summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlon Zakai <alonzakai@gmail.com>2012-11-05 20:20:48 -0800
committerAlon Zakai <alonzakai@gmail.com>2012-11-05 20:20:48 -0800
commit13b82208767b3af7a8716356c07b6eac26da5ac3 (patch)
treeb91195c1252cd7d3af55d12e2110fcd4e1fb8ed3
parente1cea3090412d94fad1cc706e7c1f09ea7993799 (diff)
add proper indentation in long.js to not confuse js optimizer splitter
-rw-r--r--src/long.js2804
1 files changed, 1402 insertions, 1402 deletions
diff --git a/src/long.js b/src/long.js
index 71cffa79..d5770e48 100644
--- a/src/long.js
+++ b/src/long.js
@@ -24,1609 +24,1609 @@
*/
var i64Math = (function() { // Emscripten wrapper
-var goog = { math: {} };
+ var goog = { math: {} };
-/**
- * Constructs a 64-bit two's-complement integer, given its low and high 32-bit
- * values as *signed* integers. See the from* functions below for more
- * convenient ways of constructing Longs.
- *
- * The internal representation of a long is the two given signed, 32-bit values.
- * We use 32-bit pieces because these are the size of integers on which
- * Javascript performs bit-operations. For operations like addition and
- * multiplication, we split each number into 16-bit pieces, which can easily be
- * multiplied within Javascript's floating-point representation without overflow
- * or change in sign.
- *
- * In the algorithms below, we frequently reduce the negative case to the
- * positive case by negating the input(s) and then post-processing the result.
- * Note that we must ALWAYS check specially whether those values are MIN_VALUE
- * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
- * a positive number, it overflows back into a negative). Not handling this
- * case would often result in infinite recursion.
- *
- * @param {number} low The low (signed) 32 bits of the long.
- * @param {number} high The high (signed) 32 bits of the long.
- * @constructor
- */
-goog.math.Long = function(low, high) {
/**
- * @type {number}
- * @private
+ * Constructs a 64-bit two's-complement integer, given its low and high 32-bit
+ * values as *signed* integers. See the from* functions below for more
+ * convenient ways of constructing Longs.
+ *
+ * The internal representation of a long is the two given signed, 32-bit values.
+ * We use 32-bit pieces because these are the size of integers on which
+ * Javascript performs bit-operations. For operations like addition and
+ * multiplication, we split each number into 16-bit pieces, which can easily be
+ * multiplied within Javascript's floating-point representation without overflow
+ * or change in sign.
+ *
+ * In the algorithms below, we frequently reduce the negative case to the
+ * positive case by negating the input(s) and then post-processing the result.
+ * Note that we must ALWAYS check specially whether those values are MIN_VALUE
+ * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
+ * a positive number, it overflows back into a negative). Not handling this
+ * case would often result in infinite recursion.
+ *
+ * @param {number} low The low (signed) 32 bits of the long.
+ * @param {number} high The high (signed) 32 bits of the long.
+ * @constructor
*/
- this.low_ = low | 0; // force into 32 signed bits.
+ goog.math.Long = function(low, high) {
+ /**
+ * @type {number}
+ * @private
+ */
+ this.low_ = low | 0; // force into 32 signed bits.
- /**
- * @type {number}
- * @private
- */
- this.high_ = high | 0; // force into 32 signed bits.
-};
+ /**
+ * @type {number}
+ * @private
+ */
+ this.high_ = high | 0; // force into 32 signed bits.
+ };
-// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
-// from* methods on which they depend.
+ // NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
+ // from* methods on which they depend.
-/**
- * A cache of the Long representations of small integer values.
- * @type {!Object}
- * @private
- */
-goog.math.Long.IntCache_ = {};
+ /**
+ * A cache of the Long representations of small integer values.
+ * @type {!Object}
+ * @private
+ */
+ goog.math.Long.IntCache_ = {};
-/**
- * Returns a Long representing the given (32-bit) integer value.
- * @param {number} value The 32-bit integer in question.
- * @return {!goog.math.Long} The corresponding Long value.
- */
-goog.math.Long.fromInt = function(value) {
- if (-128 <= value && value < 128) {
- var cachedObj = goog.math.Long.IntCache_[value];
- if (cachedObj) {
- return cachedObj;
+ /**
+ * Returns a Long representing the given (32-bit) integer value.
+ * @param {number} value The 32-bit integer in question.
+ * @return {!goog.math.Long} The corresponding Long value.
+ */
+ goog.math.Long.fromInt = function(value) {
+ if (-128 <= value && value < 128) {
+ var cachedObj = goog.math.Long.IntCache_[value];
+ if (cachedObj) {
+ return cachedObj;
+ }
}
- }
- var obj = new goog.math.Long(value | 0, value < 0 ? -1 : 0);
- if (-128 <= value && value < 128) {
- goog.math.Long.IntCache_[value] = obj;
- }
- return obj;
-};
+ var obj = new goog.math.Long(value | 0, value < 0 ? -1 : 0);
+ if (-128 <= value && value < 128) {
+ goog.math.Long.IntCache_[value] = obj;
+ }
+ return obj;
+ };
-/**
- * Returns a Long representing the given value, provided that it is a finite
- * number. Otherwise, zero is returned.
- * @param {number} value The number in question.
- * @return {!goog.math.Long} The corresponding Long value.
- */
-goog.math.Long.fromNumber = function(value) {
- if (isNaN(value) || !isFinite(value)) {
- return goog.math.Long.ZERO;
- } else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) {
- return goog.math.Long.MIN_VALUE;
- } else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) {
- return goog.math.Long.MAX_VALUE;
- } else if (value < 0) {
- return goog.math.Long.fromNumber(-value).negate();
- } else {
- return new goog.math.Long(
- (value % goog.math.Long.TWO_PWR_32_DBL_) | 0,
- (value / goog.math.Long.TWO_PWR_32_DBL_) | 0);
- }
-};
+ /**
+ * Returns a Long representing the given value, provided that it is a finite
+ * number. Otherwise, zero is returned.
+ * @param {number} value The number in question.
+ * @return {!goog.math.Long} The corresponding Long value.
+ */
+ goog.math.Long.fromNumber = function(value) {
+ if (isNaN(value) || !isFinite(value)) {
+ return goog.math.Long.ZERO;
+ } else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) {
+ return goog.math.Long.MIN_VALUE;
+ } else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) {
+ return goog.math.Long.MAX_VALUE;
+ } else if (value < 0) {
+ return goog.math.Long.fromNumber(-value).negate();
+ } else {
+ return new goog.math.Long(
+ (value % goog.math.Long.TWO_PWR_32_DBL_) | 0,
+ (value / goog.math.Long.TWO_PWR_32_DBL_) | 0);
+ }
+ };
-/**
- * Returns a Long representing the 64-bit integer that comes by concatenating
- * the given high and low bits. Each is assumed to use 32 bits.
- * @param {number} lowBits The low 32-bits.
- * @param {number} highBits The high 32-bits.
- * @return {!goog.math.Long} The corresponding Long value.
- */
-goog.math.Long.fromBits = function(lowBits, highBits) {
- return new goog.math.Long(lowBits, highBits);
-};
+ /**
+ * Returns a Long representing the 64-bit integer that comes by concatenating
+ * the given high and low bits. Each is assumed to use 32 bits.
+ * @param {number} lowBits The low 32-bits.
+ * @param {number} highBits The high 32-bits.
+ * @return {!goog.math.Long} The corresponding Long value.
+ */
+ goog.math.Long.fromBits = function(lowBits, highBits) {
+ return new goog.math.Long(lowBits, highBits);
+ };
-/**
- * Returns a Long representation of the given string, written using the given
- * radix.
- * @param {string} str The textual representation of the Long.
- * @param {number=} opt_radix The radix in which the text is written.
- * @return {!goog.math.Long} The corresponding Long value.
- */
-goog.math.Long.fromString = function(str, opt_radix) {
- if (str.length == 0) {
- throw Error('number format error: empty string');
- }
+ /**
+ * Returns a Long representation of the given string, written using the given
+ * radix.
+ * @param {string} str The textual representation of the Long.
+ * @param {number=} opt_radix The radix in which the text is written.
+ * @return {!goog.math.Long} The corresponding Long value.
+ */
+ goog.math.Long.fromString = function(str, opt_radix) {
+ if (str.length == 0) {
+ throw Error('number format error: empty string');
+ }
- var radix = opt_radix || 10;
- if (radix < 2 || 36 < radix) {
- throw Error('radix out of range: ' + radix);
- }
+ var radix = opt_radix || 10;
+ if (radix < 2 || 36 < radix) {
+ throw Error('radix out of range: ' + radix);
+ }
- if (str.charAt(0) == '-') {
- return goog.math.Long.fromString(str.substring(1), radix).negate();
- } else if (str.indexOf('-') >= 0) {
- throw Error('number format error: interior "-" character: ' + str);
- }
+ if (str.charAt(0) == '-') {
+ return goog.math.Long.fromString(str.substring(1), radix).negate();
+ } else if (str.indexOf('-') >= 0) {
+ throw Error('number format error: interior "-" character: ' + str);
+ }
- // Do several (8) digits each time through the loop, so as to
- // minimize the calls to the very expensive emulated div.
- var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8));
-
- var result = goog.math.Long.ZERO;
- for (var i = 0; i < str.length; i += 8) {
- var size = Math.min(8, str.length - i);
- var value = parseInt(str.substring(i, i + size), radix);
- if (size < 8) {
- var power = goog.math.Long.fromNumber(Math.pow(radix, size));
- result = result.multiply(power).add(goog.math.Long.fromNumber(value));
- } else {
- result = result.multiply(radixToPower);
- result = result.add(goog.math.Long.fromNumber(value));
+ // Do several (8) digits each time through the loop, so as to
+ // minimize the calls to the very expensive emulated div.
+ var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8));
+
+ var result = goog.math.Long.ZERO;
+ for (var i = 0; i < str.length; i += 8) {
+ var size = Math.min(8, str.length - i);
+ var value = parseInt(str.substring(i, i + size), radix);
+ if (size < 8) {
+ var power = goog.math.Long.fromNumber(Math.pow(radix, size));
+ result = result.multiply(power).add(goog.math.Long.fromNumber(value));
+ } else {
+ result = result.multiply(radixToPower);
+ result = result.add(goog.math.Long.fromNumber(value));
+ }
}
- }
- return result;
-};
+ return result;
+ };
-// NOTE: the compiler should inline these constant values below and then remove
-// these variables, so there should be no runtime penalty for these.
+ // NOTE: the compiler should inline these constant values below and then remove
+ // these variables, so there should be no runtime penalty for these.
-/**
- * Number used repeated below in calculations. This must appear before the
- * first call to any from* function below.
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16;
+ /**
+ * Number used repeated below in calculations. This must appear before the
+ * first call to any from* function below.
+ * @type {number}
+ * @private
+ */
+ goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16;
-/**
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_24_DBL_ = 1 << 24;
+ /**
+ * @type {number}
+ * @private
+ */
+ goog.math.Long.TWO_PWR_24_DBL_ = 1 << 24;
-/**
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_32_DBL_ =
- goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
+ /**
+ * @type {number}
+ * @private
+ */
+ goog.math.Long.TWO_PWR_32_DBL_ =
+ goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
-/**
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_31_DBL_ =
- goog.math.Long.TWO_PWR_32_DBL_ / 2;
+ /**
+ * @type {number}
+ * @private
+ */
+ goog.math.Long.TWO_PWR_31_DBL_ =
+ goog.math.Long.TWO_PWR_32_DBL_ / 2;
-/**
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_48_DBL_ =
- goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
+ /**
+ * @type {number}
+ * @private
+ */
+ goog.math.Long.TWO_PWR_48_DBL_ =
+ goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
-/**
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_64_DBL_ =
- goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_;
+ /**
+ * @type {number}
+ * @private
+ */
+ goog.math.Long.TWO_PWR_64_DBL_ =
+ goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_;
-/**
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_63_DBL_ =
- goog.math.Long.TWO_PWR_64_DBL_ / 2;
+ /**
+ * @type {number}
+ * @private
+ */
+ goog.math.Long.TWO_PWR_63_DBL_ =
+ goog.math.Long.TWO_PWR_64_DBL_ / 2;
-/** @type {!goog.math.Long} */
-goog.math.Long.ZERO = goog.math.Long.fromInt(0);
+ /** @type {!goog.math.Long} */
+ goog.math.Long.ZERO = goog.math.Long.fromInt(0);
-/** @type {!goog.math.Long} */
-goog.math.Long.ONE = goog.math.Long.fromInt(1);
+ /** @type {!goog.math.Long} */
+ goog.math.Long.ONE = goog.math.Long.fromInt(1);
-/** @type {!goog.math.Long} */
-goog.math.Long.NEG_ONE = goog.math.Long.fromInt(-1);
+ /** @type {!goog.math.Long} */
+ goog.math.Long.NEG_ONE = goog.math.Long.fromInt(-1);
-/** @type {!goog.math.Long} */
-goog.math.Long.MAX_VALUE =
- goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0);
+ /** @type {!goog.math.Long} */
+ goog.math.Long.MAX_VALUE =
+ goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0);
-/** @type {!goog.math.Long} */
-goog.math.Long.MIN_VALUE = goog.math.Long.fromBits(0, 0x80000000 | 0);
+ /** @type {!goog.math.Long} */
+ goog.math.Long.MIN_VALUE = goog.math.Long.fromBits(0, 0x80000000 | 0);
-/**
- * @type {!goog.math.Long}
- * @private
- */
-goog.math.Long.TWO_PWR_24_ = goog.math.Long.fromInt(1 << 24);
+ /**
+ * @type {!goog.math.Long}
+ * @private
+ */
+ goog.math.Long.TWO_PWR_24_ = goog.math.Long.fromInt(1 << 24);
-/** @return {number} The value, assuming it is a 32-bit integer. */
-goog.math.Long.prototype.toInt = function() {
- return this.low_;
-};
+ /** @return {number} The value, assuming it is a 32-bit integer. */
+ goog.math.Long.prototype.toInt = function() {
+ return this.low_;
+ };
-/** @return {number} The closest floating-point representation to this value. */
-goog.math.Long.prototype.toNumber = function() {
- return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ +
- this.getLowBitsUnsigned();
-};
+ /** @return {number} The closest floating-point representation to this value. */
+ goog.math.Long.prototype.toNumber = function() {
+ return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ +
+ this.getLowBitsUnsigned();
+ };
-/**
- * @param {number=} opt_radix The radix in which the text should be written.
- * @return {string} The textual representation of this value.
- */
-goog.math.Long.prototype.toString = function(opt_radix) {
- var radix = opt_radix || 10;
- if (radix < 2 || 36 < radix) {
- throw Error('radix out of range: ' + radix);
- }
+ /**
+ * @param {number=} opt_radix The radix in which the text should be written.
+ * @return {string} The textual representation of this value.
+ */
+ goog.math.Long.prototype.toString = function(opt_radix) {
+ var radix = opt_radix || 10;
+ if (radix < 2 || 36 < radix) {
+ throw Error('radix out of range: ' + radix);
+ }
- if (this.isZero()) {
- return '0';
- }
+ if (this.isZero()) {
+ return '0';
+ }
- if (this.isNegative()) {
- if (this.equals(goog.math.Long.MIN_VALUE)) {
- // We need to change the Long value before it can be negated, so we remove
- // the bottom-most digit in this base and then recurse to do the rest.
- var radixLong = goog.math.Long.fromNumber(radix);
- var div = this.div(radixLong);
- var rem = div.multiply(radixLong).subtract(this);
- return div.toString(radix) + rem.toInt().toString(radix);
- } else {
- return '-' + this.negate().toString(radix);
+ if (this.isNegative()) {
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ // We need to change the Long value before it can be negated, so we remove
+ // the bottom-most digit in this base and then recurse to do the rest.
+ var radixLong = goog.math.Long.fromNumber(radix);
+ var div = this.div(radixLong);
+ var rem = div.multiply(radixLong).subtract(this);
+ return div.toString(radix) + rem.toInt().toString(radix);
+ } else {
+ return '-' + this.negate().toString(radix);
+ }
}
- }
- // Do several (6) digits each time through the loop, so as to
- // minimize the calls to the very expensive emulated div.
- var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6));
+ // Do several (6) digits each time through the loop, so as to
+ // minimize the calls to the very expensive emulated div.
+ var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6));
- var rem = this;
- var result = '';
- while (true) {
- var remDiv = rem.div(radixToPower);
- var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt();
- var digits = intval.toString(radix);
+ var rem = this;
+ var result = '';
+ while (true) {
+ var remDiv = rem.div(radixToPower);
+ var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt();
+ var digits = intval.toString(radix);
- rem = remDiv;
- if (rem.isZero()) {
- return digits + result;
- } else {
- while (digits.length < 6) {
- digits = '0' + digits;
+ rem = remDiv;
+ if (rem.isZero()) {
+ return digits + result;
+ } else {
+ while (digits.length < 6) {
+ digits = '0' + digits;
+ }
+ result = '' + digits + result;
}
- result = '' + digits + result;
}
- }
-};
+ };
-/** @return {number} The high 32-bits as a signed value. */
-goog.math.Long.prototype.getHighBits = function() {
- return this.high_;
-};
+ /** @return {number} The high 32-bits as a signed value. */
+ goog.math.Long.prototype.getHighBits = function() {
+ return this.high_;
+ };
-/** @return {number} The low 32-bits as a signed value. */
-goog.math.Long.prototype.getLowBits = function() {
- return this.low_;
-};
+ /** @return {number} The low 32-bits as a signed value. */
+ goog.math.Long.prototype.getLowBits = function() {
+ return this.low_;
+ };
-/** @return {number} The low 32-bits as an unsigned value. */
-goog.math.Long.prototype.getLowBitsUnsigned = function() {
- return (this.low_ >= 0) ?
- this.low_ : goog.math.Long.TWO_PWR_32_DBL_ + this.low_;
-};
+ /** @return {number} The low 32-bits as an unsigned value. */
+ goog.math.Long.prototype.getLowBitsUnsigned = function() {
+ return (this.low_ >= 0) ?
+ this.low_ : goog.math.Long.TWO_PWR_32_DBL_ + this.low_;
+ };
-/**
- * @return {number} Returns the number of bits needed to represent the absolute
- * value of this Long.
- */
-goog.math.Long.prototype.getNumBitsAbs = function() {
- if (this.isNegative()) {
- if (this.equals(goog.math.Long.MIN_VALUE)) {
- return 64;
+ /**
+ * @return {number} Returns the number of bits needed to represent the absolute
+ * value of this Long.
+ */
+ goog.math.Long.prototype.getNumBitsAbs = function() {
+ if (this.isNegative()) {
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ return 64;
+ } else {
+ return this.negate().getNumBitsAbs();
+ }
} else {
- return this.negate().getNumBitsAbs();
- }
- } else {
- var val = this.high_ != 0 ? this.high_ : this.low_;
- for (var bit = 31; bit > 0; bit--) {
- if ((val & (1 << bit)) != 0) {
- break;
+ var val = this.high_ != 0 ? this.high_ : this.low_;
+ for (var bit = 31; bit > 0; bit--) {
+ if ((val & (1 << bit)) != 0) {
+ break;
+ }
}
+ return this.high_ != 0 ? bit + 33 : bit + 1;
}
- return this.high_ != 0 ? bit + 33 : bit + 1;
- }
-};
+ };
-/** @return {boolean} Whether this value is zero. */
-goog.math.Long.prototype.isZero = function() {
- return this.high_ == 0 && this.low_ == 0;
-};
+ /** @return {boolean} Whether this value is zero. */
+ goog.math.Long.prototype.isZero = function() {
+ return this.high_ == 0 && this.low_ == 0;
+ };
-/** @return {boolean} Whether this value is negative. */
-goog.math.Long.prototype.isNegative = function() {
- return this.high_ < 0;
-};
+ /** @return {boolean} Whether this value is negative. */
+ goog.math.Long.prototype.isNegative = function() {
+ return this.high_ < 0;
+ };
-/** @return {boolean} Whether this value is odd. */
-goog.math.Long.prototype.isOdd = function() {
- return (this.low_ & 1) == 1;
-};
+ /** @return {boolean} Whether this value is odd. */
+ goog.math.Long.prototype.isOdd = function() {
+ return (this.low_ & 1) == 1;
+ };
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long equals the other.
- */
-goog.math.Long.prototype.equals = function(other) {
- return (this.high_ == other.high_) && (this.low_ == other.low_);
-};
+ /**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long equals the other.
+ */
+ goog.math.Long.prototype.equals = function(other) {
+ return (this.high_ == other.high_) && (this.low_ == other.low_);
+ };
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long does not equal the other.
- */
-goog.math.Long.prototype.notEquals = function(other) {
- return (this.high_ != other.high_) || (this.low_ != other.low_);
-};
+ /**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long does not equal the other.
+ */
+ goog.math.Long.prototype.notEquals = function(other) {
+ return (this.high_ != other.high_) || (this.low_ != other.low_);
+ };
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long is less than the other.
- */
-goog.math.Long.prototype.lessThan = function(other) {
- return this.compare(other) < 0;
-};
+ /**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is less than the other.
+ */
+ goog.math.Long.prototype.lessThan = function(other) {
+ return this.compare(other) < 0;
+ };
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long is less than or equal to the other.
- */
-goog.math.Long.prototype.lessThanOrEqual = function(other) {
- return this.compare(other) <= 0;
-};
+ /**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is less than or equal to the other.
+ */
+ goog.math.Long.prototype.lessThanOrEqual = function(other) {
+ return this.compare(other) <= 0;
+ };
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long is greater than the other.
- */
-goog.math.Long.prototype.greaterThan = function(other) {
- return this.compare(other) > 0;
-};
+ /**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is greater than the other.
+ */
+ goog.math.Long.prototype.greaterThan = function(other) {
+ return this.compare(other) > 0;
+ };
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long is greater than or equal to the other.
- */
-goog.math.Long.prototype.greaterThanOrEqual = function(other) {
- return this.compare(other) >= 0;
-};
+ /**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is greater than or equal to the other.
+ */
+ goog.math.Long.prototype.greaterThanOrEqual = function(other) {
+ return this.compare(other) >= 0;
+ };
-/**
- * Compares this Long with the given one.
- * @param {goog.math.Long} other Long to compare against.
- * @return {number} 0 if they are the same, 1 if the this is greater, and -1
- * if the given one is greater.
- */
-goog.math.Long.prototype.compare = function(other) {
- if (this.equals(other)) {
- return 0;
- }
+ /**
+ * Compares this Long with the given one.
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {number} 0 if they are the same, 1 if the this is greater, and -1
+ * if the given one is greater.
+ */
+ goog.math.Long.prototype.compare = function(other) {
+ if (this.equals(other)) {
+ return 0;
+ }
- var thisNeg = this.isNegative();
- var otherNeg = other.isNegative();
- if (thisNeg && !otherNeg) {
- return -1;
- }
- if (!thisNeg && otherNeg) {
- return 1;
- }
+ var thisNeg = this.isNegative();
+ var otherNeg = other.isNegative();
+ if (thisNeg && !otherNeg) {
+ return -1;
+ }
+ if (!thisNeg && otherNeg) {
+ return 1;
+ }
- // at this point, the signs are the same, so subtraction will not overflow
- if (this.subtract(other).isNegative()) {
- return -1;
- } else {
- return 1;
- }
-};
+ // at this point, the signs are the same, so subtraction will not overflow
+ if (this.subtract(other).isNegative()) {
+ return -1;
+ } else {
+ return 1;
+ }
+ };
-/** @return {!goog.math.Long} The negation of this value. */
-goog.math.Long.prototype.negate = function() {
- if (this.equals(goog.math.Long.MIN_VALUE)) {
- return goog.math.Long.MIN_VALUE;
- } else {
- return this.not().add(goog.math.Long.ONE);
- }
-};
+ /** @return {!goog.math.Long} The negation of this value. */
+ goog.math.Long.prototype.negate = function() {
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ return goog.math.Long.MIN_VALUE;
+ } else {
+ return this.not().add(goog.math.Long.ONE);
+ }
+ };
-/**
- * Returns the sum of this and the given Long.
- * @param {goog.math.Long} other Long to add to this one.
- * @return {!goog.math.Long} The sum of this and the given Long.
- */
-goog.math.Long.prototype.add = function(other) {
- // Divide each number into 4 chunks of 16 bits, and then sum the chunks.
-
- var a48 = this.high_ >>> 16;
- var a32 = this.high_ & 0xFFFF;
- var a16 = this.low_ >>> 16;
- var a00 = this.low_ & 0xFFFF;
-
- var b48 = other.high_ >>> 16;
- var b32 = other.high_ & 0xFFFF;
- var b16 = other.low_ >>> 16;
- var b00 = other.low_ & 0xFFFF;
-
- var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
- c00 += a00 + b00;
- c16 += c00 >>> 16;
- c00 &= 0xFFFF;
- c16 += a16 + b16;
- c32 += c16 >>> 16;
- c16 &= 0xFFFF;
- c32 += a32 + b32;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c48 += a48 + b48;
- c48 &= 0xFFFF;
- return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
-};
+ /**
+ * Returns the sum of this and the given Long.
+ * @param {goog.math.Long} other Long to add to this one.
+ * @return {!goog.math.Long} The sum of this and the given Long.
+ */
+ goog.math.Long.prototype.add = function(other) {
+ // Divide each number into 4 chunks of 16 bits, and then sum the chunks.
+
+ var a48 = this.high_ >>> 16;
+ var a32 = this.high_ & 0xFFFF;
+ var a16 = this.low_ >>> 16;
+ var a00 = this.low_ & 0xFFFF;
+
+ var b48 = other.high_ >>> 16;
+ var b32 = other.high_ & 0xFFFF;
+ var b16 = other.low_ >>> 16;
+ var b00 = other.low_ & 0xFFFF;
+
+ var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
+ c00 += a00 + b00;
+ c16 += c00 >>> 16;
+ c00 &= 0xFFFF;
+ c16 += a16 + b16;
+ c32 += c16 >>> 16;
+ c16 &= 0xFFFF;
+ c32 += a32 + b32;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c48 += a48 + b48;
+ c48 &= 0xFFFF;
+ return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
+ };
-/**
- * Returns the difference of this and the given Long.
- * @param {goog.math.Long} other Long to subtract from this.
- * @return {!goog.math.Long} The difference of this and the given Long.
- */
-goog.math.Long.prototype.subtract = function(other) {
- return this.add(other.negate());
-};
+ /**
+ * Returns the difference of this and the given Long.
+ * @param {goog.math.Long} other Long to subtract from this.
+ * @return {!goog.math.Long} The difference of this and the given Long.
+ */
+ goog.math.Long.prototype.subtract = function(other) {
+ return this.add(other.negate());
+ };
-/**
- * Returns the product of this and the given long.
- * @param {goog.math.Long} other Long to multiply with this.
- * @return {!goog.math.Long} The product of this and the other.
- */
-goog.math.Long.prototype.multiply = function(other) {
- if (this.isZero()) {
- return goog.math.Long.ZERO;
- } else if (other.isZero()) {
- return goog.math.Long.ZERO;
- }
+ /**
+ * Returns the product of this and the given long.
+ * @param {goog.math.Long} other Long to multiply with this.
+ * @return {!goog.math.Long} The product of this and the other.
+ */
+ goog.math.Long.prototype.multiply = function(other) {
+ if (this.isZero()) {
+ return goog.math.Long.ZERO;
+ } else if (other.isZero()) {
+ return goog.math.Long.ZERO;
+ }
- if (this.equals(goog.math.Long.MIN_VALUE)) {
- return other.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO;
- } else if (other.equals(goog.math.Long.MIN_VALUE)) {
- return this.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO;
- }
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ return other.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO;
+ } else if (other.equals(goog.math.Long.MIN_VALUE)) {
+ return this.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO;
+ }
- if (this.isNegative()) {
- if (other.isNegative()) {
- return this.negate().multiply(other.negate());
- } else {
- return this.negate().multiply(other).negate();
+ if (this.isNegative()) {
+ if (other.isNegative()) {
+ return this.negate().multiply(other.negate());
+ } else {
+ return this.negate().multiply(other).negate();
+ }
+ } else if (other.isNegative()) {
+ return this.multiply(other.negate()).negate();
}
- } else if (other.isNegative()) {
- return this.multiply(other.negate()).negate();
- }
- // If both longs are small, use float multiplication
- if (this.lessThan(goog.math.Long.TWO_PWR_24_) &&
- other.lessThan(goog.math.Long.TWO_PWR_24_)) {
- return goog.math.Long.fromNumber(this.toNumber() * other.toNumber());
- }
+ // If both longs are small, use float multiplication
+ if (this.lessThan(goog.math.Long.TWO_PWR_24_) &&
+ other.lessThan(goog.math.Long.TWO_PWR_24_)) {
+ return goog.math.Long.fromNumber(this.toNumber() * other.toNumber());
+ }
- // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
- // We can skip products that would overflow.
-
- var a48 = this.high_ >>> 16;
- var a32 = this.high_ & 0xFFFF;
- var a16 = this.low_ >>> 16;
- var a00 = this.low_ & 0xFFFF;
-
- var b48 = other.high_ >>> 16;
- var b32 = other.high_ & 0xFFFF;
- var b16 = other.low_ >>> 16;
- var b00 = other.low_ & 0xFFFF;
-
- var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
- c00 += a00 * b00;
- c16 += c00 >>> 16;
- c00 &= 0xFFFF;
- c16 += a16 * b00;
- c32 += c16 >>> 16;
- c16 &= 0xFFFF;
- c16 += a00 * b16;
- c32 += c16 >>> 16;
- c16 &= 0xFFFF;
- c32 += a32 * b00;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c32 += a16 * b16;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c32 += a00 * b32;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
- c48 &= 0xFFFF;
- return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
-};
+ // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
+ // We can skip products that would overflow.
+
+ var a48 = this.high_ >>> 16;
+ var a32 = this.high_ & 0xFFFF;
+ var a16 = this.low_ >>> 16;
+ var a00 = this.low_ & 0xFFFF;
+
+ var b48 = other.high_ >>> 16;
+ var b32 = other.high_ & 0xFFFF;
+ var b16 = other.low_ >>> 16;
+ var b00 = other.low_ & 0xFFFF;
+
+ var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
+ c00 += a00 * b00;
+ c16 += c00 >>> 16;
+ c00 &= 0xFFFF;
+ c16 += a16 * b00;
+ c32 += c16 >>> 16;
+ c16 &= 0xFFFF;
+ c16 += a00 * b16;
+ c32 += c16 >>> 16;
+ c16 &= 0xFFFF;
+ c32 += a32 * b00;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c32 += a16 * b16;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c32 += a00 * b32;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
+ c48 &= 0xFFFF;
+ return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
+ };
-/**
- * Returns this Long divided by the given one.
- * @param {goog.math.Long} other Long by which to divide.
- * @return {!goog.math.Long} This Long divided by the given one.
- */
-goog.math.Long.prototype.div = function(other) {
- if (other.isZero()) {
- throw Error('division by zero');
- } else if (this.isZero()) {
- return goog.math.Long.ZERO;
- }
+ /**
+ * Returns this Long divided by the given one.
+ * @param {goog.math.Long} other Long by which to divide.
+ * @return {!goog.math.Long} This Long divided by the given one.
+ */
+ goog.math.Long.prototype.div = function(other) {
+ if (other.isZero()) {
+ throw Error('division by zero');
+ } else if (this.isZero()) {
+ return goog.math.Long.ZERO;
+ }
- if (this.equals(goog.math.Long.MIN_VALUE)) {
- if (other.equals(goog.math.Long.ONE) ||
- other.equals(goog.math.Long.NEG_ONE)) {
- return goog.math.Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE
- } else if (other.equals(goog.math.Long.MIN_VALUE)) {
- return goog.math.Long.ONE;
- } else {
- // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
- var halfThis = this.shiftRight(1);
- var approx = halfThis.div(other).shiftLeft(1);
- if (approx.equals(goog.math.Long.ZERO)) {
- return other.isNegative() ? goog.math.Long.ONE : goog.math.Long.NEG_ONE;
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ if (other.equals(goog.math.Long.ONE) ||
+ other.equals(goog.math.Long.NEG_ONE)) {
+ return goog.math.Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE
+ } else if (other.equals(goog.math.Long.MIN_VALUE)) {
+ return goog.math.Long.ONE;
} else {
- var rem = this.subtract(other.multiply(approx));
- var result = approx.add(rem.div(other));
- return result;
+ // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
+ var halfThis = this.shiftRight(1);
+ var approx = halfThis.div(other).shiftLeft(1);
+ if (approx.equals(goog.math.Long.ZERO)) {
+ return other.isNegative() ? goog.math.Long.ONE : goog.math.Long.NEG_ONE;
+ } else {
+ var rem = this.subtract(other.multiply(approx));
+ var result = approx.add(rem.div(other));
+ return result;
+ }
}
+ } else if (other.equals(goog.math.Long.MIN_VALUE)) {
+ return goog.math.Long.ZERO;
}
- } else if (other.equals(goog.math.Long.MIN_VALUE)) {
- return goog.math.Long.ZERO;
- }
- if (this.isNegative()) {
- if (other.isNegative()) {
- return this.negate().div(other.negate());
- } else {
- return this.negate().div(other).negate();
+ if (this.isNegative()) {
+ if (other.isNegative()) {
+ return this.negate().div(other.negate());
+ } else {
+ return this.negate().div(other).negate();
+ }
+ } else if (other.isNegative()) {
+ return this.div(other.negate()).negate();
}
- } else if (other.isNegative()) {
- return this.div(other.negate()).negate();
- }
- // Repeat the following until the remainder is less than other: find a
- // floating-point that approximates remainder / other *from below*, add this
- // into the result, and subtract it from the remainder. It is critical that
- // the approximate value is less than or equal to the real value so that the
- // remainder never becomes negative.
- var res = goog.math.Long.ZERO;
- var rem = this;
- while (rem.greaterThanOrEqual(other)) {
- // Approximate the result of division. This may be a little greater or
- // smaller than the actual value.
- var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
-
- // We will tweak the approximate result by changing it in the 48-th digit or
- // the smallest non-fractional digit, whichever is larger.
- var log2 = Math.ceil(Math.log(approx) / Math.LN2);
- var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
-
- // Decrease the approximation until it is smaller than the remainder. Note
- // that if it is too large, the product overflows and is negative.
- var approxRes = goog.math.Long.fromNumber(approx);
- var approxRem = approxRes.multiply(other);
- while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
- approx -= delta;
- approxRes = goog.math.Long.fromNumber(approx);
- approxRem = approxRes.multiply(other);
- }
+ // Repeat the following until the remainder is less than other: find a
+ // floating-point that approximates remainder / other *from below*, add this
+ // into the result, and subtract it from the remainder. It is critical that
+ // the approximate value is less than or equal to the real value so that the
+ // remainder never becomes negative.
+ var res = goog.math.Long.ZERO;
+ var rem = this;
+ while (rem.greaterThanOrEqual(other)) {
+ // Approximate the result of division. This may be a little greater or
+ // smaller than the actual value.
+ var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
+
+ // We will tweak the approximate result by changing it in the 48-th digit or
+ // the smallest non-fractional digit, whichever is larger.
+ var log2 = Math.ceil(Math.log(approx) / Math.LN2);
+ var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
+
+ // Decrease the approximation until it is smaller than the remainder. Note
+ // that if it is too large, the product overflows and is negative.
+ var approxRes = goog.math.Long.fromNumber(approx);
+ var approxRem = approxRes.multiply(other);
+ while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
+ approx -= delta;
+ approxRes = goog.math.Long.fromNumber(approx);
+ approxRem = approxRes.multiply(other);
+ }
- // We know the answer can't be zero... and actually, zero would cause
- // infinite recursion since we would make no progress.
- if (approxRes.isZero()) {
- approxRes = goog.math.Long.ONE;
- }
+ // We know the answer can't be zero... and actually, zero would cause
+ // infinite recursion since we would make no progress.
+ if (approxRes.isZero()) {
+ approxRes = goog.math.Long.ONE;
+ }
- res = res.add(approxRes);
- rem = rem.subtract(approxRem);
- }
- return res;
-};
+ res = res.add(approxRes);
+ rem = rem.subtract(approxRem);
+ }
+ return res;
+ };
-/**
- * Returns this Long modulo the given one.
- * @param {goog.math.Long} other Long by which to mod.
- * @return {!goog.math.Long} This Long modulo the given one.
- */
-goog.math.Long.prototype.modulo = function(other) {
- return this.subtract(this.div(other).multiply(other));
-};
+ /**
+ * Returns this Long modulo the given one.
+ * @param {goog.math.Long} other Long by which to mod.
+ * @return {!goog.math.Long} This Long modulo the given one.
+ */
+ goog.math.Long.prototype.modulo = function(other) {
+ return this.subtract(this.div(other).multiply(other));
+ };
-/** @return {!goog.math.Long} The bitwise-NOT of this value. */
-goog.math.Long.prototype.not = function() {
- return goog.math.Long.fromBits(~this.low_, ~this.high_);
-};
+ /** @return {!goog.math.Long} The bitwise-NOT of this value. */
+ goog.math.Long.prototype.not = function() {
+ return goog.math.Long.fromBits(~this.low_, ~this.high_);
+ };
-/**
- * Returns the bitwise-AND of this Long and the given one.
- * @param {goog.math.Long} other The Long with which to AND.
- * @return {!goog.math.Long} The bitwise-AND of this and the other.
- */
-goog.math.Long.prototype.and = function(other) {
- return goog.math.Long.fromBits(this.low_ & other.low_,
- this.high_ & other.high_);
-};
+ /**
+ * Returns the bitwise-AND of this Long and the given one.
+ * @param {goog.math.Long} other The Long with which to AND.
+ * @return {!goog.math.Long} The bitwise-AND of this and the other.
+ */
+ goog.math.Long.prototype.and = function(other) {
+ return goog.math.Long.fromBits(this.low_ & other.low_,
+ this.high_ & other.high_);
+ };
-/**
- * Returns the bitwise-OR of this Long and the given one.
- * @param {goog.math.Long} other The Long with which to OR.
- * @return {!goog.math.Long} The bitwise-OR of this and the other.
- */
-goog.math.Long.prototype.or = function(other) {
- return goog.math.Long.fromBits(this.low_ | other.low_,
- this.high_ | other.high_);
-};
+ /**
+ * Returns the bitwise-OR of this Long and the given one.
+ * @param {goog.math.Long} other The Long with which to OR.
+ * @return {!goog.math.Long} The bitwise-OR of this and the other.
+ */
+ goog.math.Long.prototype.or = function(other) {
+ return goog.math.Long.fromBits(this.low_ | other.low_,
+ this.high_ | other.high_);
+ };
-/**
- * Returns the bitwise-XOR of this Long and the given one.
- * @param {goog.math.Long} other The Long with which to XOR.
- * @return {!goog.math.Long} The bitwise-XOR of this and the other.
- */
-goog.math.Long.prototype.xor = function(other) {
- return goog.math.Long.fromBits(this.low_ ^ other.low_,
- this.high_ ^ other.high_);
-};
+ /**
+ * Returns the bitwise-XOR of this Long and the given one.
+ * @param {goog.math.Long} other The Long with which to XOR.
+ * @return {!goog.math.Long} The bitwise-XOR of this and the other.
+ */
+ goog.math.Long.prototype.xor = function(other) {
+ return goog.math.Long.fromBits(this.low_ ^ other.low_,
+ this.high_ ^ other.high_);
+ };
-/**
- * Returns this Long with bits shifted to the left by the given amount.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Long} This shifted to the left by the given amount.
- */
-goog.math.Long.prototype.shiftLeft = function(numBits) {
- numBits &= 63;
- if (numBits == 0) {
- return this;
- } else {
- var low = this.low_;
- if (numBits < 32) {
- var high = this.high_;
- return goog.math.Long.fromBits(
- low << numBits,
- (high << numBits) | (low >>> (32 - numBits)));
+ /**
+ * Returns this Long with bits shifted to the left by the given amount.
+ * @param {number} numBits The number of bits by which to shift.
+ * @return {!goog.math.Long} This shifted to the left by the given amount.
+ */
+ goog.math.Long.prototype.shiftLeft = function(numBits) {
+ numBits &= 63;
+ if (numBits == 0) {
+ return this;
} else {
- return goog.math.Long.fromBits(0, low << (numBits - 32));
+ var low = this.low_;
+ if (numBits < 32) {
+ var high = this.high_;
+ return goog.math.Long.fromBits(
+ low << numBits,
+ (high << numBits) | (low >>> (32 - numBits)));
+ } else {
+ return goog.math.Long.fromBits(0, low << (numBits - 32));
+ }
}
- }
-};
+ };
-/**
- * Returns this Long with bits shifted to the right by the given amount.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Long} This shifted to the right by the given amount.
- */
-goog.math.Long.prototype.shiftRight = function(numBits) {
- numBits &= 63;
- if (numBits == 0) {
- return this;
- } else {
- var high = this.high_;
- if (numBits < 32) {
- var low = this.low_;
- return goog.math.Long.fromBits(
- (low >>> numBits) | (high << (32 - numBits)),
- high >> numBits);
+ /**
+ * Returns this Long with bits shifted to the right by the given amount.
+ * @param {number} numBits The number of bits by which to shift.
+ * @return {!goog.math.Long} This shifted to the right by the given amount.
+ */
+ goog.math.Long.prototype.shiftRight = function(numBits) {
+ numBits &= 63;
+ if (numBits == 0) {
+ return this;
} else {
- return goog.math.Long.fromBits(
- high >> (numBits - 32),
- high >= 0 ? 0 : -1);
+ var high = this.high_;
+ if (numBits < 32) {
+ var low = this.low_;
+ return goog.math.Long.fromBits(
+ (low >>> numBits) | (high << (32 - numBits)),
+ high >> numBits);
+ } else {
+ return goog.math.Long.fromBits(
+ high >> (numBits - 32),
+ high >= 0 ? 0 : -1);
+ }
}
- }
-};
+ };
-/**
- * Returns this Long with bits shifted to the right by the given amount, with
- * the new top bits matching the current sign bit.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Long} This shifted to the right by the given amount, with
- * zeros placed into the new leading bits.
- */
-goog.math.Long.prototype.shiftRightUnsigned = function(numBits) {
- numBits &= 63;
- if (numBits == 0) {
- return this;
- } else {
- var high = this.high_;
- if (numBits < 32) {
- var low = this.low_;
- return goog.math.Long.fromBits(
- (low >>> numBits) | (high << (32 - numBits)),
- high >>> numBits);
- } else if (numBits == 32) {
- return goog.math.Long.fromBits(high, 0);
+ /**
+ * Returns this Long with bits shifted to the right by the given amount, with
+ * the new top bits matching the current sign bit.
+ * @param {number} numBits The number of bits by which to shift.
+ * @return {!goog.math.Long} This shifted to the right by the given amount, with
+ * zeros placed into the new leading bits.
+ */
+ goog.math.Long.prototype.shiftRightUnsigned = function(numBits) {
+ numBits &= 63;
+ if (numBits == 0) {
+ return this;
} else {
- return goog.math.Long.fromBits(high >>> (numBits - 32), 0);
+ var high = this.high_;
+ if (numBits < 32) {
+ var low = this.low_;
+ return goog.math.Long.fromBits(
+ (low >>> numBits) | (high << (32 - numBits)),
+ high >>> numBits);
+ } else if (numBits == 32) {
+ return goog.math.Long.fromBits(high, 0);
+ } else {
+ return goog.math.Long.fromBits(high >>> (numBits - 32), 0);
+ }
}
- }
-};
+ };
+
+ //======= begin jsbn =======
+
+ var navigator = { appName: 'Modern Browser' }; // polyfill a little
+
+ // Copyright (c) 2005 Tom Wu
+ // All Rights Reserved.
+ // http://www-cs-students.stanford.edu/~tjw/jsbn/
+
+ /*
+ * Copyright (c) 2003-2005 Tom Wu
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
+ * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
+ *
+ * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
+ * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
+ * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
+ * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
+ * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * In addition, the following condition applies:
+ *
+ * All redistributions must retain an intact copy of this copyright notice
+ * and disclaimer.
+ */
-//======= begin jsbn =======
+ // Basic JavaScript BN library - subset useful for RSA encryption.
-var navigator = { appName: 'Modern Browser' }; // polyfill a little
+ // Bits per digit
+ var dbits;
-// Copyright (c) 2005 Tom Wu
-// All Rights Reserved.
-// http://www-cs-students.stanford.edu/~tjw/jsbn/
+ // JavaScript engine analysis
+ var canary = 0xdeadbeefcafe;
+ var j_lm = ((canary&0xffffff)==0xefcafe);
-/*
- * Copyright (c) 2003-2005 Tom Wu
- * All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining
- * a copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sublicense, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * The above copyright notice and this permission notice shall be
- * included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
- * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- *
- * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
- * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
- * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
- * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
- * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- *
- * In addition, the following condition applies:
- *
- * All redistributions must retain an intact copy of this copyright notice
- * and disclaimer.
- */
+ // (public) Constructor
+ function BigInteger(a,b,c) {
+ if(a != null)
+ if("number" == typeof a) this.fromNumber(a,b,c);
+ else if(b == null && "string" != typeof a) this.fromString(a,256);
+ else this.fromString(a,b);
+ }
+
+ // return new, unset BigInteger
+ function nbi() { return new BigInteger(null); }
+
+ // am: Compute w_j += (x*this_i), propagate carries,
+ // c is initial carry, returns final carry.
+ // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
+ // We need to select the fastest one that works in this environment.
+
+ // am1: use a single mult and divide to get the high bits,
+ // max digit bits should be 26 because
+ // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
+ function am1(i,x,w,j,c,n) {
+ while(--n >= 0) {
+ var v = x*this[i++]+w[j]+c;
+ c = Math.floor(v/0x4000000);
+ w[j++] = v&0x3ffffff;
+ }
+ return c;
+ }
+ // am2 avoids a big mult-and-extract completely.
+ // Max digit bits should be <= 30 because we do bitwise ops
+ // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
+ function am2(i,x,w,j,c,n) {
+ var xl = x&0x7fff, xh = x>>15;
+ while(--n >= 0) {
+ var l = this[i]&0x7fff;
+ var h = this[i++]>>15;
+ var m = xh*l+h*xl;
+ l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
+ c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
+ w[j++] = l&0x3fffffff;
+ }
+ return c;
+ }
+ // Alternately, set max digit bits to 28 since some
+ // browsers slow down when dealing with 32-bit numbers.
+ function am3(i,x,w,j,c,n) {
+ var xl = x&0x3fff, xh = x>>14;
+ while(--n >= 0) {
+ var l = this[i]&0x3fff;
+ var h = this[i++]>>14;
+ var m = xh*l+h*xl;
+ l = xl*l+((m&0x3fff)<<14)+w[j]+c;
+ c = (l>>28)+(m>>14)+xh*h;
+ w[j++] = l&0xfffffff;
+ }
+ return c;
+ }
+ if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
+ BigInteger.prototype.am = am2;
+ dbits = 30;
+ }
+ else if(j_lm && (navigator.appName != "Netscape")) {
+ BigInteger.prototype.am = am1;
+ dbits = 26;
+ }
+ else { // Mozilla/Netscape seems to prefer am3
+ BigInteger.prototype.am = am3;
+ dbits = 28;
+ }
-// Basic JavaScript BN library - subset useful for RSA encryption.
-
-// Bits per digit
-var dbits;
-
-// JavaScript engine analysis
-var canary = 0xdeadbeefcafe;
-var j_lm = ((canary&0xffffff)==0xefcafe);
-
-// (public) Constructor
-function BigInteger(a,b,c) {
- if(a != null)
- if("number" == typeof a) this.fromNumber(a,b,c);
- else if(b == null && "string" != typeof a) this.fromString(a,256);
- else this.fromString(a,b);
-}
-
-// return new, unset BigInteger
-function nbi() { return new BigInteger(null); }
-
-// am: Compute w_j += (x*this_i), propagate carries,
-// c is initial carry, returns final carry.
-// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
-// We need to select the fastest one that works in this environment.
-
-// am1: use a single mult and divide to get the high bits,
-// max digit bits should be 26 because
-// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
-function am1(i,x,w,j,c,n) {
- while(--n >= 0) {
- var v = x*this[i++]+w[j]+c;
- c = Math.floor(v/0x4000000);
- w[j++] = v&0x3ffffff;
+ BigInteger.prototype.DB = dbits;
+ BigInteger.prototype.DM = ((1<<dbits)-1);
+ BigInteger.prototype.DV = (1<<dbits);
+
+ var BI_FP = 52;
+ BigInteger.prototype.FV = Math.pow(2,BI_FP);
+ BigInteger.prototype.F1 = BI_FP-dbits;
+ BigInteger.prototype.F2 = 2*dbits-BI_FP;
+
+ // Digit conversions
+ var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
+ var BI_RC = new Array();
+ var rr,vv;
+ rr = "0".charCodeAt(0);
+ for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
+ rr = "a".charCodeAt(0);
+ for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
+ rr = "A".charCodeAt(0);
+ for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
+
+ function int2char(n) { return BI_RM.charAt(n); }
+ function intAt(s,i) {
+ var c = BI_RC[s.charCodeAt(i)];
+ return (c==null)?-1:c;
}
- return c;
-}
-// am2 avoids a big mult-and-extract completely.
-// Max digit bits should be <= 30 because we do bitwise ops
-// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
-function am2(i,x,w,j,c,n) {
- var xl = x&0x7fff, xh = x>>15;
- while(--n >= 0) {
- var l = this[i]&0x7fff;
- var h = this[i++]>>15;
- var m = xh*l+h*xl;
- l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
- c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
- w[j++] = l&0x3fffffff;
+
+ // (protected) copy this to r
+ function bnpCopyTo(r) {
+ for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
+ r.t = this.t;
+ r.s = this.s;
}
- return c;
-}
-// Alternately, set max digit bits to 28 since some
-// browsers slow down when dealing with 32-bit numbers.
-function am3(i,x,w,j,c,n) {
- var xl = x&0x3fff, xh = x>>14;
- while(--n >= 0) {
- var l = this[i]&0x3fff;
- var h = this[i++]>>14;
- var m = xh*l+h*xl;
- l = xl*l+((m&0x3fff)<<14)+w[j]+c;
- c = (l>>28)+(m>>14)+xh*h;
- w[j++] = l&0xfffffff;
+
+ // (protected) set from integer value x, -DV <= x < DV
+ function bnpFromInt(x) {
+ this.t = 1;
+ this.s = (x<0)?-1:0;
+ if(x > 0) this[0] = x;
+ else if(x < -1) this[0] = x+DV;
+ else this.t = 0;
}
- return c;
-}
-if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
- BigInteger.prototype.am = am2;
- dbits = 30;
-}
-else if(j_lm && (navigator.appName != "Netscape")) {
- BigInteger.prototype.am = am1;
- dbits = 26;
-}
-else { // Mozilla/Netscape seems to prefer am3
- BigInteger.prototype.am = am3;
- dbits = 28;
-}
-
-BigInteger.prototype.DB = dbits;
-BigInteger.prototype.DM = ((1<<dbits)-1);
-BigInteger.prototype.DV = (1<<dbits);
-
-var BI_FP = 52;
-BigInteger.prototype.FV = Math.pow(2,BI_FP);
-BigInteger.prototype.F1 = BI_FP-dbits;
-BigInteger.prototype.F2 = 2*dbits-BI_FP;
-
-// Digit conversions
-var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
-var BI_RC = new Array();
-var rr,vv;
-rr = "0".charCodeAt(0);
-for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
-rr = "a".charCodeAt(0);
-for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
-rr = "A".charCodeAt(0);
-for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
-
-function int2char(n) { return BI_RM.charAt(n); }
-function intAt(s,i) {
- var c = BI_RC[s.charCodeAt(i)];
- return (c==null)?-1:c;
-}
-
-// (protected) copy this to r
-function bnpCopyTo(r) {
- for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
- r.t = this.t;
- r.s = this.s;
-}
-
-// (protected) set from integer value x, -DV <= x < DV
-function bnpFromInt(x) {
- this.t = 1;
- this.s = (x<0)?-1:0;
- if(x > 0) this[0] = x;
- else if(x < -1) this[0] = x+DV;
- else this.t = 0;
-}
-
-// return bigint initialized to value
-function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
-
-// (protected) set from string and radix
-function bnpFromString(s,b) {
- var k;
- if(b == 16) k = 4;
- else if(b == 8) k = 3;
- else if(b == 256) k = 8; // byte array
- else if(b == 2) k = 1;
- else if(b == 32) k = 5;
- else if(b == 4) k = 2;
- else { this.fromRadix(s,b); return; }
- this.t = 0;
- this.s = 0;
- var i = s.length, mi = false, sh = 0;
- while(--i >= 0) {
- var x = (k==8)?s[i]&0xff:intAt(s,i);
- if(x < 0) {
- if(s.charAt(i) == "-") mi = true;
- continue;
+
+ // return bigint initialized to value
+ function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
+
+ // (protected) set from string and radix
+ function bnpFromString(s,b) {
+ var k;
+ if(b == 16) k = 4;
+ else if(b == 8) k = 3;
+ else if(b == 256) k = 8; // byte array
+ else if(b == 2) k = 1;
+ else if(b == 32) k = 5;
+ else if(b == 4) k = 2;
+ else { this.fromRadix(s,b); return; }
+ this.t = 0;
+ this.s = 0;
+ var i = s.length, mi = false, sh = 0;
+ while(--i >= 0) {
+ var x = (k==8)?s[i]&0xff:intAt(s,i);
+ if(x < 0) {
+ if(s.charAt(i) == "-") mi = true;
+ continue;
+ }
+ mi = false;
+ if(sh == 0)
+ this[this.t++] = x;
+ else if(sh+k > this.DB) {
+ this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
+ this[this.t++] = (x>>(this.DB-sh));
+ }
+ else
+ this[this.t-1] |= x<<sh;
+ sh += k;
+ if(sh >= this.DB) sh -= this.DB;
}
- mi = false;
- if(sh == 0)
- this[this.t++] = x;
- else if(sh+k > this.DB) {
- this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
- this[this.t++] = (x>>(this.DB-sh));
+ if(k == 8 && (s[0]&0x80) != 0) {
+ this.s = -1;
+ if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
}
- else
- this[this.t-1] |= x<<sh;
- sh += k;
- if(sh >= this.DB) sh -= this.DB;
+ this.clamp();
+ if(mi) BigInteger.ZERO.subTo(this,this);
}
- if(k == 8 && (s[0]&0x80) != 0) {
- this.s = -1;
- if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
+
+ // (protected) clamp off excess high words
+ function bnpClamp() {
+ var c = this.s&this.DM;
+ while(this.t > 0 && this[this.t-1] == c) --this.t;
}
- this.clamp();
- if(mi) BigInteger.ZERO.subTo(this,this);
-}
-
-// (protected) clamp off excess high words
-function bnpClamp() {
- var c = this.s&this.DM;
- while(this.t > 0 && this[this.t-1] == c) --this.t;
-}
-
-// (public) return string representation in given radix
-function bnToString(b) {
- if(this.s < 0) return "-"+this.negate().toString(b);
- var k;
- if(b == 16) k = 4;
- else if(b == 8) k = 3;
- else if(b == 2) k = 1;
- else if(b == 32) k = 5;
- else if(b == 4) k = 2;
- else return this.toRadix(b);
- var km = (1<<k)-1, d, m = false, r = "", i = this.t;
- var p = this.DB-(i*this.DB)%k;
- if(i-- > 0) {
- if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
- while(i >= 0) {
- if(p < k) {
- d = (this[i]&((1<<p)-1))<<(k-p);
- d |= this[--i]>>(p+=this.DB-k);
- }
- else {
- d = (this[i]>>(p-=k))&km;
- if(p <= 0) { p += this.DB; --i; }
+
+ // (public) return string representation in given radix
+ function bnToString(b) {
+ if(this.s < 0) return "-"+this.negate().toString(b);
+ var k;
+ if(b == 16) k = 4;
+ else if(b == 8) k = 3;
+ else if(b == 2) k = 1;
+ else if(b == 32) k = 5;
+ else if(b == 4) k = 2;
+ else return this.toRadix(b);
+ var km = (1<<k)-1, d, m = false, r = "", i = this.t;
+ var p = this.DB-(i*this.DB)%k;
+ if(i-- > 0) {
+ if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
+ while(i >= 0) {
+ if(p < k) {
+ d = (this[i]&((1<<p)-1))<<(k-p);
+ d |= this[--i]>>(p+=this.DB-k);
+ }
+ else {
+ d = (this[i]>>(p-=k))&km;
+ if(p <= 0) { p += this.DB; --i; }
+ }
+ if(d > 0) m = true;
+ if(m) r += int2char(d);
}
- if(d > 0) m = true;
- if(m) r += int2char(d);
}
+ return m?r:"0";
}
- return m?r:"0";
-}
-
-// (public) -this
-function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
-
-// (public) |this|
-function bnAbs() { return (this.s<0)?this.negate():this; }
-
-// (public) return + if this > a, - if this < a, 0 if equal
-function bnCompareTo(a) {
- var r = this.s-a.s;
- if(r != 0) return r;
- var i = this.t;
- r = i-a.t;
- if(r != 0) return r;
- while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
- return 0;
-}
-
-// returns bit length of the integer x
-function nbits(x) {
- var r = 1, t;
- if((t=x>>>16) != 0) { x = t; r += 16; }
- if((t=x>>8) != 0) { x = t; r += 8; }
- if((t=x>>4) != 0) { x = t; r += 4; }
- if((t=x>>2) != 0) { x = t; r += 2; }
- if((t=x>>1) != 0) { x = t; r += 1; }
- return r;
-}
-
-// (public) return the number of bits in "this"
-function bnBitLength() {
- if(this.t <= 0) return 0;
- return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
-}
-
-// (protected) r = this << n*DB
-function bnpDLShiftTo(n,r) {
- var i;
- for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
- for(i = n-1; i >= 0; --i) r[i] = 0;
- r.t = this.t+n;
- r.s = this.s;
-}
-
-// (protected) r = this >> n*DB
-function bnpDRShiftTo(n,r) {
- for(var i = n; i < this.t; ++i) r[i-n] = this[i];
- r.t = Math.max(this.t-n,0);
- r.s = this.s;
-}
-
-// (protected) r = this << n
-function bnpLShiftTo(n,r) {
- var bs = n%this.DB;
- var cbs = this.DB-bs;
- var bm = (1<<cbs)-1;
- var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
- for(i = this.t-1; i >= 0; --i) {
- r[i+ds+1] = (this[i]>>cbs)|c;
- c = (this[i]&bm)<<bs;
+
+ // (public) -this
+ function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
+
+ // (public) |this|
+ function bnAbs() { return (this.s<0)?this.negate():this; }
+
+ // (public) return + if this > a, - if this < a, 0 if equal
+ function bnCompareTo(a) {
+ var r = this.s-a.s;
+ if(r != 0) return r;
+ var i = this.t;
+ r = i-a.t;
+ if(r != 0) return r;
+ while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
+ return 0;
}
- for(i = ds-1; i >= 0; --i) r[i] = 0;
- r[ds] = c;
- r.t = this.t+ds+1;
- r.s = this.s;
- r.clamp();
-}
-
-// (protected) r = this >> n
-function bnpRShiftTo(n,r) {
- r.s = this.s;
- var ds = Math.floor(n/this.DB);
- if(ds >= this.t) { r.t = 0; return; }
- var bs = n%this.DB;
- var cbs = this.DB-bs;
- var bm = (1<<bs)-1;
- r[0] = this[ds]>>bs;
- for(var i = ds+1; i < this.t; ++i) {
- r[i-ds-1] |= (this[i]&bm)<<cbs;
- r[i-ds] = this[i]>>bs;
+
+ // returns bit length of the integer x
+ function nbits(x) {
+ var r = 1, t;
+ if((t=x>>>16) != 0) { x = t; r += 16; }
+ if((t=x>>8) != 0) { x = t; r += 8; }
+ if((t=x>>4) != 0) { x = t; r += 4; }
+ if((t=x>>2) != 0) { x = t; r += 2; }
+ if((t=x>>1) != 0) { x = t; r += 1; }
+ return r;
}
- if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
- r.t = this.t-ds;
- r.clamp();
-}
-
-// (protected) r = this - a
-function bnpSubTo(a,r) {
- var i = 0, c = 0, m = Math.min(a.t,this.t);
- while(i < m) {
- c += this[i]-a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
+
+ // (public) return the number of bits in "this"
+ function bnBitLength() {
+ if(this.t <= 0) return 0;
+ return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
}
- if(a.t < this.t) {
- c -= a.s;
- while(i < this.t) {
- c += this[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
+
+ // (protected) r = this << n*DB
+ function bnpDLShiftTo(n,r) {
+ var i;
+ for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
+ for(i = n-1; i >= 0; --i) r[i] = 0;
+ r.t = this.t+n;
+ r.s = this.s;
+ }
+
+ // (protected) r = this >> n*DB
+ function bnpDRShiftTo(n,r) {
+ for(var i = n; i < this.t; ++i) r[i-n] = this[i];
+ r.t = Math.max(this.t-n,0);
+ r.s = this.s;
+ }
+
+ // (protected) r = this << n
+ function bnpLShiftTo(n,r) {
+ var bs = n%this.DB;
+ var cbs = this.DB-bs;
+ var bm = (1<<cbs)-1;
+ var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
+ for(i = this.t-1; i >= 0; --i) {
+ r[i+ds+1] = (this[i]>>cbs)|c;
+ c = (this[i]&bm)<<bs;
}
- c += this.s;
+ for(i = ds-1; i >= 0; --i) r[i] = 0;
+ r[ds] = c;
+ r.t = this.t+ds+1;
+ r.s = this.s;
+ r.clamp();
}
- else {
- c += this.s;
- while(i < a.t) {
- c -= a[i];
+
+ // (protected) r = this >> n
+ function bnpRShiftTo(n,r) {
+ r.s = this.s;
+ var ds = Math.floor(n/this.DB);
+ if(ds >= this.t) { r.t = 0; return; }
+ var bs = n%this.DB;
+ var cbs = this.DB-bs;
+ var bm = (1<<bs)-1;
+ r[0] = this[ds]>>bs;
+ for(var i = ds+1; i < this.t; ++i) {
+ r[i-ds-1] |= (this[i]&bm)<<cbs;
+ r[i-ds] = this[i]>>bs;
+ }
+ if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
+ r.t = this.t-ds;
+ r.clamp();
+ }
+
+ // (protected) r = this - a
+ function bnpSubTo(a,r) {
+ var i = 0, c = 0, m = Math.min(a.t,this.t);
+ while(i < m) {
+ c += this[i]-a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
- c -= a.s;
- }
- r.s = (c<0)?-1:0;
- if(c < -1) r[i++] = this.DV+c;
- else if(c > 0) r[i++] = c;
- r.t = i;
- r.clamp();
-}
-
-// (protected) r = this * a, r != this,a (HAC 14.12)
-// "this" should be the larger one if appropriate.
-function bnpMultiplyTo(a,r) {
- var x = this.abs(), y = a.abs();
- var i = x.t;
- r.t = i+y.t;
- while(--i >= 0) r[i] = 0;
- for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
- r.s = 0;
- r.clamp();
- if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
-}
-
-// (protected) r = this^2, r != this (HAC 14.16)
-function bnpSquareTo(r) {
- var x = this.abs();
- var i = r.t = 2*x.t;
- while(--i >= 0) r[i] = 0;
- for(i = 0; i < x.t-1; ++i) {
- var c = x.am(i,x[i],r,2*i,0,1);
- if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
- r[i+x.t] -= x.DV;
- r[i+x.t+1] = 1;
+ if(a.t < this.t) {
+ c -= a.s;
+ while(i < this.t) {
+ c += this[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ c += this.s;
}
+ else {
+ c += this.s;
+ while(i < a.t) {
+ c -= a[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ c -= a.s;
+ }
+ r.s = (c<0)?-1:0;
+ if(c < -1) r[i++] = this.DV+c;
+ else if(c > 0) r[i++] = c;
+ r.t = i;
+ r.clamp();
}
- if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
- r.s = 0;
- r.clamp();
-}
-
-// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
-// r != q, this != m. q or r may be null.
-function bnpDivRemTo(m,q,r) {
- var pm = m.abs();
- if(pm.t <= 0) return;
- var pt = this.abs();
- if(pt.t < pm.t) {
- if(q != null) q.fromInt(0);
- if(r != null) this.copyTo(r);
- return;
+
+ // (protected) r = this * a, r != this,a (HAC 14.12)
+ // "this" should be the larger one if appropriate.
+ function bnpMultiplyTo(a,r) {
+ var x = this.abs(), y = a.abs();
+ var i = x.t;
+ r.t = i+y.t;
+ while(--i >= 0) r[i] = 0;
+ for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
+ r.s = 0;
+ r.clamp();
+ if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
}
- if(r == null) r = nbi();
- var y = nbi(), ts = this.s, ms = m.s;
- var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
- if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
- else { pm.copyTo(y); pt.copyTo(r); }
- var ys = y.t;
- var y0 = y[ys-1];
- if(y0 == 0) return;
- var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
- var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
- var i = r.t, j = i-ys, t = (q==null)?nbi():q;
- y.dlShiftTo(j,t);
- if(r.compareTo(t) >= 0) {
- r[r.t++] = 1;
- r.subTo(t,r);
+
+ // (protected) r = this^2, r != this (HAC 14.16)
+ function bnpSquareTo(r) {
+ var x = this.abs();
+ var i = r.t = 2*x.t;
+ while(--i >= 0) r[i] = 0;
+ for(i = 0; i < x.t-1; ++i) {
+ var c = x.am(i,x[i],r,2*i,0,1);
+ if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
+ r[i+x.t] -= x.DV;
+ r[i+x.t+1] = 1;
+ }
+ }
+ if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
+ r.s = 0;
+ r.clamp();
}
- BigInteger.ONE.dlShiftTo(ys,t);
- t.subTo(y,y); // "negative" y so we can replace sub with am later
- while(y.t < ys) y[y.t++] = 0;
- while(--j >= 0) {
- // Estimate quotient digit
- var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
- if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
- y.dlShiftTo(j,t);
+
+ // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
+ // r != q, this != m. q or r may be null.
+ function bnpDivRemTo(m,q,r) {
+ var pm = m.abs();
+ if(pm.t <= 0) return;
+ var pt = this.abs();
+ if(pt.t < pm.t) {
+ if(q != null) q.fromInt(0);
+ if(r != null) this.copyTo(r);
+ return;
+ }
+ if(r == null) r = nbi();
+ var y = nbi(), ts = this.s, ms = m.s;
+ var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
+ if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
+ else { pm.copyTo(y); pt.copyTo(r); }
+ var ys = y.t;
+ var y0 = y[ys-1];
+ if(y0 == 0) return;
+ var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
+ var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
+ var i = r.t, j = i-ys, t = (q==null)?nbi():q;
+ y.dlShiftTo(j,t);
+ if(r.compareTo(t) >= 0) {
+ r[r.t++] = 1;
r.subTo(t,r);
- while(r[i] < --qd) r.subTo(t,r);
}
+ BigInteger.ONE.dlShiftTo(ys,t);
+ t.subTo(y,y); // "negative" y so we can replace sub with am later
+ while(y.t < ys) y[y.t++] = 0;
+ while(--j >= 0) {
+ // Estimate quotient digit
+ var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
+ if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
+ y.dlShiftTo(j,t);
+ r.subTo(t,r);
+ while(r[i] < --qd) r.subTo(t,r);
+ }
+ }
+ if(q != null) {
+ r.drShiftTo(ys,q);
+ if(ts != ms) BigInteger.ZERO.subTo(q,q);
+ }
+ r.t = ys;
+ r.clamp();
+ if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
+ if(ts < 0) BigInteger.ZERO.subTo(r,r);
}
- if(q != null) {
- r.drShiftTo(ys,q);
- if(ts != ms) BigInteger.ZERO.subTo(q,q);
+
+ // (public) this mod a
+ function bnMod(a) {
+ var r = nbi();
+ this.abs().divRemTo(a,null,r);
+ if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
+ return r;
}
- r.t = ys;
- r.clamp();
- if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
- if(ts < 0) BigInteger.ZERO.subTo(r,r);
-}
-
-// (public) this mod a
-function bnMod(a) {
- var r = nbi();
- this.abs().divRemTo(a,null,r);
- if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
- return r;
-}
-
-// Modular reduction using "classic" algorithm
-function Classic(m) { this.m = m; }
-function cConvert(x) {
- if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
- else return x;
-}
-function cRevert(x) { return x; }
-function cReduce(x) { x.divRemTo(this.m,null,x); }
-function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
-function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
-
-Classic.prototype.convert = cConvert;
-Classic.prototype.revert = cRevert;
-Classic.prototype.reduce = cReduce;
-Classic.prototype.mulTo = cMulTo;
-Classic.prototype.sqrTo = cSqrTo;
-
-// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
-// justification:
-// xy == 1 (mod m)
-// xy = 1+km
-// xy(2-xy) = (1+km)(1-km)
-// x[y(2-xy)] = 1-k^2m^2
-// x[y(2-xy)] == 1 (mod m^2)
-// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
-// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
-// JS multiply "overflows" differently from C/C++, so care is needed here.
-function bnpInvDigit() {
- if(this.t < 1) return 0;
- var x = this[0];
- if((x&1) == 0) return 0;
- var y = x&3; // y == 1/x mod 2^2
- y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
- y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
- y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
- // last step - calculate inverse mod DV directly;
- // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
- y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
- // we really want the negative inverse, and -DV < y < DV
- return (y>0)?this.DV-y:-y;
-}
-
-// Montgomery reduction
-function Montgomery(m) {
- this.m = m;
- this.mp = m.invDigit();
- this.mpl = this.mp&0x7fff;
- this.mph = this.mp>>15;
- this.um = (1<<(m.DB-15))-1;
- this.mt2 = 2*m.t;
-}
-
-// xR mod m
-function montConvert(x) {
- var r = nbi();
- x.abs().dlShiftTo(this.m.t,r);
- r.divRemTo(this.m,null,r);
- if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
- return r;
-}
-
-// x/R mod m
-function montRevert(x) {
- var r = nbi();
- x.copyTo(r);
- this.reduce(r);
- return r;
-}
-
-// x = x/R mod m (HAC 14.32)
-function montReduce(x) {
- while(x.t <= this.mt2) // pad x so am has enough room later
- x[x.t++] = 0;
- for(var i = 0; i < this.m.t; ++i) {
- // faster way of calculating u0 = x[i]*mp mod DV
- var j = x[i]&0x7fff;
- var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
- // use am to combine the multiply-shift-add into one call
- j = i+this.m.t;
- x[j] += this.m.am(0,u0,x,i,0,this.m.t);
- // propagate carry
- while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
+
+ // Modular reduction using "classic" algorithm
+ function Classic(m) { this.m = m; }
+ function cConvert(x) {
+ if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
+ else return x;
}
- x.clamp();
- x.drShiftTo(this.m.t,x);
- if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
-}
-
-// r = "x^2/R mod m"; x != r
-function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
-
-// r = "xy/R mod m"; x,y != r
-function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
-
-Montgomery.prototype.convert = montConvert;
-Montgomery.prototype.revert = montRevert;
-Montgomery.prototype.reduce = montReduce;
-Montgomery.prototype.mulTo = montMulTo;
-Montgomery.prototype.sqrTo = montSqrTo;
-
-// (protected) true iff this is even
-function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
-
-// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
-function bnpExp(e,z) {
- if(e > 0xffffffff || e < 1) return BigInteger.ONE;
- var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
- g.copyTo(r);
- while(--i >= 0) {
- z.sqrTo(r,r2);
- if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
- else { var t = r; r = r2; r2 = t; }
+ function cRevert(x) { return x; }
+ function cReduce(x) { x.divRemTo(this.m,null,x); }
+ function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
+ function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
+
+ Classic.prototype.convert = cConvert;
+ Classic.prototype.revert = cRevert;
+ Classic.prototype.reduce = cReduce;
+ Classic.prototype.mulTo = cMulTo;
+ Classic.prototype.sqrTo = cSqrTo;
+
+ // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
+ // justification:
+ // xy == 1 (mod m)
+ // xy = 1+km
+ // xy(2-xy) = (1+km)(1-km)
+ // x[y(2-xy)] = 1-k^2m^2
+ // x[y(2-xy)] == 1 (mod m^2)
+ // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
+ // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
+ // JS multiply "overflows" differently from C/C++, so care is needed here.
+ function bnpInvDigit() {
+ if(this.t < 1) return 0;
+ var x = this[0];
+ if((x&1) == 0) return 0;
+ var y = x&3; // y == 1/x mod 2^2
+ y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
+ y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
+ y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
+ // last step - calculate inverse mod DV directly;
+ // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
+ y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
+ // we really want the negative inverse, and -DV < y < DV
+ return (y>0)?this.DV-y:-y;
}
- return z.revert(r);
-}
-
-// (public) this^e % m, 0 <= e < 2^32
-function bnModPowInt(e,m) {
- var z;
- if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
- return this.exp(e,z);
-}
-
-// protected
-BigInteger.prototype.copyTo = bnpCopyTo;
-BigInteger.prototype.fromInt = bnpFromInt;
-BigInteger.prototype.fromString = bnpFromString;
-BigInteger.prototype.clamp = bnpClamp;
-BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
-BigInteger.prototype.drShiftTo = bnpDRShiftTo;
-BigInteger.prototype.lShiftTo = bnpLShiftTo;
-BigInteger.prototype.rShiftTo = bnpRShiftTo;
-BigInteger.prototype.subTo = bnpSubTo;
-BigInteger.prototype.multiplyTo = bnpMultiplyTo;
-BigInteger.prototype.squareTo = bnpSquareTo;
-BigInteger.prototype.divRemTo = bnpDivRemTo;
-BigInteger.prototype.invDigit = bnpInvDigit;
-BigInteger.prototype.isEven = bnpIsEven;
-BigInteger.prototype.exp = bnpExp;
-
-// public
-BigInteger.prototype.toString = bnToString;
-BigInteger.prototype.negate = bnNegate;
-BigInteger.prototype.abs = bnAbs;
-BigInteger.prototype.compareTo = bnCompareTo;
-BigInteger.prototype.bitLength = bnBitLength;
-BigInteger.prototype.mod = bnMod;
-BigInteger.prototype.modPowInt = bnModPowInt;
-
-// "constants"
-BigInteger.ZERO = nbv(0);
-BigInteger.ONE = nbv(1);
-
-// jsbn2 stuff
-
-// (protected) convert from radix string
-function bnpFromRadix(s,b) {
- this.fromInt(0);
- if(b == null) b = 10;
- var cs = this.chunkSize(b);
- var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
- for(var i = 0; i < s.length; ++i) {
- var x = intAt(s,i);
- if(x < 0) {
- if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
- continue;
+
+ // Montgomery reduction
+ function Montgomery(m) {
+ this.m = m;
+ this.mp = m.invDigit();
+ this.mpl = this.mp&0x7fff;
+ this.mph = this.mp>>15;
+ this.um = (1<<(m.DB-15))-1;
+ this.mt2 = 2*m.t;
+ }
+
+ // xR mod m
+ function montConvert(x) {
+ var r = nbi();
+ x.abs().dlShiftTo(this.m.t,r);
+ r.divRemTo(this.m,null,r);
+ if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
+ return r;
+ }
+
+ // x/R mod m
+ function montRevert(x) {
+ var r = nbi();
+ x.copyTo(r);
+ this.reduce(r);
+ return r;
+ }
+
+ // x = x/R mod m (HAC 14.32)
+ function montReduce(x) {
+ while(x.t <= this.mt2) // pad x so am has enough room later
+ x[x.t++] = 0;
+ for(var i = 0; i < this.m.t; ++i) {
+ // faster way of calculating u0 = x[i]*mp mod DV
+ var j = x[i]&0x7fff;
+ var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
+ // use am to combine the multiply-shift-add into one call
+ j = i+this.m.t;
+ x[j] += this.m.am(0,u0,x,i,0,this.m.t);
+ // propagate carry
+ while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
}
- w = b*w+x;
- if(++j >= cs) {
- this.dMultiply(d);
- this.dAddOffset(w,0);
- j = 0;
- w = 0;
+ x.clamp();
+ x.drShiftTo(this.m.t,x);
+ if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
+ }
+
+ // r = "x^2/R mod m"; x != r
+ function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
+
+ // r = "xy/R mod m"; x,y != r
+ function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
+
+ Montgomery.prototype.convert = montConvert;
+ Montgomery.prototype.revert = montRevert;
+ Montgomery.prototype.reduce = montReduce;
+ Montgomery.prototype.mulTo = montMulTo;
+ Montgomery.prototype.sqrTo = montSqrTo;
+
+ // (protected) true iff this is even
+ function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
+
+ // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
+ function bnpExp(e,z) {
+ if(e > 0xffffffff || e < 1) return BigInteger.ONE;
+ var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
+ g.copyTo(r);
+ while(--i >= 0) {
+ z.sqrTo(r,r2);
+ if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
+ else { var t = r; r = r2; r2 = t; }
}
+ return z.revert(r);
}
- if(j > 0) {
- this.dMultiply(Math.pow(b,j));
- this.dAddOffset(w,0);
+
+ // (public) this^e % m, 0 <= e < 2^32
+ function bnModPowInt(e,m) {
+ var z;
+ if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
+ return this.exp(e,z);
}
- if(mi) BigInteger.ZERO.subTo(this,this);
-}
-
-// (protected) return x s.t. r^x < DV
-function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
-
-// (public) 0 if this == 0, 1 if this > 0
-function bnSigNum() {
- if(this.s < 0) return -1;
- else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
- else return 1;
-}
-
-// (protected) this *= n, this >= 0, 1 < n < DV
-function bnpDMultiply(n) {
- this[this.t] = this.am(0,n-1,this,0,0,this.t);
- ++this.t;
- this.clamp();
-}
-
-// (protected) this += n << w words, this >= 0
-function bnpDAddOffset(n,w) {
- if(n == 0) return;
- while(this.t <= w) this[this.t++] = 0;
- this[w] += n;
- while(this[w] >= this.DV) {
- this[w] -= this.DV;
- if(++w >= this.t) this[this.t++] = 0;
- ++this[w];
+
+ // protected
+ BigInteger.prototype.copyTo = bnpCopyTo;
+ BigInteger.prototype.fromInt = bnpFromInt;
+ BigInteger.prototype.fromString = bnpFromString;
+ BigInteger.prototype.clamp = bnpClamp;
+ BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
+ BigInteger.prototype.drShiftTo = bnpDRShiftTo;
+ BigInteger.prototype.lShiftTo = bnpLShiftTo;
+ BigInteger.prototype.rShiftTo = bnpRShiftTo;
+ BigInteger.prototype.subTo = bnpSubTo;
+ BigInteger.prototype.multiplyTo = bnpMultiplyTo;
+ BigInteger.prototype.squareTo = bnpSquareTo;
+ BigInteger.prototype.divRemTo = bnpDivRemTo;
+ BigInteger.prototype.invDigit = bnpInvDigit;
+ BigInteger.prototype.isEven = bnpIsEven;
+ BigInteger.prototype.exp = bnpExp;
+
+ // public
+ BigInteger.prototype.toString = bnToString;
+ BigInteger.prototype.negate = bnNegate;
+ BigInteger.prototype.abs = bnAbs;
+ BigInteger.prototype.compareTo = bnCompareTo;
+ BigInteger.prototype.bitLength = bnBitLength;
+ BigInteger.prototype.mod = bnMod;
+ BigInteger.prototype.modPowInt = bnModPowInt;
+
+ // "constants"
+ BigInteger.ZERO = nbv(0);
+ BigInteger.ONE = nbv(1);
+
+ // jsbn2 stuff
+
+ // (protected) convert from radix string
+ function bnpFromRadix(s,b) {
+ this.fromInt(0);
+ if(b == null) b = 10;
+ var cs = this.chunkSize(b);
+ var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
+ for(var i = 0; i < s.length; ++i) {
+ var x = intAt(s,i);
+ if(x < 0) {
+ if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
+ continue;
+ }
+ w = b*w+x;
+ if(++j >= cs) {
+ this.dMultiply(d);
+ this.dAddOffset(w,0);
+ j = 0;
+ w = 0;
+ }
+ }
+ if(j > 0) {
+ this.dMultiply(Math.pow(b,j));
+ this.dAddOffset(w,0);
+ }
+ if(mi) BigInteger.ZERO.subTo(this,this);
}
-}
-
-// (protected) convert to radix string
-function bnpToRadix(b) {
- if(b == null) b = 10;
- if(this.signum() == 0 || b < 2 || b > 36) return "0";
- var cs = this.chunkSize(b);
- var a = Math.pow(b,cs);
- var d = nbv(a), y = nbi(), z = nbi(), r = "";
- this.divRemTo(d,y,z);
- while(y.signum() > 0) {
- r = (a+z.intValue()).toString(b).substr(1) + r;
- y.divRemTo(d,y,z);
+
+ // (protected) return x s.t. r^x < DV
+ function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
+
+ // (public) 0 if this == 0, 1 if this > 0
+ function bnSigNum() {
+ if(this.s < 0) return -1;
+ else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
+ else return 1;
}
- return z.intValue().toString(b) + r;
-}
-
-// (public) return value as integer
-function bnIntValue() {
- if(this.s < 0) {
- if(this.t == 1) return this[0]-this.DV;
- else if(this.t == 0) return -1;
+
+ // (protected) this *= n, this >= 0, 1 < n < DV
+ function bnpDMultiply(n) {
+ this[this.t] = this.am(0,n-1,this,0,0,this.t);
+ ++this.t;
+ this.clamp();
}
- else if(this.t == 1) return this[0];
- else if(this.t == 0) return 0;
- // assumes 16 < DB < 32
- return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
-}
-
-// (protected) r = this + a
-function bnpAddTo(a,r) {
- var i = 0, c = 0, m = Math.min(a.t,this.t);
- while(i < m) {
- c += this[i]+a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
+
+ // (protected) this += n << w words, this >= 0
+ function bnpDAddOffset(n,w) {
+ if(n == 0) return;
+ while(this.t <= w) this[this.t++] = 0;
+ this[w] += n;
+ while(this[w] >= this.DV) {
+ this[w] -= this.DV;
+ if(++w >= this.t) this[this.t++] = 0;
+ ++this[w];
+ }
}
- if(a.t < this.t) {
- c += a.s;
- while(i < this.t) {
- c += this[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
+
+ // (protected) convert to radix string
+ function bnpToRadix(b) {
+ if(b == null) b = 10;
+ if(this.signum() == 0 || b < 2 || b > 36) return "0";
+ var cs = this.chunkSize(b);
+ var a = Math.pow(b,cs);
+ var d = nbv(a), y = nbi(), z = nbi(), r = "";
+ this.divRemTo(d,y,z);
+ while(y.signum() > 0) {
+ r = (a+z.intValue()).toString(b).substr(1) + r;
+ y.divRemTo(d,y,z);
}
- c += this.s;
+ return z.intValue().toString(b) + r;
}
- else {
- c += this.s;
- while(i < a.t) {
- c += a[i];
+
+ // (public) return value as integer
+ function bnIntValue() {
+ if(this.s < 0) {
+ if(this.t == 1) return this[0]-this.DV;
+ else if(this.t == 0) return -1;
+ }
+ else if(this.t == 1) return this[0];
+ else if(this.t == 0) return 0;
+ // assumes 16 < DB < 32
+ return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
+ }
+
+ // (protected) r = this + a
+ function bnpAddTo(a,r) {
+ var i = 0, c = 0, m = Math.min(a.t,this.t);
+ while(i < m) {
+ c += this[i]+a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
- c += a.s;
+ if(a.t < this.t) {
+ c += a.s;
+ while(i < this.t) {
+ c += this[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ c += this.s;
+ }
+ else {
+ c += this.s;
+ while(i < a.t) {
+ c += a[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ c += a.s;
+ }
+ r.s = (c<0)?-1:0;
+ if(c > 0) r[i++] = c;
+ else if(c < -1) r[i++] = this.DV+c;
+ r.t = i;
+ r.clamp();
}
- r.s = (c<0)?-1:0;
- if(c > 0) r[i++] = c;
- else if(c < -1) r[i++] = this.DV+c;
- r.t = i;
- r.clamp();
-}
-
-BigInteger.prototype.fromRadix = bnpFromRadix;
-BigInteger.prototype.chunkSize = bnpChunkSize;
-BigInteger.prototype.signum = bnSigNum;
-BigInteger.prototype.dMultiply = bnpDMultiply;
-BigInteger.prototype.dAddOffset = bnpDAddOffset;
-BigInteger.prototype.toRadix = bnpToRadix;
-BigInteger.prototype.intValue = bnIntValue;
-BigInteger.prototype.addTo = bnpAddTo;
-
-//======= end jsbn =======
-
-// Emscripten wrapper
-var Wrapper = {
- result: [0, 0], // return result stored here
- add: function(xl, xh, yl, yh) {
- var x = new goog.math.Long(xl, xh);
- var y = new goog.math.Long(yl, yh);
- var ret = x.add(y);
- Wrapper.result[0] = ret.low_;
- Wrapper.result[1] = ret.high_;
- },
- subtract: function(xl, xh, yl, yh) {
- var x = new goog.math.Long(xl, xh);
- var y = new goog.math.Long(yl, yh);
- var ret = x.subtract(y);
- Wrapper.result[0] = ret.low_;
- Wrapper.result[1] = ret.high_;
- },
- multiply: function(xl, xh, yl, yh) {
- var x = new goog.math.Long(xl, xh);
- var y = new goog.math.Long(yl, yh);
- var ret = x.multiply(y);
- Wrapper.result[0] = ret.low_;
- Wrapper.result[1] = ret.high_;
- },
- makeTwo32: function() {
- Wrapper.two32 = new BigInteger();
- Wrapper.two32.fromString('4294967296', 10);
- },
- lh2bignum: function(l, h) {
- var a = new BigInteger();
- a.fromString(h.toString(), 10);
- var b = new BigInteger();
- a.multiplyTo(Wrapper.two32, b);
- var c = new BigInteger();
- c.fromString(l.toString(), 10);
- var d = new BigInteger();
- c.addTo(b, d);
- return d;
- },
- divide: function(xl, xh, yl, yh, unsigned) {
- if (!Wrapper.two32) Wrapper.makeTwo32();
- if (!unsigned) {
+
+ BigInteger.prototype.fromRadix = bnpFromRadix;
+ BigInteger.prototype.chunkSize = bnpChunkSize;
+ BigInteger.prototype.signum = bnSigNum;
+ BigInteger.prototype.dMultiply = bnpDMultiply;
+ BigInteger.prototype.dAddOffset = bnpDAddOffset;
+ BigInteger.prototype.toRadix = bnpToRadix;
+ BigInteger.prototype.intValue = bnIntValue;
+ BigInteger.prototype.addTo = bnpAddTo;
+
+ //======= end jsbn =======
+
+ // Emscripten wrapper
+ var Wrapper = {
+ result: [0, 0], // return result stored here
+ add: function(xl, xh, yl, yh) {
var x = new goog.math.Long(xl, xh);
var y = new goog.math.Long(yl, yh);
- var ret = x.div(y);
+ var ret = x.add(y);
Wrapper.result[0] = ret.low_;
Wrapper.result[1] = ret.high_;
- } else {
- // slow precise bignum division
- var x = Wrapper.lh2bignum(xl >>> 0, xh >>> 0);
- var y = Wrapper.lh2bignum(yl >>> 0, yh >>> 0);
- var z = new BigInteger();
- x.divRemTo(y, z, null);
- var l = new BigInteger();
- var h = new BigInteger();
- z.divRemTo(Wrapper.two32, h, l);
- Wrapper.result[0] = parseInt(l.toString()) | 0;
- Wrapper.result[1] = parseInt(h.toString()) | 0;
- }
- },
- modulo: function(xl, xh, yl, yh, unsigned) {
- if (!Wrapper.two32) Wrapper.makeTwo32();
- if (!unsigned) {
+ },
+ subtract: function(xl, xh, yl, yh) {
var x = new goog.math.Long(xl, xh);
var y = new goog.math.Long(yl, yh);
- var ret = x.modulo(y);
+ var ret = x.subtract(y);
Wrapper.result[0] = ret.low_;
Wrapper.result[1] = ret.high_;
- } else {
- // slow precise bignum division
- var x = Wrapper.lh2bignum(xl >>> 0, xh >>> 0);
- var y = Wrapper.lh2bignum(yl >>> 0, yh >>> 0);
- var z = new BigInteger();
- x.divRemTo(y, null, z);
- var l = new BigInteger();
- var h = new BigInteger();
- z.divRemTo(Wrapper.two32, h, l);
- Wrapper.result[0] = parseInt(l.toString()) | 0;
- Wrapper.result[1] = parseInt(h.toString()) | 0;
- }
- },
- stringify: function(l, h, unsigned) {
- var ret = new goog.math.Long(l, h).toString();
- if (unsigned && ret[0] == '-') {
- // unsign slowly using jsbn bignums
- if (!Wrapper.two64) {
- Wrapper.two64 = new BigInteger();
- Wrapper.two64.fromString('18446744073709551616', 10);
+ },
+ multiply: function(xl, xh, yl, yh) {
+ var x = new goog.math.Long(xl, xh);
+ var y = new goog.math.Long(yl, yh);
+ var ret = x.multiply(y);
+ Wrapper.result[0] = ret.low_;
+ Wrapper.result[1] = ret.high_;
+ },
+ makeTwo32: function() {
+ Wrapper.two32 = new BigInteger();
+ Wrapper.two32.fromString('4294967296', 10);
+ },
+ lh2bignum: function(l, h) {
+ var a = new BigInteger();
+ a.fromString(h.toString(), 10);
+ var b = new BigInteger();
+ a.multiplyTo(Wrapper.two32, b);
+ var c = new BigInteger();
+ c.fromString(l.toString(), 10);
+ var d = new BigInteger();
+ c.addTo(b, d);
+ return d;
+ },
+ divide: function(xl, xh, yl, yh, unsigned) {
+ if (!Wrapper.two32) Wrapper.makeTwo32();
+ if (!unsigned) {
+ var x = new goog.math.Long(xl, xh);
+ var y = new goog.math.Long(yl, yh);
+ var ret = x.div(y);
+ Wrapper.result[0] = ret.low_;
+ Wrapper.result[1] = ret.high_;
+ } else {
+ // slow precise bignum division
+ var x = Wrapper.lh2bignum(xl >>> 0, xh >>> 0);
+ var y = Wrapper.lh2bignum(yl >>> 0, yh >>> 0);
+ var z = new BigInteger();
+ x.divRemTo(y, z, null);
+ var l = new BigInteger();
+ var h = new BigInteger();
+ z.divRemTo(Wrapper.two32, h, l);
+ Wrapper.result[0] = parseInt(l.toString()) | 0;
+ Wrapper.result[1] = parseInt(h.toString()) | 0;
+ }
+ },
+ modulo: function(xl, xh, yl, yh, unsigned) {
+ if (!Wrapper.two32) Wrapper.makeTwo32();
+ if (!unsigned) {
+ var x = new goog.math.Long(xl, xh);
+ var y = new goog.math.Long(yl, yh);
+ var ret = x.modulo(y);
+ Wrapper.result[0] = ret.low_;
+ Wrapper.result[1] = ret.high_;
+ } else {
+ // slow precise bignum division
+ var x = Wrapper.lh2bignum(xl >>> 0, xh >>> 0);
+ var y = Wrapper.lh2bignum(yl >>> 0, yh >>> 0);
+ var z = new BigInteger();
+ x.divRemTo(y, null, z);
+ var l = new BigInteger();
+ var h = new BigInteger();
+ z.divRemTo(Wrapper.two32, h, l);
+ Wrapper.result[0] = parseInt(l.toString()) | 0;
+ Wrapper.result[1] = parseInt(h.toString()) | 0;
}
- var bignum = new BigInteger();
- bignum.fromString(ret, 10);
- ret = new BigInteger();
- Wrapper.two64.addTo(bignum, ret);
- ret = ret.toString(10);
+ },
+ stringify: function(l, h, unsigned) {
+ var ret = new goog.math.Long(l, h).toString();
+ if (unsigned && ret[0] == '-') {
+ // unsign slowly using jsbn bignums
+ if (!Wrapper.two64) {
+ Wrapper.two64 = new BigInteger();
+ Wrapper.two64.fromString('18446744073709551616', 10);
+ }
+ var bignum = new BigInteger();
+ bignum.fromString(ret, 10);
+ ret = new BigInteger();
+ Wrapper.two64.addTo(bignum, ret);
+ ret = ret.toString(10);
+ }
+ return ret;
}
- return ret;
- }
-};
-return Wrapper;
+ };
+ return Wrapper;
})();
//======= end closure i64 code =======