uses custom spin locks for locking. This is currently
- supported only for x86 platforms using gcc or recent MS compilers.
- Otherwise, posix locks or win32 critical sections are used.
-
-FOOTERS default: 0
- If true, provide extra checking and dispatching by placing
- information in the footers of allocated chunks. This adds
- space and time overhead.
-
-INSECURE default: 0
- If true, omit checks for usage errors and heap space overwrites.
-
-USE_DL_PREFIX default: NOT defined
- Causes compiler to prefix all public routines with the string 'dl'.
- This can be useful when you only want to use this malloc in one part
- of a program, using your regular system malloc elsewhere.
-
-ABORT default: defined as abort()
- Defines how to abort on failed checks. On most systems, a failed
- check cannot die with an "assert" or even print an informative
- message, because the underlying print routines in turn call malloc,
- which will fail again. Generally, the best policy is to simply call
- abort(). It's not very useful to do more than this because many
- errors due to overwriting will show up as address faults (null, odd
- addresses etc) rather than malloc-triggered checks, so will also
- abort. Also, most compilers know that abort() does not return, so
- can better optimize code conditionally calling it.
-
-PROCEED_ON_ERROR default: defined as 0 (false)
- Controls whether detected bad addresses cause them to bypassed
- rather than aborting. If set, detected bad arguments to free and
- realloc are ignored. And all bookkeeping information is zeroed out
- upon a detected overwrite of freed heap space, thus losing the
- ability to ever return it from malloc again, but enabling the
- application to proceed. If PROCEED_ON_ERROR is defined, the
- static variable malloc_corruption_error_count is compiled in
- and can be examined to see if errors have occurred. This option
- generates slower code than the default abort policy.
-
-DEBUG default: NOT defined
- The DEBUG setting is mainly intended for people trying to modify
- this code or diagnose problems when porting to new platforms.
- However, it may also be able to better isolate user errors than just
- using runtime checks. The assertions in the check routines spell
- out in more detail the assumptions and invariants underlying the
- algorithms. The checking is fairly extensive, and will slow down
- execution noticeably. Calling malloc_stats or mallinfo with DEBUG
- set will attempt to check every non-mmapped allocated and free chunk
- in the course of computing the summaries.
-
-ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
- Debugging assertion failures can be nearly impossible if your
- version of the assert macro causes malloc to be called, which will
- lead to a cascade of further failures, blowing the runtime stack.
- ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
- which will usually make debugging easier.
-
-MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
- The action to take before "return 0" when malloc fails to be able to
- return memory because there is none available.
-
-HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
- True if this system supports sbrk or an emulation of it.
-
-MORECORE default: sbrk
- The name of the sbrk-style system routine to call to obtain more
- memory. See below for guidance on writing custom MORECORE
- functions. The type of the argument to sbrk/MORECORE varies across
- systems. It cannot be size_t, because it supports negative
- arguments, so it is normally the signed type of the same width as
- size_t (sometimes declared as "intptr_t"). It doesn't much matter
- though. Internally, we only call it with arguments less than half
- the max value of a size_t, which should work across all reasonable
- possibilities, although sometimes generating compiler warnings.
-
-MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
- If true, take advantage of fact that consecutive calls to MORECORE
- with positive arguments always return contiguous increasing
- addresses. This is true of unix sbrk. It does not hurt too much to
- set it true anyway, since malloc copes with non-contiguities.
- Setting it false when definitely non-contiguous saves time
- and possibl