aboutsummaryrefslogtreecommitdiff
path: root/lib/VMCore/Pass.cpp
blob: 48e608e90a41b77b7dc25238d34fa17d682548d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
//===- Pass.cpp - LLVM Pass Infrastructure Impementation ------------------===//
//
// This file implements the LLVM Pass infrastructure.  It is primarily
// responsible with ensuring that passes are executed and batched together
// optimally.
//
//===----------------------------------------------------------------------===//

#include "llvm/PassManager.h"
#include "PassManagerT.h"         // PassManagerT implementation
#include "llvm/Module.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "Support/STLExtras.h"
#include "Support/CommandLine.h"
#include <typeinfo>
#include <iostream>
#include <sys/time.h>
#include <stdio.h>

// Source of unique analysis ID #'s.
unsigned AnalysisID::NextID = 0;

void AnalysisResolver::setAnalysisResolver(Pass *P, AnalysisResolver *AR) {
  assert(P->Resolver == 0 && "Pass already in a PassManager!");
  P->Resolver = AR;
}


// preservesCFG - This function should be called to by the pass, iff they do
// not:
//
//  1. Add or remove basic blocks from the function
//  2. Modify terminator instructions in any way.
//
// This function annotates the AnalysisUsage info object to say that analyses
// that only depend on the CFG are preserved by this pass.
//
void AnalysisUsage::preservesCFG() {
  // FIXME: implement preservesCFG
}


//===----------------------------------------------------------------------===//
// PassManager implementation - The PassManager class is a simple Pimpl class
// that wraps the PassManagerT template.
//
PassManager::PassManager() : PM(new PassManagerT<Module>()) {}
PassManager::~PassManager() { delete PM; }
void PassManager::add(Pass *P) { PM->add(P); }
bool PassManager::run(Module *M) { return PM->run(M); }


//===----------------------------------------------------------------------===//
// TimingInfo Class - This class is used to calculate information about the
// amount of time each pass takes to execute.  This only happens with
// -time-passes is enabled on the command line.
//
static cl::Flag EnableTiming("time-passes", "Time each pass, printing elapsed"
                             " time for each on exit");

static double getTime() {
  struct timeval T;
  gettimeofday(&T, 0);
  return T.tv_sec + T.tv_usec/1000000.0;
}

// Create method.  If Timing is enabled, this creates and returns a new timing
// object, otherwise it returns null.
//
TimingInfo *TimingInfo::create() {
  return EnableTiming ? new TimingInfo() : 0;
}

void TimingInfo::passStarted(Pass *P) { TimingData[P] -= getTime(); }
void TimingInfo::passEnded(Pass *P) { TimingData[P] += getTime(); }

// TimingDtor - Print out information about timing information
TimingInfo::~TimingInfo() {
  // Iterate over all of the data, converting it into the dual of the data map,
  // so that the data is sorted by amount of time taken, instead of pointer.
  //
  std::vector<pair<double, Pass*> > Data;
  double TotalTime = 0;
  for (std::map<Pass*, double>::iterator I = TimingData.begin(),
         E = TimingData.end(); I != E; ++I)
    // Throw out results for "grouping" pass managers...
    if (!dynamic_cast<AnalysisResolver*>(I->first)) {
      Data.push_back(std::make_pair(I->second, I->first));
      TotalTime += I->second;
    }
  
  // Sort the data by time as the primary key, in reverse order...
  std::sort(Data.begin(), Data.end(), greater<pair<double, Pass*> >());

  // Print out timing header...
  cerr << std::string(79, '=') << "\n"
       << "                      ... Pass execution timing report ...\n"
       << std::string(79, '=') << "\n  Total Execution Time: " << TotalTime
       << " seconds\n\n  % Time: Seconds:\tPass Name:\n";

  // Loop through all of the timing data, printing it out...
  for (unsigned i = 0, e = Data.size(); i != e; ++i) {
    fprintf(stderr, "  %6.2f%% %fs\t%s\n", Data[i].first*100 / TotalTime,
            Data[i].first, Data[i].second->getPassName());
  }
  cerr << "  100.00% " << TotalTime << "s\tTOTAL\n"
       << std::string(79, '=') << "\n";
}


//===----------------------------------------------------------------------===//
// Pass debugging information.  Often it is useful to find out what pass is
// running when a crash occurs in a utility.  When this library is compiled with
// debugging on, a command line option (--debug-pass) is enabled that causes the
// pass name to be printed before it executes.
//

// Different debug levels that can be enabled...
enum PassDebugLevel {
  None, PassStructure, PassExecutions, PassDetails
};

static cl::Enum<enum PassDebugLevel> PassDebugging("debug-pass", cl::Hidden,
  "Print PassManager debugging information",
  clEnumVal(None          , "disable debug output"),
  clEnumVal(PassStructure , "print pass structure before run()"),
  clEnumVal(PassExecutions, "print pass name before it is executed"),
  clEnumVal(PassDetails   , "print pass details when it is executed"), 0); 

void PMDebug::PrintPassStructure(Pass *P) {
  if (PassDebugging >= PassStructure)
    P->dumpPassStructure();
}

void PMDebug::PrintPassInformation(unsigned Depth, const char *Action,
                                   Pass *P, Annotable *V) {
  if (PassDebugging >= PassExecutions) {
    std::cerr << (void*)P << std::string(Depth*2+1, ' ') << Action << " '" 
              << P->getPassName();
    if (V) {
      std::cerr << "' on ";

      if (dynamic_cast<Module*>(V)) {
        std::cerr << "Module\n"; return;
      } else if (Function *F = dynamic_cast<Function*>(V))
        std::cerr << "Function '" << F->getName();
      else if (BasicBlock *BB = dynamic_cast<BasicBlock*>(V))
        std::cerr << "BasicBlock '" << BB->getName();
      else if (Value *Val = dynamic_cast<Value*>(V))
        std::cerr << typeid(*Val).name() << " '" << Val->getName();
    }
    std::cerr << "'...\n";
  }
}

void PMDebug::PrintAnalysisSetInfo(unsigned Depth, const char *Msg,
                                   Pass *P, const std::vector<AnalysisID> &Set){
  if (PassDebugging >= PassDetails && !Set.empty()) {
    std::cerr << (void*)P << std::string(Depth*2+3, ' ') << Msg << " Analyses:";
    for (unsigned i = 0; i != Set.size(); ++i) {
      Pass *P = Set[i].createPass();   // Good thing this is just debug code...
      std::cerr << "  " << P->getPassName();
      delete P;
    }
    std::cerr << "\n";
  }
}

// dumpPassStructure - Implement the -debug-passes=PassStructure option
void Pass::dumpPassStructure(unsigned Offset = 0) {
  std::cerr << std::string(Offset*2, ' ') << getPassName() << "\n";
}


//===----------------------------------------------------------------------===//
// Pass Implementation
//

void Pass::addToPassManager(PassManagerT<Module> *PM, AnalysisUsage &AU) {
  PM->addPass(this, AU);
}


// getPassName - Use C++ RTTI to get a SOMEWHAT intelligable name for the pass.
//
const char *Pass::getPassName() const { return typeid(*this).name(); }

//===----------------------------------------------------------------------===//
// FunctionPass Implementation
//

// run - On a module, we run this pass by initializing, runOnFunction'ing once
// for every function in the module, then by finalizing.
//
bool FunctionPass::run(Module *M) {
  bool Changed = doInitialization(M);
  
  for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
    if (!(*I)->isExternal())      // Passes are not run on external functions!
    Changed |= runOnFunction(*I);
  
  return Changed | doFinalization(M);
}

// run - On a function, we simply initialize, run the function, then finalize.
//
bool FunctionPass::run(Function *F) {
  if (F->isExternal()) return false;// Passes are not run on external functions!

  return doInitialization(F->getParent()) | runOnFunction(F)
       | doFinalization(F->getParent());
}

void FunctionPass::addToPassManager(PassManagerT<Module> *PM,
                                    AnalysisUsage &AU) {
  PM->addPass(this, AU);
}

void FunctionPass::addToPassManager(PassManagerT<Function> *PM,
                                    AnalysisUsage &AU) {
  PM->addPass(this, AU);
}

//===----------------------------------------------------------------------===//
// BasicBlockPass Implementation
//

// To run this pass on a function, we simply call runOnBasicBlock once for each
// function.
//
bool BasicBlockPass::runOnFunction(Function *F) {
  bool Changed = false;
  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
    Changed |= runOnBasicBlock(*I);
  return Changed;
}

// To run directly on the basic block, we initialize, runOnBasicBlock, then
// finalize.
//
bool BasicBlockPass::run(BasicBlock *BB) {
  Module *M = BB->getParent()->getParent();
  return doInitialization(M) | runOnBasicBlock(BB) | doFinalization(M);
}

void BasicBlockPass::addToPassManager(PassManagerT<Function> *PM,
                                      AnalysisUsage &AU) {
  PM->addPass(this, AU);
}

void BasicBlockPass::addToPassManager(PassManagerT<BasicBlock> *PM,
                                      AnalysisUsage &AU) {
  PM->addPass(this, AU);
}