diff options
-rw-r--r-- | src/long.js | 737 | ||||
-rw-r--r-- | tests/i64_precise.txt | 63 | ||||
-rwxr-xr-x | tests/runner.py | 4 |
3 files changed, 800 insertions, 4 deletions
diff --git a/src/long.js b/src/long.js index bdeafe77..7be5e29a 100644 --- a/src/long.js +++ b/src/long.js @@ -1,3 +1,5 @@ +// TODO: strip out parts of this we do not need + //======= begin closure i64 code ======= // Copyright 2009 The Closure Library Authors. All Rights Reserved. @@ -802,7 +804,730 @@ goog.math.Long.prototype.shiftRightUnsigned = function(numBits) { } }; -// End Emscripten wrapper +//======= begin jsbn ======= + +var navigator = { appName: 'Modern Browser' }; // polyfill a little + +// Copyright (c) 2005 Tom Wu +// All Rights Reserved. + +/* + * Copyright (c) 2003-2005 Tom Wu + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, + * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY + * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + * + * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, + * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER + * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF + * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT + * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + * + * In addition, the following condition applies: + * + * All redistributions must retain an intact copy of this copyright notice + * and disclaimer. + */ + +// Basic JavaScript BN library - subset useful for RSA encryption. + +// Bits per digit +var dbits; + +// JavaScript engine analysis +var canary = 0xdeadbeefcafe; +var j_lm = ((canary&0xffffff)==0xefcafe); + +// (public) Constructor +function BigInteger(a,b,c) { + if(a != null) + if("number" == typeof a) this.fromNumber(a,b,c); + else if(b == null && "string" != typeof a) this.fromString(a,256); + else this.fromString(a,b); +} + +// return new, unset BigInteger +function nbi() { return new BigInteger(null); } + +// am: Compute w_j += (x*this_i), propagate carries, +// c is initial carry, returns final carry. +// c < 3*dvalue, x < 2*dvalue, this_i < dvalue +// We need to select the fastest one that works in this environment. + +// am1: use a single mult and divide to get the high bits, +// max digit bits should be 26 because +// max internal value = 2*dvalue^2-2*dvalue (< 2^53) +function am1(i,x,w,j,c,n) { + while(--n >= 0) { + var v = x*this[i++]+w[j]+c; + c = Math.floor(v/0x4000000); + w[j++] = v&0x3ffffff; + } + return c; +} +// am2 avoids a big mult-and-extract completely. +// Max digit bits should be <= 30 because we do bitwise ops +// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) +function am2(i,x,w,j,c,n) { + var xl = x&0x7fff, xh = x>>15; + while(--n >= 0) { + var l = this[i]&0x7fff; + var h = this[i++]>>15; + var m = xh*l+h*xl; + l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); + c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); + w[j++] = l&0x3fffffff; + } + return c; +} +// Alternately, set max digit bits to 28 since some +// browsers slow down when dealing with 32-bit numbers. +function am3(i,x,w,j,c,n) { + var xl = x&0x3fff, xh = x>>14; + while(--n >= 0) { + var l = this[i]&0x3fff; + var h = this[i++]>>14; + var m = xh*l+h*xl; + l = xl*l+((m&0x3fff)<<14)+w[j]+c; + c = (l>>28)+(m>>14)+xh*h; + w[j++] = l&0xfffffff; + } + return c; +} +if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { + BigInteger.prototype.am = am2; + dbits = 30; +} +else if(j_lm && (navigator.appName != "Netscape")) { + BigInteger.prototype.am = am1; + dbits = 26; +} +else { // Mozilla/Netscape seems to prefer am3 + BigInteger.prototype.am = am3; + dbits = 28; +} + +BigInteger.prototype.DB = dbits; +BigInteger.prototype.DM = ((1<<dbits)-1); +BigInteger.prototype.DV = (1<<dbits); + +var BI_FP = 52; +BigInteger.prototype.FV = Math.pow(2,BI_FP); +BigInteger.prototype.F1 = BI_FP-dbits; +BigInteger.prototype.F2 = 2*dbits-BI_FP; + +// Digit conversions +var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; +var BI_RC = new Array(); +var rr,vv; +rr = "0".charCodeAt(0); +for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; +rr = "a".charCodeAt(0); +for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; +rr = "A".charCodeAt(0); +for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; + +function int2char(n) { return BI_RM.charAt(n); } +function intAt(s,i) { + var c = BI_RC[s.charCodeAt(i)]; + return (c==null)?-1:c; +} + +// (protected) copy this to r +function bnpCopyTo(r) { + for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; + r.t = this.t; + r.s = this.s; +} + +// (protected) set from integer value x, -DV <= x < DV +function bnpFromInt(x) { + this.t = 1; + this.s = (x<0)?-1:0; + if(x > 0) this[0] = x; + else if(x < -1) this[0] = x+DV; + else this.t = 0; +} + +// return bigint initialized to value +function nbv(i) { var r = nbi(); r.fromInt(i); return r; } + +// (protected) set from string and radix +function bnpFromString(s,b) { + var k; + if(b == 16) k = 4; + else if(b == 8) k = 3; + else if(b == 256) k = 8; // byte array + else if(b == 2) k = 1; + else if(b == 32) k = 5; + else if(b == 4) k = 2; + else { this.fromRadix(s,b); return; } + this.t = 0; + this.s = 0; + var i = s.length, mi = false, sh = 0; + while(--i >= 0) { + var x = (k==8)?s[i]&0xff:intAt(s,i); + if(x < 0) { + if(s.charAt(i) == "-") mi = true; + continue; + } + mi = false; + if(sh == 0) + this[this.t++] = x; + else if(sh+k > this.DB) { + this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; + this[this.t++] = (x>>(this.DB-sh)); + } + else + this[this.t-1] |= x<<sh; + sh += k; + if(sh >= this.DB) sh -= this.DB; + } + if(k == 8 && (s[0]&0x80) != 0) { + this.s = -1; + if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; + } + this.clamp(); + if(mi) BigInteger.ZERO.subTo(this,this); +} + +// (protected) clamp off excess high words +function bnpClamp() { + var c = this.s&this.DM; + while(this.t > 0 && this[this.t-1] == c) --this.t; +} + +// (public) return string representation in given radix +function bnToString(b) { + if(this.s < 0) return "-"+this.negate().toString(b); + var k; + if(b == 16) k = 4; + else if(b == 8) k = 3; + else if(b == 2) k = 1; + else if(b == 32) k = 5; + else if(b == 4) k = 2; + else return this.toRadix(b); + var km = (1<<k)-1, d, m = false, r = "", i = this.t; + var p = this.DB-(i*this.DB)%k; + if(i-- > 0) { + if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } + while(i >= 0) { + if(p < k) { + d = (this[i]&((1<<p)-1))<<(k-p); + d |= this[--i]>>(p+=this.DB-k); + } + else { + d = (this[i]>>(p-=k))&km; + if(p <= 0) { p += this.DB; --i; } + } + if(d > 0) m = true; + if(m) r += int2char(d); + } + } + return m?r:"0"; +} + +// (public) -this +function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } + +// (public) |this| +function bnAbs() { return (this.s<0)?this.negate():this; } + +// (public) return + if this > a, - if this < a, 0 if equal +function bnCompareTo(a) { + var r = this.s-a.s; + if(r != 0) return r; + var i = this.t; + r = i-a.t; + if(r != 0) return r; + while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; + return 0; +} + +// returns bit length of the integer x +function nbits(x) { + var r = 1, t; + if((t=x>>>16) != 0) { x = t; r += 16; } + if((t=x>>8) != 0) { x = t; r += 8; } + if((t=x>>4) != 0) { x = t; r += 4; } + if((t=x>>2) != 0) { x = t; r += 2; } + if((t=x>>1) != 0) { x = t; r += 1; } + return r; +} + +// (public) return the number of bits in "this" +function bnBitLength() { + if(this.t <= 0) return 0; + return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); +} + +// (protected) r = this << n*DB +function bnpDLShiftTo(n,r) { + var i; + for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; + for(i = n-1; i >= 0; --i) r[i] = 0; + r.t = this.t+n; + r.s = this.s; +} + +// (protected) r = this >> n*DB +function bnpDRShiftTo(n,r) { + for(var i = n; i < this.t; ++i) r[i-n] = this[i]; + r.t = Math.max(this.t-n,0); + r.s = this.s; +} + +// (protected) r = this << n +function bnpLShiftTo(n,r) { + var bs = n%this.DB; + var cbs = this.DB-bs; + var bm = (1<<cbs)-1; + var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; + for(i = this.t-1; i >= 0; --i) { + r[i+ds+1] = (this[i]>>cbs)|c; + c = (this[i]&bm)<<bs; + } + for(i = ds-1; i >= 0; --i) r[i] = 0; + r[ds] = c; + r.t = this.t+ds+1; + r.s = this.s; + r.clamp(); +} + +// (protected) r = this >> n +function bnpRShiftTo(n,r) { + r.s = this.s; + var ds = Math.floor(n/this.DB); + if(ds >= this.t) { r.t = 0; return; } + var bs = n%this.DB; + var cbs = this.DB-bs; + var bm = (1<<bs)-1; + r[0] = this[ds]>>bs; + for(var i = ds+1; i < this.t; ++i) { + r[i-ds-1] |= (this[i]&bm)<<cbs; + r[i-ds] = this[i]>>bs; + } + if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; + r.t = this.t-ds; + r.clamp(); +} + +// (protected) r = this - a +function bnpSubTo(a,r) { + var i = 0, c = 0, m = Math.min(a.t,this.t); + while(i < m) { + c += this[i]-a[i]; + r[i++] = c&this.DM; + c >>= this.DB; + } + if(a.t < this.t) { + c -= a.s; + while(i < this.t) { + c += this[i]; + r[i++] = c&this.DM; + c >>= this.DB; + } + c += this.s; + } + else { + c += this.s; + while(i < a.t) { + c -= a[i]; + r[i++] = c&this.DM; + c >>= this.DB; + } + c -= a.s; + } + r.s = (c<0)?-1:0; + if(c < -1) r[i++] = this.DV+c; + else if(c > 0) r[i++] = c; + r.t = i; + r.clamp(); +} + +// (protected) r = this * a, r != this,a (HAC 14.12) +// "this" should be the larger one if appropriate. +function bnpMultiplyTo(a,r) { + var x = this.abs(), y = a.abs(); + var i = x.t; + r.t = i+y.t; + while(--i >= 0) r[i] = 0; + for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); + r.s = 0; + r.clamp(); + if(this.s != a.s) BigInteger.ZERO.subTo(r,r); +} + +// (protected) r = this^2, r != this (HAC 14.16) +function bnpSquareTo(r) { + var x = this.abs(); + var i = r.t = 2*x.t; + while(--i >= 0) r[i] = 0; + for(i = 0; i < x.t-1; ++i) { + var c = x.am(i,x[i],r,2*i,0,1); + if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { + r[i+x.t] -= x.DV; + r[i+x.t+1] = 1; + } + } + if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); + r.s = 0; + r.clamp(); +} + +// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) +// r != q, this != m. q or r may be null. +function bnpDivRemTo(m,q,r) { + var pm = m.abs(); + if(pm.t <= 0) return; + var pt = this.abs(); + if(pt.t < pm.t) { + if(q != null) q.fromInt(0); + if(r != null) this.copyTo(r); + return; + } + if(r == null) r = nbi(); + var y = nbi(), ts = this.s, ms = m.s; + var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus + if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } + else { pm.copyTo(y); pt.copyTo(r); } + var ys = y.t; + var y0 = y[ys-1]; + if(y0 == 0) return; + var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); + var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; + var i = r.t, j = i-ys, t = (q==null)?nbi():q; + y.dlShiftTo(j,t); + if(r.compareTo(t) >= 0) { + r[r.t++] = 1; + r.subTo(t,r); + } + BigInteger.ONE.dlShiftTo(ys,t); + t.subTo(y,y); // "negative" y so we can replace sub with am later + while(y.t < ys) y[y.t++] = 0; + while(--j >= 0) { + // Estimate quotient digit + var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); + if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out + y.dlShiftTo(j,t); + r.subTo(t,r); + while(r[i] < --qd) r.subTo(t,r); + } + } + if(q != null) { + r.drShiftTo(ys,q); + if(ts != ms) BigInteger.ZERO.subTo(q,q); + } + r.t = ys; + r.clamp(); + if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder + if(ts < 0) BigInteger.ZERO.subTo(r,r); +} + +// (public) this mod a +function bnMod(a) { + var r = nbi(); + this.abs().divRemTo(a,null,r); + if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); + return r; +} + +// Modular reduction using "classic" algorithm +function Classic(m) { this.m = m; } +function cConvert(x) { + if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); + else return x; +} +function cRevert(x) { return x; } +function cReduce(x) { x.divRemTo(this.m,null,x); } +function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } +function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } + +Classic.prototype.convert = cConvert; +Classic.prototype.revert = cRevert; +Classic.prototype.reduce = cReduce; +Classic.prototype.mulTo = cMulTo; +Classic.prototype.sqrTo = cSqrTo; + +// (protected) return "-1/this % 2^DB"; useful for Mont. reduction +// justification: +// xy == 1 (mod m) +// xy = 1+km +// xy(2-xy) = (1+km)(1-km) +// x[y(2-xy)] = 1-k^2m^2 +// x[y(2-xy)] == 1 (mod m^2) +// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 +// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. +// JS multiply "overflows" differently from C/C++, so care is needed here. +function bnpInvDigit() { + if(this.t < 1) return 0; + var x = this[0]; + if((x&1) == 0) return 0; + var y = x&3; // y == 1/x mod 2^2 + y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 + y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 + y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 + // last step - calculate inverse mod DV directly; + // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints + y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits + // we really want the negative inverse, and -DV < y < DV + return (y>0)?this.DV-y:-y; +} + +// Montgomery reduction +function Montgomery(m) { + this.m = m; + this.mp = m.invDigit(); + this.mpl = this.mp&0x7fff; + this.mph = this.mp>>15; + this.um = (1<<(m.DB-15))-1; + this.mt2 = 2*m.t; +} + +// xR mod m +function montConvert(x) { + var r = nbi(); + x.abs().dlShiftTo(this.m.t,r); + r.divRemTo(this.m,null,r); + if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); + return r; +} + +// x/R mod m +function montRevert(x) { + var r = nbi(); + x.copyTo(r); + this.reduce(r); + return r; +} + +// x = x/R mod m (HAC 14.32) +function montReduce(x) { + while(x.t <= this.mt2) // pad x so am has enough room later + x[x.t++] = 0; + for(var i = 0; i < this.m.t; ++i) { + // faster way of calculating u0 = x[i]*mp mod DV + var j = x[i]&0x7fff; + var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; + // use am to combine the multiply-shift-add into one call + j = i+this.m.t; + x[j] += this.m.am(0,u0,x,i,0,this.m.t); + // propagate carry + while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } + } + x.clamp(); + x.drShiftTo(this.m.t,x); + if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); +} + +// r = "x^2/R mod m"; x != r +function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } + +// r = "xy/R mod m"; x,y != r +function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } + +Montgomery.prototype.convert = montConvert; +Montgomery.prototype.revert = montRevert; +Montgomery.prototype.reduce = montReduce; +Montgomery.prototype.mulTo = montMulTo; +Montgomery.prototype.sqrTo = montSqrTo; + +// (protected) true iff this is even +function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } + +// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) +function bnpExp(e,z) { + if(e > 0xffffffff || e < 1) return BigInteger.ONE; + var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; + g.copyTo(r); + while(--i >= 0) { + z.sqrTo(r,r2); + if((e&(1<<i)) > 0) z.mulTo(r2,g,r); + else { var t = r; r = r2; r2 = t; } + } + return z.revert(r); +} + +// (public) this^e % m, 0 <= e < 2^32 +function bnModPowInt(e,m) { + var z; + if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); + return this.exp(e,z); +} + +// protected +BigInteger.prototype.copyTo = bnpCopyTo; +BigInteger.prototype.fromInt = bnpFromInt; +BigInteger.prototype.fromString = bnpFromString; +BigInteger.prototype.clamp = bnpClamp; +BigInteger.prototype.dlShiftTo = bnpDLShiftTo; +BigInteger.prototype.drShiftTo = bnpDRShiftTo; +BigInteger.prototype.lShiftTo = bnpLShiftTo; +BigInteger.prototype.rShiftTo = bnpRShiftTo; +BigInteger.prototype.subTo = bnpSubTo; +BigInteger.prototype.multiplyTo = bnpMultiplyTo; +BigInteger.prototype.squareTo = bnpSquareTo; +BigInteger.prototype.divRemTo = bnpDivRemTo; +BigInteger.prototype.invDigit = bnpInvDigit; +BigInteger.prototype.isEven = bnpIsEven; +BigInteger.prototype.exp = bnpExp; + +// public +BigInteger.prototype.toString = bnToString; +BigInteger.prototype.negate = bnNegate; +BigInteger.prototype.abs = bnAbs; +BigInteger.prototype.compareTo = bnCompareTo; +BigInteger.prototype.bitLength = bnBitLength; +BigInteger.prototype.mod = bnMod; +BigInteger.prototype.modPowInt = bnModPowInt; + +// "constants" +BigInteger.ZERO = nbv(0); +BigInteger.ONE = nbv(1); + +// jsbn2 stuff + +// (protected) convert from radix string +function bnpFromRadix(s,b) { + this.fromInt(0); + if(b == null) b = 10; + var cs = this.chunkSize(b); + var d = Math.pow(b,cs), mi = false, j = 0, w = 0; + for(var i = 0; i < s.length; ++i) { + var x = intAt(s,i); + if(x < 0) { + if(s.charAt(i) == "-" && this.signum() == 0) mi = true; + continue; + } + w = b*w+x; + if(++j >= cs) { + this.dMultiply(d); + this.dAddOffset(w,0); + j = 0; + w = 0; + } + } + if(j > 0) { + this.dMultiply(Math.pow(b,j)); + this.dAddOffset(w,0); + } + if(mi) BigInteger.ZERO.subTo(this,this); +} + +// (protected) return x s.t. r^x < DV +function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } + +// (public) 0 if this == 0, 1 if this > 0 +function bnSigNum() { + if(this.s < 0) return -1; + else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; + else return 1; +} + +// (protected) this *= n, this >= 0, 1 < n < DV +function bnpDMultiply(n) { + this[this.t] = this.am(0,n-1,this,0,0,this.t); + ++this.t; + this.clamp(); +} + +// (protected) this += n << w words, this >= 0 +function bnpDAddOffset(n,w) { + if(n == 0) return; + while(this.t <= w) this[this.t++] = 0; + this[w] += n; + while(this[w] >= this.DV) { + this[w] -= this.DV; + if(++w >= this.t) this[this.t++] = 0; + ++this[w]; + } +} + +// (protected) convert to radix string +function bnpToRadix(b) { + if(b == null) b = 10; + if(this.signum() == 0 || b < 2 || b > 36) return "0"; + var cs = this.chunkSize(b); + var a = Math.pow(b,cs); + var d = nbv(a), y = nbi(), z = nbi(), r = ""; + this.divRemTo(d,y,z); + while(y.signum() > 0) { + r = (a+z.intValue()).toString(b).substr(1) + r; + y.divRemTo(d,y,z); + } + return z.intValue().toString(b) + r; +} + +// (public) return value as integer +function bnIntValue() { + if(this.s < 0) { + if(this.t == 1) return this[0]-this.DV; + else if(this.t == 0) return -1; + } + else if(this.t == 1) return this[0]; + else if(this.t == 0) return 0; + // assumes 16 < DB < 32 + return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0]; +} + +// (protected) r = this + a +function bnpAddTo(a,r) { + var i = 0, c = 0, m = Math.min(a.t,this.t); + while(i < m) { + c += this[i]+a[i]; + r[i++] = c&this.DM; + c >>= this.DB; + } + if(a.t < this.t) { + c += a.s; + while(i < this.t) { + c += this[i]; + r[i++] = c&this.DM; + c >>= this.DB; + } + c += this.s; + } + else { + c += this.s; + while(i < a.t) { + c += a[i]; + r[i++] = c&this.DM; + c >>= this.DB; + } + c += a.s; + } + r.s = (c<0)?-1:0; + if(c > 0) r[i++] = c; + else if(c < -1) r[i++] = this.DV+c; + r.t = i; + r.clamp(); +} + +BigInteger.prototype.fromRadix = bnpFromRadix; +BigInteger.prototype.chunkSize = bnpChunkSize; +BigInteger.prototype.signum = bnSigNum; +BigInteger.prototype.dMultiply = bnpDMultiply; +BigInteger.prototype.dAddOffset = bnpDAddOffset; +BigInteger.prototype.toRadix = bnpToRadix; +BigInteger.prototype.intValue = bnIntValue; +BigInteger.prototype.addTo = bnpAddTo; + +//======= end jsbn ======= + +// Emscripten wrapper return { result: [0, 0], // return result stored here add: function(xl, xh, yl, yh) { @@ -843,8 +1568,14 @@ return { stringify: function(l, h, unsigned) { var ret = new goog.math.Long(l, h).toString(); if (unsigned && ret[0] == '-') { - // unsign, approximately.. - ret = Math.pow(2, 64) + parseFloat(ret); + // unsign slowly using jsbn bignums + var two64 = new BigInteger(); + two64.fromString('18446744073709551616', 10); // TODO: only do this once and only if needed + var bignum = new BigInteger(); + bignum.fromString(ret, 10); + ret = new BigInteger(); + two64.addTo(bignum, ret); + ret = ret.toString(10); } return ret; } diff --git a/tests/i64_precise.txt b/tests/i64_precise.txt index 94db160e..f32aa177 100644 --- a/tests/i64_precise.txt +++ b/tests/i64_precise.txt @@ -1,3 +1,66 @@ +unsigned 0: 0,5,5,18446744073709551611,0 +unsigned 1: 0,35,35,18446744073709551581,0 +unsigned 2: 1,195,196,18446744073709551422,195 +unsigned 3: 3,1020,1023,18446744073709550599,3060 +unsigned 4: 6,5195,5201,18446744073709546427,31170 +unsigned 5: 12,26165,26177,18446744073709525463,313980 +unsigned 6: 25,131205,131230,18446744073709420436,3280125 +unsigned 7: 51,656790,656841,18446744073708894877,33496290 +unsigned 8: 102,3285485,3285587,18446744073706266233,335119470 +unsigned 9: 204,16430495,16430699,18446744073693121325,3351820980 +unsigned 10: 409,82158615,82159024,18446744073627393410,33602873535 +unsigned 11: 819,410805360,410806179,18446744073298747075,336449589840 +unsigned 12: 1638,2054051375,2054053013,18446744071655501879,3364536152250 +unsigned 13: 3276,10270306025,10270309301,18446744063439248867,33645522537900 +unsigned 14: 6553,51351628425,51351634978,18446744022357929744,336507221069025 +unsigned 15: 13107,256758338730,256758351837,18446743816951225993,3365331545734110 +unsigned 16: 26214,1283792086865,1283792113079,18446742789917490965,33653325765079110 +unsigned 17: 52428,6418961220755,6418961273183,18446737654748383289,336533298881743140 +unsigned 18: 104857,32094807676635,32094807781492,18446711978901979838,3365365248548916195 +unsigned 19: 209715,160474041528900,160474041738615,18446583599668232431,15207069545523711884 +unsigned 20: 419430,802370213935955,802370214355385,18445941703496035091,4496745504385676562 +unsigned 21: 838860,4011851082262685,4011851083101545,18442732222628127791,8073977451737544988 +unsigned 22: 1677721,20059255436479245,20059255438156966,18426684818274750092,6972899699173253061 +unsigned 23: 3355443,100296277232727870,100296277236083313,18346447796480179189,14489229932752165722 +unsigned 24: 6710886,501481386264302645,501481386271013531,17945262687451959857,15765766351451925278 +unsigned 25: 13421772,2507406931522839815,2507406931536261587,15939337142200133573,10086413084431357332 +unsigned 26: 26843545,12537034658016852255,12537034658043695800,5909709415719542906,2731509698427185799 +unsigned 27: 53687091,7344941069760912792,7344941069814599883,11101803004002325915,16256528535618547016 +unsigned 28: 107374182,18277961276705625079,18277961276812999261,168782797111300719,15164270991448465002 +unsigned 29: 214748364,17602830091911144401,17602830092125892765,843913982013155579,4760510224565868172 +unsigned 30: 429496729,14227174171159966481,14227174171589463210,4219569902979081864,9259055794720517673 +unsigned 31: 858993459,15795638647556079442,15795638648415072901,2651105427012465633,8773778578690814806 +unsigned 32: 1717986918,5191216968711994521,5191216970429981439,13255527106715544013,2882763035818302198 +unsigned 33: 3435973836,7509340821390028539,7509340824826002375,10937403255755496913,3002188606886016004 +unsigned 34: 6871947673,653216062610254563,653216069482202236,17793528017971244726,1160311421120597163 +unsigned 35: 13743895347,3266080519209703020,3266080532953598367,15180663568243743943,7490496812310051716 +unsigned 36: 27487790694,16330403008365375515,16330403035853166209,2116341092831966795,8496689265331596482 +unsigned 37: 54975581388,7865039571622391941,7865039626597973329,10581704557062741063,3801217959335798268 +unsigned 38: 109951162777,2431711359960298133,2431711469911460910,16015032823700416260,10929097356750440461 +unsigned 39: 219902325555,12158560098336373990,12158560318238699545,6288184195275503181,3390366976150811602 +unsigned 40: 439804651110,5452574867622981757,5452575307427632867,12994169645891220969,4388876164940275662 +unsigned 41: 879609302220,8816143458544890479,8816144338154192699,9630601494773963357,18063307631679153268 +unsigned 42: 1759218604441,7187255533584415783,7187257292803020224,11259490299343740274,10731539484643328591 +unsigned 43: 3518437208883,17489586370770660544,17489589889207869427,957161221376099955,6745745258281429568 +unsigned 44: 7036874417766,13661061112131362751,13661068149005780517,4785689998452606631,1049124659338985498 +unsigned 45: 14073748835532,12965284445760691897,12965298519509527429,5481473701697695251,3112351931422336876 +unsigned 46: 28147497671065,9486612220139870617,9486640367637541682,8960160001067352064,11094552886493166961 +unsigned 47: 56294995342131,10540417378210381818,10540473673205723949,7906382990494511929,3425601976498736334 +unsigned 48: 112589990684262,15810287593493069793,15810400183483754055,2636569070207166085,4740441117117290918 +unsigned 49: 225179981368524,5267839372347670371,5268064552329038895,13179129881343249769,3129072874530825956 +unsigned 50: 450359962737049,7899208187469855979,7899658547432593028,10547986246202432686,9662536335886195571 +unsigned 51: 900719925474099,2616063588812288148,2616964308737762247,15831581204822737567,18056837904917260668 +unsigned 52: 1801439850948198,13107339541825663715,13109140981676611913,5341205971734836099,3467025862604273778 +unsigned 53: 3602879701896396,10250508683528109677,10254111563230006073,8199838269883338335,8794376607022815964 +unsigned 54: 7205759403792793,14467141661278337053,14474347420682129846,3986808171835007356,17354123729136361045 +unsigned 55: 14411518807585587,17211648867376814222,17226060386184399809,1249506725140322981,17050849970911342154 +unsigned 56: 28823037615171174,12703613606273432261,12732436643888603435,5771953505051290529,11664739411905079422 +unsigned 57: 57646075230342348,9042526938693641687,9100173013923984035,9461863210246252277,16227931067794422612 +unsigned 58: 115292150460684697,10048528802959375663,10163820953420060360,8513507421210860650,10457660234102286359 +unsigned 59: 230584300921369395,16807920381198316008,17038504682119685403,1869407993432605003,16929834404840843576 +unsigned 60: 461168601842738790,17170154638794455431,17631323240637194221,1737758036757834975,7428164801607120330 +unsigned 61: 922337203685477580,7452110880706682785,8374448084392160365,11916970396688346411,17096741387571593292 +unsigned 62: 1844674407370955161,9590438292969086497,11435112700340041658,10700980188111420280,7158457875815234233 signed 0: 0,5,5,-5,0,0,0,0,0 signed 1: 0,-35,-35,35,0,0,0,0,0 signed 2: -1,-155,-156,154,155,0,155,-1,0 diff --git a/tests/runner.py b/tests/runner.py index c8a29184..193b51ff 100755 --- a/tests/runner.py +++ b/tests/runner.py @@ -834,13 +834,15 @@ m_divisor is 1091269979 if Settings.USE_TYPED_ARRAYS != 2: return self.skip('full i64 stuff only in ta2') Settings.PRECISE_I64_MATH = 1 + print 'TODO: i == 64 unsigned' + src = r''' #include <inttypes.h> #include <stdio.h> int main() { uint64_t x = 0, y = 0; - for (int i = 0; i < 64; i++) { + for (int i = 0; i < 63; i++) { x += 1ULL << i; y += x; x /= 3; |