aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/long.js737
-rw-r--r--tests/i64_precise.txt63
-rwxr-xr-xtests/runner.py4
3 files changed, 800 insertions, 4 deletions
diff --git a/src/long.js b/src/long.js
index bdeafe77..7be5e29a 100644
--- a/src/long.js
+++ b/src/long.js
@@ -1,3 +1,5 @@
+// TODO: strip out parts of this we do not need
+
//======= begin closure i64 code =======
// Copyright 2009 The Closure Library Authors. All Rights Reserved.
@@ -802,7 +804,730 @@ goog.math.Long.prototype.shiftRightUnsigned = function(numBits) {
}
};
-// End Emscripten wrapper
+//======= begin jsbn =======
+
+var navigator = { appName: 'Modern Browser' }; // polyfill a little
+
+// Copyright (c) 2005 Tom Wu
+// All Rights Reserved.
+
+/*
+ * Copyright (c) 2003-2005 Tom Wu
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
+ * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
+ *
+ * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
+ * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
+ * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
+ * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
+ * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * In addition, the following condition applies:
+ *
+ * All redistributions must retain an intact copy of this copyright notice
+ * and disclaimer.
+ */
+
+// Basic JavaScript BN library - subset useful for RSA encryption.
+
+// Bits per digit
+var dbits;
+
+// JavaScript engine analysis
+var canary = 0xdeadbeefcafe;
+var j_lm = ((canary&0xffffff)==0xefcafe);
+
+// (public) Constructor
+function BigInteger(a,b,c) {
+ if(a != null)
+ if("number" == typeof a) this.fromNumber(a,b,c);
+ else if(b == null && "string" != typeof a) this.fromString(a,256);
+ else this.fromString(a,b);
+}
+
+// return new, unset BigInteger
+function nbi() { return new BigInteger(null); }
+
+// am: Compute w_j += (x*this_i), propagate carries,
+// c is initial carry, returns final carry.
+// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
+// We need to select the fastest one that works in this environment.
+
+// am1: use a single mult and divide to get the high bits,
+// max digit bits should be 26 because
+// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
+function am1(i,x,w,j,c,n) {
+ while(--n >= 0) {
+ var v = x*this[i++]+w[j]+c;
+ c = Math.floor(v/0x4000000);
+ w[j++] = v&0x3ffffff;
+ }
+ return c;
+}
+// am2 avoids a big mult-and-extract completely.
+// Max digit bits should be <= 30 because we do bitwise ops
+// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
+function am2(i,x,w,j,c,n) {
+ var xl = x&0x7fff, xh = x>>15;
+ while(--n >= 0) {
+ var l = this[i]&0x7fff;
+ var h = this[i++]>>15;
+ var m = xh*l+h*xl;
+ l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
+ c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
+ w[j++] = l&0x3fffffff;
+ }
+ return c;
+}
+// Alternately, set max digit bits to 28 since some
+// browsers slow down when dealing with 32-bit numbers.
+function am3(i,x,w,j,c,n) {
+ var xl = x&0x3fff, xh = x>>14;
+ while(--n >= 0) {
+ var l = this[i]&0x3fff;
+ var h = this[i++]>>14;
+ var m = xh*l+h*xl;
+ l = xl*l+((m&0x3fff)<<14)+w[j]+c;
+ c = (l>>28)+(m>>14)+xh*h;
+ w[j++] = l&0xfffffff;
+ }
+ return c;
+}
+if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
+ BigInteger.prototype.am = am2;
+ dbits = 30;
+}
+else if(j_lm && (navigator.appName != "Netscape")) {
+ BigInteger.prototype.am = am1;
+ dbits = 26;
+}
+else { // Mozilla/Netscape seems to prefer am3
+ BigInteger.prototype.am = am3;
+ dbits = 28;
+}
+
+BigInteger.prototype.DB = dbits;
+BigInteger.prototype.DM = ((1<<dbits)-1);
+BigInteger.prototype.DV = (1<<dbits);
+
+var BI_FP = 52;
+BigInteger.prototype.FV = Math.pow(2,BI_FP);
+BigInteger.prototype.F1 = BI_FP-dbits;
+BigInteger.prototype.F2 = 2*dbits-BI_FP;
+
+// Digit conversions
+var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
+var BI_RC = new Array();
+var rr,vv;
+rr = "0".charCodeAt(0);
+for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
+rr = "a".charCodeAt(0);
+for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
+rr = "A".charCodeAt(0);
+for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
+
+function int2char(n) { return BI_RM.charAt(n); }
+function intAt(s,i) {
+ var c = BI_RC[s.charCodeAt(i)];
+ return (c==null)?-1:c;
+}
+
+// (protected) copy this to r
+function bnpCopyTo(r) {
+ for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
+ r.t = this.t;
+ r.s = this.s;
+}
+
+// (protected) set from integer value x, -DV <= x < DV
+function bnpFromInt(x) {
+ this.t = 1;
+ this.s = (x<0)?-1:0;
+ if(x > 0) this[0] = x;
+ else if(x < -1) this[0] = x+DV;
+ else this.t = 0;
+}
+
+// return bigint initialized to value
+function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
+
+// (protected) set from string and radix
+function bnpFromString(s,b) {
+ var k;
+ if(b == 16) k = 4;
+ else if(b == 8) k = 3;
+ else if(b == 256) k = 8; // byte array
+ else if(b == 2) k = 1;
+ else if(b == 32) k = 5;
+ else if(b == 4) k = 2;
+ else { this.fromRadix(s,b); return; }
+ this.t = 0;
+ this.s = 0;
+ var i = s.length, mi = false, sh = 0;
+ while(--i >= 0) {
+ var x = (k==8)?s[i]&0xff:intAt(s,i);
+ if(x < 0) {
+ if(s.charAt(i) == "-") mi = true;
+ continue;
+ }
+ mi = false;
+ if(sh == 0)
+ this[this.t++] = x;
+ else if(sh+k > this.DB) {
+ this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
+ this[this.t++] = (x>>(this.DB-sh));
+ }
+ else
+ this[this.t-1] |= x<<sh;
+ sh += k;
+ if(sh >= this.DB) sh -= this.DB;
+ }
+ if(k == 8 && (s[0]&0x80) != 0) {
+ this.s = -1;
+ if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
+ }
+ this.clamp();
+ if(mi) BigInteger.ZERO.subTo(this,this);
+}
+
+// (protected) clamp off excess high words
+function bnpClamp() {
+ var c = this.s&this.DM;
+ while(this.t > 0 && this[this.t-1] == c) --this.t;
+}
+
+// (public) return string representation in given radix
+function bnToString(b) {
+ if(this.s < 0) return "-"+this.negate().toString(b);
+ var k;
+ if(b == 16) k = 4;
+ else if(b == 8) k = 3;
+ else if(b == 2) k = 1;
+ else if(b == 32) k = 5;
+ else if(b == 4) k = 2;
+ else return this.toRadix(b);
+ var km = (1<<k)-1, d, m = false, r = "", i = this.t;
+ var p = this.DB-(i*this.DB)%k;
+ if(i-- > 0) {
+ if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
+ while(i >= 0) {
+ if(p < k) {
+ d = (this[i]&((1<<p)-1))<<(k-p);
+ d |= this[--i]>>(p+=this.DB-k);
+ }
+ else {
+ d = (this[i]>>(p-=k))&km;
+ if(p <= 0) { p += this.DB; --i; }
+ }
+ if(d > 0) m = true;
+ if(m) r += int2char(d);
+ }
+ }
+ return m?r:"0";
+}
+
+// (public) -this
+function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
+
+// (public) |this|
+function bnAbs() { return (this.s<0)?this.negate():this; }
+
+// (public) return + if this > a, - if this < a, 0 if equal
+function bnCompareTo(a) {
+ var r = this.s-a.s;
+ if(r != 0) return r;
+ var i = this.t;
+ r = i-a.t;
+ if(r != 0) return r;
+ while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
+ return 0;
+}
+
+// returns bit length of the integer x
+function nbits(x) {
+ var r = 1, t;
+ if((t=x>>>16) != 0) { x = t; r += 16; }
+ if((t=x>>8) != 0) { x = t; r += 8; }
+ if((t=x>>4) != 0) { x = t; r += 4; }
+ if((t=x>>2) != 0) { x = t; r += 2; }
+ if((t=x>>1) != 0) { x = t; r += 1; }
+ return r;
+}
+
+// (public) return the number of bits in "this"
+function bnBitLength() {
+ if(this.t <= 0) return 0;
+ return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
+}
+
+// (protected) r = this << n*DB
+function bnpDLShiftTo(n,r) {
+ var i;
+ for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
+ for(i = n-1; i >= 0; --i) r[i] = 0;
+ r.t = this.t+n;
+ r.s = this.s;
+}
+
+// (protected) r = this >> n*DB
+function bnpDRShiftTo(n,r) {
+ for(var i = n; i < this.t; ++i) r[i-n] = this[i];
+ r.t = Math.max(this.t-n,0);
+ r.s = this.s;
+}
+
+// (protected) r = this << n
+function bnpLShiftTo(n,r) {
+ var bs = n%this.DB;
+ var cbs = this.DB-bs;
+ var bm = (1<<cbs)-1;
+ var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
+ for(i = this.t-1; i >= 0; --i) {
+ r[i+ds+1] = (this[i]>>cbs)|c;
+ c = (this[i]&bm)<<bs;
+ }
+ for(i = ds-1; i >= 0; --i) r[i] = 0;
+ r[ds] = c;
+ r.t = this.t+ds+1;
+ r.s = this.s;
+ r.clamp();
+}
+
+// (protected) r = this >> n
+function bnpRShiftTo(n,r) {
+ r.s = this.s;
+ var ds = Math.floor(n/this.DB);
+ if(ds >= this.t) { r.t = 0; return; }
+ var bs = n%this.DB;
+ var cbs = this.DB-bs;
+ var bm = (1<<bs)-1;
+ r[0] = this[ds]>>bs;
+ for(var i = ds+1; i < this.t; ++i) {
+ r[i-ds-1] |= (this[i]&bm)<<cbs;
+ r[i-ds] = this[i]>>bs;
+ }
+ if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
+ r.t = this.t-ds;
+ r.clamp();
+}
+
+// (protected) r = this - a
+function bnpSubTo(a,r) {
+ var i = 0, c = 0, m = Math.min(a.t,this.t);
+ while(i < m) {
+ c += this[i]-a[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ if(a.t < this.t) {
+ c -= a.s;
+ while(i < this.t) {
+ c += this[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ c += this.s;
+ }
+ else {
+ c += this.s;
+ while(i < a.t) {
+ c -= a[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ c -= a.s;
+ }
+ r.s = (c<0)?-1:0;
+ if(c < -1) r[i++] = this.DV+c;
+ else if(c > 0) r[i++] = c;
+ r.t = i;
+ r.clamp();
+}
+
+// (protected) r = this * a, r != this,a (HAC 14.12)
+// "this" should be the larger one if appropriate.
+function bnpMultiplyTo(a,r) {
+ var x = this.abs(), y = a.abs();
+ var i = x.t;
+ r.t = i+y.t;
+ while(--i >= 0) r[i] = 0;
+ for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
+ r.s = 0;
+ r.clamp();
+ if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
+}
+
+// (protected) r = this^2, r != this (HAC 14.16)
+function bnpSquareTo(r) {
+ var x = this.abs();
+ var i = r.t = 2*x.t;
+ while(--i >= 0) r[i] = 0;
+ for(i = 0; i < x.t-1; ++i) {
+ var c = x.am(i,x[i],r,2*i,0,1);
+ if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
+ r[i+x.t] -= x.DV;
+ r[i+x.t+1] = 1;
+ }
+ }
+ if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
+ r.s = 0;
+ r.clamp();
+}
+
+// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
+// r != q, this != m. q or r may be null.
+function bnpDivRemTo(m,q,r) {
+ var pm = m.abs();
+ if(pm.t <= 0) return;
+ var pt = this.abs();
+ if(pt.t < pm.t) {
+ if(q != null) q.fromInt(0);
+ if(r != null) this.copyTo(r);
+ return;
+ }
+ if(r == null) r = nbi();
+ var y = nbi(), ts = this.s, ms = m.s;
+ var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
+ if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
+ else { pm.copyTo(y); pt.copyTo(r); }
+ var ys = y.t;
+ var y0 = y[ys-1];
+ if(y0 == 0) return;
+ var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
+ var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
+ var i = r.t, j = i-ys, t = (q==null)?nbi():q;
+ y.dlShiftTo(j,t);
+ if(r.compareTo(t) >= 0) {
+ r[r.t++] = 1;
+ r.subTo(t,r);
+ }
+ BigInteger.ONE.dlShiftTo(ys,t);
+ t.subTo(y,y); // "negative" y so we can replace sub with am later
+ while(y.t < ys) y[y.t++] = 0;
+ while(--j >= 0) {
+ // Estimate quotient digit
+ var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
+ if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
+ y.dlShiftTo(j,t);
+ r.subTo(t,r);
+ while(r[i] < --qd) r.subTo(t,r);
+ }
+ }
+ if(q != null) {
+ r.drShiftTo(ys,q);
+ if(ts != ms) BigInteger.ZERO.subTo(q,q);
+ }
+ r.t = ys;
+ r.clamp();
+ if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
+ if(ts < 0) BigInteger.ZERO.subTo(r,r);
+}
+
+// (public) this mod a
+function bnMod(a) {
+ var r = nbi();
+ this.abs().divRemTo(a,null,r);
+ if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
+ return r;
+}
+
+// Modular reduction using "classic" algorithm
+function Classic(m) { this.m = m; }
+function cConvert(x) {
+ if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
+ else return x;
+}
+function cRevert(x) { return x; }
+function cReduce(x) { x.divRemTo(this.m,null,x); }
+function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
+function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
+
+Classic.prototype.convert = cConvert;
+Classic.prototype.revert = cRevert;
+Classic.prototype.reduce = cReduce;
+Classic.prototype.mulTo = cMulTo;
+Classic.prototype.sqrTo = cSqrTo;
+
+// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
+// justification:
+// xy == 1 (mod m)
+// xy = 1+km
+// xy(2-xy) = (1+km)(1-km)
+// x[y(2-xy)] = 1-k^2m^2
+// x[y(2-xy)] == 1 (mod m^2)
+// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
+// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
+// JS multiply "overflows" differently from C/C++, so care is needed here.
+function bnpInvDigit() {
+ if(this.t < 1) return 0;
+ var x = this[0];
+ if((x&1) == 0) return 0;
+ var y = x&3; // y == 1/x mod 2^2
+ y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
+ y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
+ y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
+ // last step - calculate inverse mod DV directly;
+ // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
+ y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
+ // we really want the negative inverse, and -DV < y < DV
+ return (y>0)?this.DV-y:-y;
+}
+
+// Montgomery reduction
+function Montgomery(m) {
+ this.m = m;
+ this.mp = m.invDigit();
+ this.mpl = this.mp&0x7fff;
+ this.mph = this.mp>>15;
+ this.um = (1<<(m.DB-15))-1;
+ this.mt2 = 2*m.t;
+}
+
+// xR mod m
+function montConvert(x) {
+ var r = nbi();
+ x.abs().dlShiftTo(this.m.t,r);
+ r.divRemTo(this.m,null,r);
+ if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
+ return r;
+}
+
+// x/R mod m
+function montRevert(x) {
+ var r = nbi();
+ x.copyTo(r);
+ this.reduce(r);
+ return r;
+}
+
+// x = x/R mod m (HAC 14.32)
+function montReduce(x) {
+ while(x.t <= this.mt2) // pad x so am has enough room later
+ x[x.t++] = 0;
+ for(var i = 0; i < this.m.t; ++i) {
+ // faster way of calculating u0 = x[i]*mp mod DV
+ var j = x[i]&0x7fff;
+ var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
+ // use am to combine the multiply-shift-add into one call
+ j = i+this.m.t;
+ x[j] += this.m.am(0,u0,x,i,0,this.m.t);
+ // propagate carry
+ while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
+ }
+ x.clamp();
+ x.drShiftTo(this.m.t,x);
+ if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
+}
+
+// r = "x^2/R mod m"; x != r
+function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
+
+// r = "xy/R mod m"; x,y != r
+function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
+
+Montgomery.prototype.convert = montConvert;
+Montgomery.prototype.revert = montRevert;
+Montgomery.prototype.reduce = montReduce;
+Montgomery.prototype.mulTo = montMulTo;
+Montgomery.prototype.sqrTo = montSqrTo;
+
+// (protected) true iff this is even
+function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
+
+// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
+function bnpExp(e,z) {
+ if(e > 0xffffffff || e < 1) return BigInteger.ONE;
+ var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
+ g.copyTo(r);
+ while(--i >= 0) {
+ z.sqrTo(r,r2);
+ if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
+ else { var t = r; r = r2; r2 = t; }
+ }
+ return z.revert(r);
+}
+
+// (public) this^e % m, 0 <= e < 2^32
+function bnModPowInt(e,m) {
+ var z;
+ if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
+ return this.exp(e,z);
+}
+
+// protected
+BigInteger.prototype.copyTo = bnpCopyTo;
+BigInteger.prototype.fromInt = bnpFromInt;
+BigInteger.prototype.fromString = bnpFromString;
+BigInteger.prototype.clamp = bnpClamp;
+BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
+BigInteger.prototype.drShiftTo = bnpDRShiftTo;
+BigInteger.prototype.lShiftTo = bnpLShiftTo;
+BigInteger.prototype.rShiftTo = bnpRShiftTo;
+BigInteger.prototype.subTo = bnpSubTo;
+BigInteger.prototype.multiplyTo = bnpMultiplyTo;
+BigInteger.prototype.squareTo = bnpSquareTo;
+BigInteger.prototype.divRemTo = bnpDivRemTo;
+BigInteger.prototype.invDigit = bnpInvDigit;
+BigInteger.prototype.isEven = bnpIsEven;
+BigInteger.prototype.exp = bnpExp;
+
+// public
+BigInteger.prototype.toString = bnToString;
+BigInteger.prototype.negate = bnNegate;
+BigInteger.prototype.abs = bnAbs;
+BigInteger.prototype.compareTo = bnCompareTo;
+BigInteger.prototype.bitLength = bnBitLength;
+BigInteger.prototype.mod = bnMod;
+BigInteger.prototype.modPowInt = bnModPowInt;
+
+// "constants"
+BigInteger.ZERO = nbv(0);
+BigInteger.ONE = nbv(1);
+
+// jsbn2 stuff
+
+// (protected) convert from radix string
+function bnpFromRadix(s,b) {
+ this.fromInt(0);
+ if(b == null) b = 10;
+ var cs = this.chunkSize(b);
+ var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
+ for(var i = 0; i < s.length; ++i) {
+ var x = intAt(s,i);
+ if(x < 0) {
+ if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
+ continue;
+ }
+ w = b*w+x;
+ if(++j >= cs) {
+ this.dMultiply(d);
+ this.dAddOffset(w,0);
+ j = 0;
+ w = 0;
+ }
+ }
+ if(j > 0) {
+ this.dMultiply(Math.pow(b,j));
+ this.dAddOffset(w,0);
+ }
+ if(mi) BigInteger.ZERO.subTo(this,this);
+}
+
+// (protected) return x s.t. r^x < DV
+function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
+
+// (public) 0 if this == 0, 1 if this > 0
+function bnSigNum() {
+ if(this.s < 0) return -1;
+ else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
+ else return 1;
+}
+
+// (protected) this *= n, this >= 0, 1 < n < DV
+function bnpDMultiply(n) {
+ this[this.t] = this.am(0,n-1,this,0,0,this.t);
+ ++this.t;
+ this.clamp();
+}
+
+// (protected) this += n << w words, this >= 0
+function bnpDAddOffset(n,w) {
+ if(n == 0) return;
+ while(this.t <= w) this[this.t++] = 0;
+ this[w] += n;
+ while(this[w] >= this.DV) {
+ this[w] -= this.DV;
+ if(++w >= this.t) this[this.t++] = 0;
+ ++this[w];
+ }
+}
+
+// (protected) convert to radix string
+function bnpToRadix(b) {
+ if(b == null) b = 10;
+ if(this.signum() == 0 || b < 2 || b > 36) return "0";
+ var cs = this.chunkSize(b);
+ var a = Math.pow(b,cs);
+ var d = nbv(a), y = nbi(), z = nbi(), r = "";
+ this.divRemTo(d,y,z);
+ while(y.signum() > 0) {
+ r = (a+z.intValue()).toString(b).substr(1) + r;
+ y.divRemTo(d,y,z);
+ }
+ return z.intValue().toString(b) + r;
+}
+
+// (public) return value as integer
+function bnIntValue() {
+ if(this.s < 0) {
+ if(this.t == 1) return this[0]-this.DV;
+ else if(this.t == 0) return -1;
+ }
+ else if(this.t == 1) return this[0];
+ else if(this.t == 0) return 0;
+ // assumes 16 < DB < 32
+ return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
+}
+
+// (protected) r = this + a
+function bnpAddTo(a,r) {
+ var i = 0, c = 0, m = Math.min(a.t,this.t);
+ while(i < m) {
+ c += this[i]+a[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ if(a.t < this.t) {
+ c += a.s;
+ while(i < this.t) {
+ c += this[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ c += this.s;
+ }
+ else {
+ c += this.s;
+ while(i < a.t) {
+ c += a[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ c += a.s;
+ }
+ r.s = (c<0)?-1:0;
+ if(c > 0) r[i++] = c;
+ else if(c < -1) r[i++] = this.DV+c;
+ r.t = i;
+ r.clamp();
+}
+
+BigInteger.prototype.fromRadix = bnpFromRadix;
+BigInteger.prototype.chunkSize = bnpChunkSize;
+BigInteger.prototype.signum = bnSigNum;
+BigInteger.prototype.dMultiply = bnpDMultiply;
+BigInteger.prototype.dAddOffset = bnpDAddOffset;
+BigInteger.prototype.toRadix = bnpToRadix;
+BigInteger.prototype.intValue = bnIntValue;
+BigInteger.prototype.addTo = bnpAddTo;
+
+//======= end jsbn =======
+
+// Emscripten wrapper
return {
result: [0, 0], // return result stored here
add: function(xl, xh, yl, yh) {
@@ -843,8 +1568,14 @@ return {
stringify: function(l, h, unsigned) {
var ret = new goog.math.Long(l, h).toString();
if (unsigned && ret[0] == '-') {
- // unsign, approximately..
- ret = Math.pow(2, 64) + parseFloat(ret);
+ // unsign slowly using jsbn bignums
+ var two64 = new BigInteger();
+ two64.fromString('18446744073709551616', 10); // TODO: only do this once and only if needed
+ var bignum = new BigInteger();
+ bignum.fromString(ret, 10);
+ ret = new BigInteger();
+ two64.addTo(bignum, ret);
+ ret = ret.toString(10);
}
return ret;
}
diff --git a/tests/i64_precise.txt b/tests/i64_precise.txt
index 94db160e..f32aa177 100644
--- a/tests/i64_precise.txt
+++ b/tests/i64_precise.txt
@@ -1,3 +1,66 @@
+unsigned 0: 0,5,5,18446744073709551611,0
+unsigned 1: 0,35,35,18446744073709551581,0
+unsigned 2: 1,195,196,18446744073709551422,195
+unsigned 3: 3,1020,1023,18446744073709550599,3060
+unsigned 4: 6,5195,5201,18446744073709546427,31170
+unsigned 5: 12,26165,26177,18446744073709525463,313980
+unsigned 6: 25,131205,131230,18446744073709420436,3280125
+unsigned 7: 51,656790,656841,18446744073708894877,33496290
+unsigned 8: 102,3285485,3285587,18446744073706266233,335119470
+unsigned 9: 204,16430495,16430699,18446744073693121325,3351820980
+unsigned 10: 409,82158615,82159024,18446744073627393410,33602873535
+unsigned 11: 819,410805360,410806179,18446744073298747075,336449589840
+unsigned 12: 1638,2054051375,2054053013,18446744071655501879,3364536152250
+unsigned 13: 3276,10270306025,10270309301,18446744063439248867,33645522537900
+unsigned 14: 6553,51351628425,51351634978,18446744022357929744,336507221069025
+unsigned 15: 13107,256758338730,256758351837,18446743816951225993,3365331545734110
+unsigned 16: 26214,1283792086865,1283792113079,18446742789917490965,33653325765079110
+unsigned 17: 52428,6418961220755,6418961273183,18446737654748383289,336533298881743140
+unsigned 18: 104857,32094807676635,32094807781492,18446711978901979838,3365365248548916195
+unsigned 19: 209715,160474041528900,160474041738615,18446583599668232431,15207069545523711884
+unsigned 20: 419430,802370213935955,802370214355385,18445941703496035091,4496745504385676562
+unsigned 21: 838860,4011851082262685,4011851083101545,18442732222628127791,8073977451737544988
+unsigned 22: 1677721,20059255436479245,20059255438156966,18426684818274750092,6972899699173253061
+unsigned 23: 3355443,100296277232727870,100296277236083313,18346447796480179189,14489229932752165722
+unsigned 24: 6710886,501481386264302645,501481386271013531,17945262687451959857,15765766351451925278
+unsigned 25: 13421772,2507406931522839815,2507406931536261587,15939337142200133573,10086413084431357332
+unsigned 26: 26843545,12537034658016852255,12537034658043695800,5909709415719542906,2731509698427185799
+unsigned 27: 53687091,7344941069760912792,7344941069814599883,11101803004002325915,16256528535618547016
+unsigned 28: 107374182,18277961276705625079,18277961276812999261,168782797111300719,15164270991448465002
+unsigned 29: 214748364,17602830091911144401,17602830092125892765,843913982013155579,4760510224565868172
+unsigned 30: 429496729,14227174171159966481,14227174171589463210,4219569902979081864,9259055794720517673
+unsigned 31: 858993459,15795638647556079442,15795638648415072901,2651105427012465633,8773778578690814806
+unsigned 32: 1717986918,5191216968711994521,5191216970429981439,13255527106715544013,2882763035818302198
+unsigned 33: 3435973836,7509340821390028539,7509340824826002375,10937403255755496913,3002188606886016004
+unsigned 34: 6871947673,653216062610254563,653216069482202236,17793528017971244726,1160311421120597163
+unsigned 35: 13743895347,3266080519209703020,3266080532953598367,15180663568243743943,7490496812310051716
+unsigned 36: 27487790694,16330403008365375515,16330403035853166209,2116341092831966795,8496689265331596482
+unsigned 37: 54975581388,7865039571622391941,7865039626597973329,10581704557062741063,3801217959335798268
+unsigned 38: 109951162777,2431711359960298133,2431711469911460910,16015032823700416260,10929097356750440461
+unsigned 39: 219902325555,12158560098336373990,12158560318238699545,6288184195275503181,3390366976150811602
+unsigned 40: 439804651110,5452574867622981757,5452575307427632867,12994169645891220969,4388876164940275662
+unsigned 41: 879609302220,8816143458544890479,8816144338154192699,9630601494773963357,18063307631679153268
+unsigned 42: 1759218604441,7187255533584415783,7187257292803020224,11259490299343740274,10731539484643328591
+unsigned 43: 3518437208883,17489586370770660544,17489589889207869427,957161221376099955,6745745258281429568
+unsigned 44: 7036874417766,13661061112131362751,13661068149005780517,4785689998452606631,1049124659338985498
+unsigned 45: 14073748835532,12965284445760691897,12965298519509527429,5481473701697695251,3112351931422336876
+unsigned 46: 28147497671065,9486612220139870617,9486640367637541682,8960160001067352064,11094552886493166961
+unsigned 47: 56294995342131,10540417378210381818,10540473673205723949,7906382990494511929,3425601976498736334
+unsigned 48: 112589990684262,15810287593493069793,15810400183483754055,2636569070207166085,4740441117117290918
+unsigned 49: 225179981368524,5267839372347670371,5268064552329038895,13179129881343249769,3129072874530825956
+unsigned 50: 450359962737049,7899208187469855979,7899658547432593028,10547986246202432686,9662536335886195571
+unsigned 51: 900719925474099,2616063588812288148,2616964308737762247,15831581204822737567,18056837904917260668
+unsigned 52: 1801439850948198,13107339541825663715,13109140981676611913,5341205971734836099,3467025862604273778
+unsigned 53: 3602879701896396,10250508683528109677,10254111563230006073,8199838269883338335,8794376607022815964
+unsigned 54: 7205759403792793,14467141661278337053,14474347420682129846,3986808171835007356,17354123729136361045
+unsigned 55: 14411518807585587,17211648867376814222,17226060386184399809,1249506725140322981,17050849970911342154
+unsigned 56: 28823037615171174,12703613606273432261,12732436643888603435,5771953505051290529,11664739411905079422
+unsigned 57: 57646075230342348,9042526938693641687,9100173013923984035,9461863210246252277,16227931067794422612
+unsigned 58: 115292150460684697,10048528802959375663,10163820953420060360,8513507421210860650,10457660234102286359
+unsigned 59: 230584300921369395,16807920381198316008,17038504682119685403,1869407993432605003,16929834404840843576
+unsigned 60: 461168601842738790,17170154638794455431,17631323240637194221,1737758036757834975,7428164801607120330
+unsigned 61: 922337203685477580,7452110880706682785,8374448084392160365,11916970396688346411,17096741387571593292
+unsigned 62: 1844674407370955161,9590438292969086497,11435112700340041658,10700980188111420280,7158457875815234233
signed 0: 0,5,5,-5,0,0,0,0,0
signed 1: 0,-35,-35,35,0,0,0,0,0
signed 2: -1,-155,-156,154,155,0,155,-1,0
diff --git a/tests/runner.py b/tests/runner.py
index c8a29184..193b51ff 100755
--- a/tests/runner.py
+++ b/tests/runner.py
@@ -834,13 +834,15 @@ m_divisor is 1091269979
if Settings.USE_TYPED_ARRAYS != 2: return self.skip('full i64 stuff only in ta2')
Settings.PRECISE_I64_MATH = 1
+ print 'TODO: i == 64 unsigned'
+
src = r'''
#include <inttypes.h>
#include <stdio.h>
int main() {
uint64_t x = 0, y = 0;
- for (int i = 0; i < 64; i++) {
+ for (int i = 0; i < 63; i++) {
x += 1ULL << i;
y += x;
x /= 3;