aboutsummaryrefslogtreecommitdiff
path: root/src/long.js
diff options
context:
space:
mode:
Diffstat (limited to 'src/long.js')
-rw-r--r--src/long.js1633
1 files changed, 1633 insertions, 0 deletions
diff --git a/src/long.js b/src/long.js
new file mode 100644
index 00000000..71cffa79
--- /dev/null
+++ b/src/long.js
@@ -0,0 +1,1633 @@
+// TODO: strip out parts of this we do not need
+
+//======= begin closure i64 code =======
+
+// Copyright 2009 The Closure Library Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS-IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+/**
+ * @fileoverview Defines a Long class for representing a 64-bit two's-complement
+ * integer value, which faithfully simulates the behavior of a Java "long". This
+ * implementation is derived from LongLib in GWT.
+ *
+ */
+
+var i64Math = (function() { // Emscripten wrapper
+var goog = { math: {} };
+
+
+/**
+ * Constructs a 64-bit two's-complement integer, given its low and high 32-bit
+ * values as *signed* integers. See the from* functions below for more
+ * convenient ways of constructing Longs.
+ *
+ * The internal representation of a long is the two given signed, 32-bit values.
+ * We use 32-bit pieces because these are the size of integers on which
+ * Javascript performs bit-operations. For operations like addition and
+ * multiplication, we split each number into 16-bit pieces, which can easily be
+ * multiplied within Javascript's floating-point representation without overflow
+ * or change in sign.
+ *
+ * In the algorithms below, we frequently reduce the negative case to the
+ * positive case by negating the input(s) and then post-processing the result.
+ * Note that we must ALWAYS check specially whether those values are MIN_VALUE
+ * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
+ * a positive number, it overflows back into a negative). Not handling this
+ * case would often result in infinite recursion.
+ *
+ * @param {number} low The low (signed) 32 bits of the long.
+ * @param {number} high The high (signed) 32 bits of the long.
+ * @constructor
+ */
+goog.math.Long = function(low, high) {
+ /**
+ * @type {number}
+ * @private
+ */
+ this.low_ = low | 0; // force into 32 signed bits.
+
+ /**
+ * @type {number}
+ * @private
+ */
+ this.high_ = high | 0; // force into 32 signed bits.
+};
+
+
+// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
+// from* methods on which they depend.
+
+
+/**
+ * A cache of the Long representations of small integer values.
+ * @type {!Object}
+ * @private
+ */
+goog.math.Long.IntCache_ = {};
+
+
+/**
+ * Returns a Long representing the given (32-bit) integer value.
+ * @param {number} value The 32-bit integer in question.
+ * @return {!goog.math.Long} The corresponding Long value.
+ */
+goog.math.Long.fromInt = function(value) {
+ if (-128 <= value && value < 128) {
+ var cachedObj = goog.math.Long.IntCache_[value];
+ if (cachedObj) {
+ return cachedObj;
+ }
+ }
+
+ var obj = new goog.math.Long(value | 0, value < 0 ? -1 : 0);
+ if (-128 <= value && value < 128) {
+ goog.math.Long.IntCache_[value] = obj;
+ }
+ return obj;
+};
+
+
+/**
+ * Returns a Long representing the given value, provided that it is a finite
+ * number. Otherwise, zero is returned.
+ * @param {number} value The number in question.
+ * @return {!goog.math.Long} The corresponding Long value.
+ */
+goog.math.Long.fromNumber = function(value) {
+ if (isNaN(value) || !isFinite(value)) {
+ return goog.math.Long.ZERO;
+ } else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) {
+ return goog.math.Long.MIN_VALUE;
+ } else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) {
+ return goog.math.Long.MAX_VALUE;
+ } else if (value < 0) {
+ return goog.math.Long.fromNumber(-value).negate();
+ } else {
+ return new goog.math.Long(
+ (value % goog.math.Long.TWO_PWR_32_DBL_) | 0,
+ (value / goog.math.Long.TWO_PWR_32_DBL_) | 0);
+ }
+};
+
+
+/**
+ * Returns a Long representing the 64-bit integer that comes by concatenating
+ * the given high and low bits. Each is assumed to use 32 bits.
+ * @param {number} lowBits The low 32-bits.
+ * @param {number} highBits The high 32-bits.
+ * @return {!goog.math.Long} The corresponding Long value.
+ */
+goog.math.Long.fromBits = function(lowBits, highBits) {
+ return new goog.math.Long(lowBits, highBits);
+};
+
+
+/**
+ * Returns a Long representation of the given string, written using the given
+ * radix.
+ * @param {string} str The textual representation of the Long.
+ * @param {number=} opt_radix The radix in which the text is written.
+ * @return {!goog.math.Long} The corresponding Long value.
+ */
+goog.math.Long.fromString = function(str, opt_radix) {
+ if (str.length == 0) {
+ throw Error('number format error: empty string');
+ }
+
+ var radix = opt_radix || 10;
+ if (radix < 2 || 36 < radix) {
+ throw Error('radix out of range: ' + radix);
+ }
+
+ if (str.charAt(0) == '-') {
+ return goog.math.Long.fromString(str.substring(1), radix).negate();
+ } else if (str.indexOf('-') >= 0) {
+ throw Error('number format error: interior "-" character: ' + str);
+ }
+
+ // Do several (8) digits each time through the loop, so as to
+ // minimize the calls to the very expensive emulated div.
+ var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8));
+
+ var result = goog.math.Long.ZERO;
+ for (var i = 0; i < str.length; i += 8) {
+ var size = Math.min(8, str.length - i);
+ var value = parseInt(str.substring(i, i + size), radix);
+ if (size < 8) {
+ var power = goog.math.Long.fromNumber(Math.pow(radix, size));
+ result = result.multiply(power).add(goog.math.Long.fromNumber(value));
+ } else {
+ result = result.multiply(radixToPower);
+ result = result.add(goog.math.Long.fromNumber(value));
+ }
+ }
+ return result;
+};
+
+
+// NOTE: the compiler should inline these constant values below and then remove
+// these variables, so there should be no runtime penalty for these.
+
+
+/**
+ * Number used repeated below in calculations. This must appear before the
+ * first call to any from* function below.
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_24_DBL_ = 1 << 24;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_32_DBL_ =
+ goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_31_DBL_ =
+ goog.math.Long.TWO_PWR_32_DBL_ / 2;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_48_DBL_ =
+ goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_64_DBL_ =
+ goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_63_DBL_ =
+ goog.math.Long.TWO_PWR_64_DBL_ / 2;
+
+
+/** @type {!goog.math.Long} */
+goog.math.Long.ZERO = goog.math.Long.fromInt(0);
+
+
+/** @type {!goog.math.Long} */
+goog.math.Long.ONE = goog.math.Long.fromInt(1);
+
+
+/** @type {!goog.math.Long} */
+goog.math.Long.NEG_ONE = goog.math.Long.fromInt(-1);
+
+
+/** @type {!goog.math.Long} */
+goog.math.Long.MAX_VALUE =
+ goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0);
+
+
+/** @type {!goog.math.Long} */
+goog.math.Long.MIN_VALUE = goog.math.Long.fromBits(0, 0x80000000 | 0);
+
+
+/**
+ * @type {!goog.math.Long}
+ * @private
+ */
+goog.math.Long.TWO_PWR_24_ = goog.math.Long.fromInt(1 << 24);
+
+
+/** @return {number} The value, assuming it is a 32-bit integer. */
+goog.math.Long.prototype.toInt = function() {
+ return this.low_;
+};
+
+
+/** @return {number} The closest floating-point representation to this value. */
+goog.math.Long.prototype.toNumber = function() {
+ return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ +
+ this.getLowBitsUnsigned();
+};
+
+
+/**
+ * @param {number=} opt_radix The radix in which the text should be written.
+ * @return {string} The textual representation of this value.
+ */
+goog.math.Long.prototype.toString = function(opt_radix) {
+ var radix = opt_radix || 10;
+ if (radix < 2 || 36 < radix) {
+ throw Error('radix out of range: ' + radix);
+ }
+
+ if (this.isZero()) {
+ return '0';
+ }
+
+ if (this.isNegative()) {
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ // We need to change the Long value before it can be negated, so we remove
+ // the bottom-most digit in this base and then recurse to do the rest.
+ var radixLong = goog.math.Long.fromNumber(radix);
+ var div = this.div(radixLong);
+ var rem = div.multiply(radixLong).subtract(this);
+ return div.toString(radix) + rem.toInt().toString(radix);
+ } else {
+ return '-' + this.negate().toString(radix);
+ }
+ }
+
+ // Do several (6) digits each time through the loop, so as to
+ // minimize the calls to the very expensive emulated div.
+ var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6));
+
+ var rem = this;
+ var result = '';
+ while (true) {
+ var remDiv = rem.div(radixToPower);
+ var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt();
+ var digits = intval.toString(radix);
+
+ rem = remDiv;
+ if (rem.isZero()) {
+ return digits + result;
+ } else {
+ while (digits.length < 6) {
+ digits = '0' + digits;
+ }
+ result = '' + digits + result;
+ }
+ }
+};
+
+
+/** @return {number} The high 32-bits as a signed value. */
+goog.math.Long.prototype.getHighBits = function() {
+ return this.high_;
+};
+
+
+/** @return {number} The low 32-bits as a signed value. */
+goog.math.Long.prototype.getLowBits = function() {
+ return this.low_;
+};
+
+
+/** @return {number} The low 32-bits as an unsigned value. */
+goog.math.Long.prototype.getLowBitsUnsigned = function() {
+ return (this.low_ >= 0) ?
+ this.low_ : goog.math.Long.TWO_PWR_32_DBL_ + this.low_;
+};
+
+
+/**
+ * @return {number} Returns the number of bits needed to represent the absolute
+ * value of this Long.
+ */
+goog.math.Long.prototype.getNumBitsAbs = function() {
+ if (this.isNegative()) {
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ return 64;
+ } else {
+ return this.negate().getNumBitsAbs();
+ }
+ } else {
+ var val = this.high_ != 0 ? this.high_ : this.low_;
+ for (var bit = 31; bit > 0; bit--) {
+ if ((val & (1 << bit)) != 0) {
+ break;
+ }
+ }
+ return this.high_ != 0 ? bit + 33 : bit + 1;
+ }
+};
+
+
+/** @return {boolean} Whether this value is zero. */
+goog.math.Long.prototype.isZero = function() {
+ return this.high_ == 0 && this.low_ == 0;
+};
+
+
+/** @return {boolean} Whether this value is negative. */
+goog.math.Long.prototype.isNegative = function() {
+ return this.high_ < 0;
+};
+
+
+/** @return {boolean} Whether this value is odd. */
+goog.math.Long.prototype.isOdd = function() {
+ return (this.low_ & 1) == 1;
+};
+
+
+/**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long equals the other.
+ */
+goog.math.Long.prototype.equals = function(other) {
+ return (this.high_ == other.high_) && (this.low_ == other.low_);
+};
+
+
+/**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long does not equal the other.
+ */
+goog.math.Long.prototype.notEquals = function(other) {
+ return (this.high_ != other.high_) || (this.low_ != other.low_);
+};
+
+
+/**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is less than the other.
+ */
+goog.math.Long.prototype.lessThan = function(other) {
+ return this.compare(other) < 0;
+};
+
+
+/**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is less than or equal to the other.
+ */
+goog.math.Long.prototype.lessThanOrEqual = function(other) {
+ return this.compare(other) <= 0;
+};
+
+
+/**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is greater than the other.
+ */
+goog.math.Long.prototype.greaterThan = function(other) {
+ return this.compare(other) > 0;
+};
+
+
+/**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is greater than or equal to the other.
+ */
+goog.math.Long.prototype.greaterThanOrEqual = function(other) {
+ return this.compare(other) >= 0;
+};
+
+
+/**
+ * Compares this Long with the given one.
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {number} 0 if they are the same, 1 if the this is greater, and -1
+ * if the given one is greater.
+ */
+goog.math.Long.prototype.compare = function(other) {
+ if (this.equals(other)) {
+ return 0;
+ }
+
+ var thisNeg = this.isNegative();
+ var otherNeg = other.isNegative();
+ if (thisNeg && !otherNeg) {
+ return -1;
+ }
+ if (!thisNeg && otherNeg) {
+ return 1;
+ }
+
+ // at this point, the signs are the same, so subtraction will not overflow
+ if (this.subtract(other).isNegative()) {
+ return -1;
+ } else {
+ return 1;
+ }
+};
+
+
+/** @return {!goog.math.Long} The negation of this value. */
+goog.math.Long.prototype.negate = function() {
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ return goog.math.Long.MIN_VALUE;
+ } else {
+ return this.not().add(goog.math.Long.ONE);
+ }
+};
+
+
+/**
+ * Returns the sum of this and the given Long.
+ * @param {goog.math.Long} other Long to add to this one.
+ * @return {!goog.math.Long} The sum of this and the given Long.
+ */
+goog.math.Long.prototype.add = function(other) {
+ // Divide each number into 4 chunks of 16 bits, and then sum the chunks.
+
+ var a48 = this.high_ >>> 16;
+ var a32 = this.high_ & 0xFFFF;
+ var a16 = this.low_ >>> 16;
+ var a00 = this.low_ & 0xFFFF;
+
+ var b48 = other.high_ >>> 16;
+ var b32 = other.high_ & 0xFFFF;
+ var b16 = other.low_ >>> 16;
+ var b00 = other.low_ & 0xFFFF;
+
+ var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
+ c00 += a00 + b00;
+ c16 += c00 >>> 16;
+ c00 &= 0xFFFF;
+ c16 += a16 + b16;
+ c32 += c16 >>> 16;
+ c16 &= 0xFFFF;
+ c32 += a32 + b32;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c48 += a48 + b48;
+ c48 &= 0xFFFF;
+ return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
+};
+
+
+/**
+ * Returns the difference of this and the given Long.
+ * @param {goog.math.Long} other Long to subtract from this.
+ * @return {!goog.math.Long} The difference of this and the given Long.
+ */
+goog.math.Long.prototype.subtract = function(other) {
+ return this.add(other.negate());
+};
+
+
+/**
+ * Returns the product of this and the given long.
+ * @param {goog.math.Long} other Long to multiply with this.
+ * @return {!goog.math.Long} The product of this and the other.
+ */
+goog.math.Long.prototype.multiply = function(other) {
+ if (this.isZero()) {
+ return goog.math.Long.ZERO;
+ } else if (other.isZero()) {
+ return goog.math.Long.ZERO;
+ }
+
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ return other.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO;
+ } else if (other.equals(goog.math.Long.MIN_VALUE)) {
+ return this.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO;
+ }
+
+ if (this.isNegative()) {
+ if (other.isNegative()) {
+ return this.negate().multiply(other.negate());
+ } else {
+ return this.negate().multiply(other).negate();
+ }
+ } else if (other.isNegative()) {
+ return this.multiply(other.negate()).negate();
+ }
+
+ // If both longs are small, use float multiplication
+ if (this.lessThan(goog.math.Long.TWO_PWR_24_) &&
+ other.lessThan(goog.math.Long.TWO_PWR_24_)) {
+ return goog.math.Long.fromNumber(this.toNumber() * other.toNumber());
+ }
+
+ // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
+ // We can skip products that would overflow.
+
+ var a48 = this.high_ >>> 16;
+ var a32 = this.high_ & 0xFFFF;
+ var a16 = this.low_ >>> 16;
+ var a00 = this.low_ & 0xFFFF;
+
+ var b48 = other.high_ >>> 16;
+ var b32 = other.high_ & 0xFFFF;
+ var b16 = other.low_ >>> 16;
+ var b00 = other.low_ & 0xFFFF;
+
+ var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
+ c00 += a00 * b00;
+ c16 += c00 >>> 16;
+ c00 &= 0xFFFF;
+ c16 += a16 * b00;
+ c32 += c16 >>> 16;
+ c16 &= 0xFFFF;
+ c16 += a00 * b16;
+ c32 += c16 >>> 16;
+ c16 &= 0xFFFF;
+ c32 += a32 * b00;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c32 += a16 * b16;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c32 += a00 * b32;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
+ c48 &= 0xFFFF;
+ return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
+};
+
+
+/**
+ * Returns this Long divided by the given one.
+ * @param {goog.math.Long} other Long by which to divide.
+ * @return {!goog.math.Long} This Long divided by the given one.
+ */
+goog.math.Long.prototype.div = function(other) {
+ if (other.isZero()) {
+ throw Error('division by zero');
+ } else if (this.isZero()) {
+ return goog.math.Long.ZERO;
+ }
+
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ if (other.equals(goog.math.Long.ONE) ||
+ other.equals(goog.math.Long.NEG_ONE)) {
+ return goog.math.Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE
+ } else if (other.equals(goog.math.Long.MIN_VALUE)) {
+ return goog.math.Long.ONE;
+ } else {
+ // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
+ var halfThis = this.shiftRight(1);
+ var approx = halfThis.div(other).shiftLeft(1);
+ if (approx.equals(goog.math.Long.ZERO)) {
+ return other.isNegative() ? goog.math.Long.ONE : goog.math.Long.NEG_ONE;
+ } else {
+ var rem = this.subtract(other.multiply(approx));
+ var result = approx.add(rem.div(other));
+ return result;
+ }
+ }
+ } else if (other.equals(goog.math.Long.MIN_VALUE)) {
+ return goog.math.Long.ZERO;
+ }
+
+ if (this.isNegative()) {
+ if (other.isNegative()) {
+ return this.negate().div(other.negate());
+ } else {
+ return this.negate().div(other).negate();
+ }
+ } else if (other.isNegative()) {
+ return this.div(other.negate()).negate();
+ }
+
+ // Repeat the following until the remainder is less than other: find a
+ // floating-point that approximates remainder / other *from below*, add this
+ // into the result, and subtract it from the remainder. It is critical that
+ // the approximate value is less than or equal to the real value so that the
+ // remainder never becomes negative.
+ var res = goog.math.Long.ZERO;
+ var rem = this;
+ while (rem.greaterThanOrEqual(other)) {
+ // Approximate the result of division. This may be a little greater or
+ // smaller than the actual value.
+ var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
+
+ // We will tweak the approximate result by changing it in the 48-th digit or
+ // the smallest non-fractional digit, whichever is larger.
+ var log2 = Math.ceil(Math.log(approx) / Math.LN2);
+ var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
+
+ // Decrease the approximation until it is smaller than the remainder. Note
+ // that if it is too large, the product overflows and is negative.
+ var approxRes = goog.math.Long.fromNumber(approx);
+ var approxRem = approxRes.multiply(other);
+ while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
+ approx -= delta;
+ approxRes = goog.math.Long.fromNumber(approx);
+ approxRem = approxRes.multiply(other);
+ }
+
+ // We know the answer can't be zero... and actually, zero would cause
+ // infinite recursion since we would make no progress.
+ if (approxRes.isZero()) {
+ approxRes = goog.math.Long.ONE;
+ }
+
+ res = res.add(approxRes);
+ rem = rem.subtract(approxRem);
+ }
+ return res;
+};
+
+
+/**
+ * Returns this Long modulo the given one.
+ * @param {goog.math.Long} other Long by which to mod.
+ * @return {!goog.math.Long} This Long modulo the given one.
+ */
+goog.math.Long.prototype.modulo = function(other) {
+ return this.subtract(this.div(other).multiply(other));
+};
+
+
+/** @return {!goog.math.Long} The bitwise-NOT of this value. */
+goog.math.Long.prototype.not = function() {
+ return goog.math.Long.fromBits(~this.low_, ~this.high_);
+};
+
+
+/**
+ * Returns the bitwise-AND of this Long and the given one.
+ * @param {goog.math.Long} other The Long with which to AND.
+ * @return {!goog.math.Long} The bitwise-AND of this and the other.
+ */
+goog.math.Long.prototype.and = function(other) {
+ return goog.math.Long.fromBits(this.low_ & other.low_,
+ this.high_ & other.high_);
+};
+
+
+/**
+ * Returns the bitwise-OR of this Long and the given one.
+ * @param {goog.math.Long} other The Long with which to OR.
+ * @return {!goog.math.Long} The bitwise-OR of this and the other.
+ */
+goog.math.Long.prototype.or = function(other) {
+ return goog.math.Long.fromBits(this.low_ | other.low_,
+ this.high_ | other.high_);
+};
+
+
+/**
+ * Returns the bitwise-XOR of this Long and the given one.
+ * @param {goog.math.Long} other The Long with which to XOR.
+ * @return {!goog.math.Long} The bitwise-XOR of this and the other.
+ */
+goog.math.Long.prototype.xor = function(other) {
+ return goog.math.Long.fromBits(this.low_ ^ other.low_,
+ this.high_ ^ other.high_);
+};
+
+
+/**
+ * Returns this Long with bits shifted to the left by the given amount.
+ * @param {number} numBits The number of bits by which to shift.
+ * @return {!goog.math.Long} This shifted to the left by the given amount.
+ */
+goog.math.Long.prototype.shiftLeft = function(numBits) {
+ numBits &= 63;
+ if (numBits == 0) {
+ return this;
+ } else {
+ var low = this.low_;
+ if (numBits < 32) {
+ var high = this.high_;
+ return goog.math.Long.fromBits(
+ low << numBits,
+ (high << numBits) | (low >>> (32 - numBits)));
+ } else {
+ return goog.math.Long.fromBits(0, low << (numBits - 32));
+ }
+ }
+};
+
+
+/**
+ * Returns this Long with bits shifted to the right by the given amount.
+ * @param {number} numBits The number of bits by which to shift.
+ * @return {!goog.math.Long} This shifted to the right by the given amount.
+ */
+goog.math.Long.prototype.shiftRight = function(numBits) {
+ numBits &= 63;
+ if (numBits == 0) {
+ return this;
+ } else {
+ var high = this.high_;
+ if (numBits < 32) {
+ var low = this.low_;
+ return goog.math.Long.fromBits(
+ (low >>> numBits) | (high << (32 - numBits)),
+ high >> numBits);
+ } else {
+ return goog.math.Long.fromBits(
+ high >> (numBits - 32),
+ high >= 0 ? 0 : -1);
+ }
+ }
+};
+
+
+/**
+ * Returns this Long with bits shifted to the right by the given amount, with
+ * the new top bits matching the current sign bit.
+ * @param {number} numBits The number of bits by which to shift.
+ * @return {!goog.math.Long} This shifted to the right by the given amount, with
+ * zeros placed into the new leading bits.
+ */
+goog.math.Long.prototype.shiftRightUnsigned = function(numBits) {
+ numBits &= 63;
+ if (numBits == 0) {
+ return this;
+ } else {
+ var high = this.high_;
+ if (numBits < 32) {
+ var low = this.low_;
+ return goog.math.Long.fromBits(
+ (low >>> numBits) | (high << (32 - numBits)),
+ high >>> numBits);
+ } else if (numBits == 32) {
+ return goog.math.Long.fromBits(high, 0);
+ } else {
+ return goog.math.Long.fromBits(high >>> (numBits - 32), 0);
+ }
+ }
+};
+
+//======= begin jsbn =======
+
+var navigator = { appName: 'Modern Browser' }; // polyfill a little
+
+// Copyright (c) 2005 Tom Wu
+// All Rights Reserved.
+// http://www-cs-students.stanford.edu/~tjw/jsbn/
+
+/*
+ * Copyright (c) 2003-2005 Tom Wu
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
+ * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
+ *
+ * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
+ * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
+ * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
+ * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
+ * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * In addition, the following condition applies:
+ *
+ * All redistributions must retain an intact copy of this copyright notice
+ * and disclaimer.
+ */
+
+// Basic JavaScript BN library - subset useful for RSA encryption.
+
+// Bits per digit
+var dbits;
+
+// JavaScript engine analysis
+var canary = 0xdeadbeefcafe;
+var j_lm = ((canary&0xffffff)==0xefcafe);
+
+// (public) Constructor
+function BigInteger(a,b,c) {
+ if(a != null)
+ if("number" == typeof a) this.fromNumber(a,b,c);
+ else if(b == null && "string" != typeof a) this.fromString(a,256);
+ else this.fromString(a,b);
+}
+
+// return new, unset BigInteger
+function nbi() { return new BigInteger(null); }
+
+// am: Compute w_j += (x*this_i), propagate carries,
+// c is initial carry, returns final carry.
+// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
+// We need to select the fastest one that works in this environment.
+
+// am1: use a single mult and divide to get the high bits,
+// max digit bits should be 26 because
+// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
+function am1(i,x,w,j,c,n) {
+ while(--n >= 0) {
+ var v = x*this[i++]+w[j]+c;
+ c = Math.floor(v/0x4000000);
+ w[j++] = v&0x3ffffff;
+ }
+ return c;
+}
+// am2 avoids a big mult-and-extract completely.
+// Max digit bits should be <= 30 because we do bitwise ops
+// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
+function am2(i,x,w,j,c,n) {
+ var xl = x&0x7fff, xh = x>>15;
+ while(--n >= 0) {
+ var l = this[i]&0x7fff;
+ var h = this[i++]>>15;
+ var m = xh*l+h*xl;
+ l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
+ c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
+ w[j++] = l&0x3fffffff;
+ }
+ return c;
+}
+// Alternately, set max digit bits to 28 since some
+// browsers slow down when dealing with 32-bit numbers.
+function am3(i,x,w,j,c,n) {
+ var xl = x&0x3fff, xh = x>>14;
+ while(--n >= 0) {
+ var l = this[i]&0x3fff;
+ var h = this[i++]>>14;
+ var m = xh*l+h*xl;
+ l = xl*l+((m&0x3fff)<<14)+w[j]+c;
+ c = (l>>28)+(m>>14)+xh*h;
+ w[j++] = l&0xfffffff;
+ }
+ return c;
+}
+if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
+ BigInteger.prototype.am = am2;
+ dbits = 30;
+}
+else if(j_lm && (navigator.appName != "Netscape")) {
+ BigInteger.prototype.am = am1;
+ dbits = 26;
+}
+else { // Mozilla/Netscape seems to prefer am3
+ BigInteger.prototype.am = am3;
+ dbits = 28;
+}
+
+BigInteger.prototype.DB = dbits;
+BigInteger.prototype.DM = ((1<<dbits)-1);
+BigInteger.prototype.DV = (1<<dbits);
+
+var BI_FP = 52;
+BigInteger.prototype.FV = Math.pow(2,BI_FP);
+BigInteger.prototype.F1 = BI_FP-dbits;
+BigInteger.prototype.F2 = 2*dbits-BI_FP;
+
+// Digit conversions
+var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
+var BI_RC = new Array();
+var rr,vv;
+rr = "0".charCodeAt(0);
+for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
+rr = "a".charCodeAt(0);
+for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
+rr = "A".charCodeAt(0);
+for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
+
+function int2char(n) { return BI_RM.charAt(n); }
+function intAt(s,i) {
+ var c = BI_RC[s.charCodeAt(i)];
+ return (c==null)?-1:c;
+}
+
+// (protected) copy this to r
+function bnpCopyTo(r) {
+ for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
+ r.t = this.t;
+ r.s = this.s;
+}
+
+// (protected) set from integer value x, -DV <= x < DV
+function bnpFromInt(x) {
+ this.t = 1;
+ this.s = (x<0)?-1:0;
+ if(x > 0) this[0] = x;
+ else if(x < -1) this[0] = x+DV;
+ else this.t = 0;
+}
+
+// return bigint initialized to value
+function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
+
+// (protected) set from string and radix
+function bnpFromString(s,b) {
+ var k;
+ if(b == 16) k = 4;
+ else if(b == 8) k = 3;
+ else if(b == 256) k = 8; // byte array
+ else if(b == 2) k = 1;
+ else if(b == 32) k = 5;
+ else if(b == 4) k = 2;
+ else { this.fromRadix(s,b); return; }
+ this.t = 0;
+ this.s = 0;
+ var i = s.length, mi = false, sh = 0;
+ while(--i >= 0) {
+ var x = (k==8)?s[i]&0xff:intAt(s,i);
+ if(x < 0) {
+ if(s.charAt(i) == "-") mi = true;
+ continue;
+ }
+ mi = false;
+ if(sh == 0)
+ this[this.t++] = x;
+ else if(sh+k > this.DB) {
+ this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
+ this[this.t++] = (x>>(this.DB-sh));
+ }
+ else
+ this[this.t-1] |= x<<sh;
+ sh += k;
+ if(sh >= this.DB) sh -= this.DB;
+ }
+ if(k == 8 && (s[0]&0x80) != 0) {
+ this.s = -1;
+ if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
+ }
+ this.clamp();
+ if(mi) BigInteger.ZERO.subTo(this,this);
+}
+
+// (protected) clamp off excess high words
+function bnpClamp() {
+ var c = this.s&this.DM;
+ while(this.t > 0 && this[this.t-1] == c) --this.t;
+}
+
+// (public) return string representation in given radix
+function bnToString(b) {
+ if(this.s < 0) return "-"+this.negate().toString(b);
+ var k;
+ if(b == 16) k = 4;
+ else if(b == 8) k = 3;
+ else if(b == 2) k = 1;
+ else if(b == 32) k = 5;
+ else if(b == 4) k = 2;
+ else return this.toRadix(b);
+ var km = (1<<k)-1, d, m = false, r = "", i = this.t;
+ var p = this.DB-(i*this.DB)%k;
+ if(i-- > 0) {
+ if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
+ while(i >= 0) {
+ if(p < k) {
+ d = (this[i]&((1<<p)-1))<<(k-p);
+ d |= this[--i]>>(p+=this.DB-k);
+ }
+ else {
+ d = (this[i]>>(p-=k))&km;
+ if(p <= 0) { p += this.DB; --i; }
+ }
+ if(d > 0) m = true;
+ if(m) r += int2char(d);
+ }
+ }
+ return m?r:"0";
+}
+
+// (public) -this
+function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
+
+// (public) |this|
+function bnAbs() { return (this.s<0)?this.negate():this; }
+
+// (public) return + if this > a, - if this < a, 0 if equal
+function bnCompareTo(a) {
+ var r = this.s-a.s;
+ if(r != 0) return r;
+ var i = this.t;
+ r = i-a.t;
+ if(r != 0) return r;
+ while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
+ return 0;
+}
+
+// returns bit length of the integer x
+function nbits(x) {
+ var r = 1, t;
+ if((t=x>>>16) != 0) { x = t; r += 16; }
+ if((t=x>>8) != 0) { x = t; r += 8; }
+ if((t=x>>4) != 0) { x = t; r += 4; }
+ if((t=x>>2) != 0) { x = t; r += 2; }
+ if((t=x>>1) != 0) { x = t; r += 1; }
+ return r;
+}
+
+// (public) return the number of bits in "this"
+function bnBitLength() {
+ if(this.t <= 0) return 0;
+ return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
+}
+
+// (protected) r = this << n*DB
+function bnpDLShiftTo(n,r) {
+ var i;
+ for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
+ for(i = n-1; i >= 0; --i) r[i] = 0;
+ r.t = this.t+n;
+ r.s = this.s;
+}
+
+// (protected) r = this >> n*DB
+function bnpDRShiftTo(n,r) {
+ for(var i = n; i < this.t; ++i) r[i-n] = this[i];
+ r.t = Math.max(this.t-n,0);
+ r.s = this.s;
+}
+
+// (protected) r = this << n
+function bnpLShiftTo(n,r) {
+ var bs = n%this.DB;
+ var cbs = this.DB-bs;
+ var bm = (1<<cbs)-1;
+ var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
+ for(i = this.t-1; i >= 0; --i) {
+ r[i+ds+1] = (this[i]>>cbs)|c;
+ c = (this[i]&bm)<<bs;
+ }
+ for(i = ds-1; i >= 0; --i) r[i] = 0;
+ r[ds] = c;
+ r.t = this.t+ds+1;
+ r.s = this.s;
+ r.clamp();
+}
+
+// (protected) r = this >> n
+function bnpRShiftTo(n,r) {
+ r.s = this.s;
+ var ds = Math.floor(n/this.DB);
+ if(ds >= this.t) { r.t = 0; return; }
+ var bs = n%this.DB;
+ var cbs = this.DB-bs;
+ var bm = (1<<bs)-1;
+ r[0] = this[ds]>>bs;
+ for(var i = ds+1; i < this.t; ++i) {
+ r[i-ds-1] |= (this[i]&bm)<<cbs;
+ r[i-ds] = this[i]>>bs;
+ }
+ if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
+ r.t = this.t-ds;
+ r.clamp();
+}
+
+// (protected) r = this - a
+function bnpSubTo(a,r) {
+ var i = 0, c = 0, m = Math.min(a.t,this.t);
+ while(i < m) {
+ c += this[i]-a[i];
+ r[i++] = c&am