aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/InlineFunction.cpp
blob: c176cf1075e3fad1c9f04d789a566cdc531a27b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements inlining of a function into a call site, resolving
// parameters and the return value as appropriate.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Attributes.h"
#include "llvm/Constants.h"
#include "llvm/DataLayout.h"
#include "llvm/DebugInfo.h"
#include "llvm/DerivedTypes.h"
#include "llvm/IRBuilder.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Intrinsics.h"
#include "llvm/Module.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;

bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
                          bool InsertLifetime) {
  return InlineFunction(CallSite(CI), IFI, InsertLifetime);
}
bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
                          bool InsertLifetime) {
  return InlineFunction(CallSite(II), IFI, InsertLifetime);
}

namespace {
  /// A class for recording information about inlining through an invoke.
  class InvokeInliningInfo {
    BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
    BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
    LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
    PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
    SmallVector<Value*, 8> UnwindDestPHIValues;

  public:
    InvokeInliningInfo(InvokeInst *II)
      : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
        CallerLPad(0), InnerEHValuesPHI(0) {
      // If there are PHI nodes in the unwind destination block, we need to keep
      // track of which values came into them from the invoke before removing
      // the edge from this block.
      llvm::BasicBlock *InvokeBB = II->getParent();
      BasicBlock::iterator I = OuterResumeDest->begin();
      for (; isa<PHINode>(I); ++I) {
        // Save the value to use for this edge.
        PHINode *PHI = cast<PHINode>(I);
        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
      }

      CallerLPad = cast<LandingPadInst>(I);
    }

    /// getOuterResumeDest - The outer unwind destination is the target of
    /// unwind edges introduced for calls within the inlined function.
    BasicBlock *getOuterResumeDest() const {
      return OuterResumeDest;
    }

    BasicBlock *getInnerResumeDest();

    LandingPadInst *getLandingPadInst() const { return CallerLPad; }

    /// forwardResume - Forward the 'resume' instruction to the caller's landing
    /// pad block. When the landing pad block has only one predecessor, this is
    /// a simple branch. When there is more than one predecessor, we need to
    /// split the landing pad block after the landingpad instruction and jump
    /// to there.
    void forwardResume(ResumeInst *RI);

    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
    /// destination block for the given basic block, using the values for the
    /// original invoke's source block.
    void addIncomingPHIValuesFor(BasicBlock *BB) const {
      addIncomingPHIValuesForInto(BB, OuterResumeDest);
    }

    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
      BasicBlock::iterator I = dest->begin();
      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
        PHINode *phi = cast<PHINode>(I);
        phi->addIncoming(UnwindDestPHIValues[i], src);
      }
    }
  };
}

/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
  if (InnerResumeDest) return InnerResumeDest;

  // Split the landing pad.
  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
  InnerResumeDest =
    OuterResumeDest->splitBasicBlock(SplitPoint,
                                     OuterResumeDest->getName() + ".body");

  // The number of incoming edges we expect to the inner landing pad.
  const unsigned PHICapacity = 2;

  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
  BasicBlock::iterator I = OuterResumeDest->begin();
  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
    PHINode *OuterPHI = cast<PHINode>(I);
    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
                                        OuterPHI->getName() + ".lpad-body",
                                        InsertPoint);
    OuterPHI->replaceAllUsesWith(InnerPHI);
    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
  }

  // Create a PHI for the exception values.
  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
                                     "eh.lpad-body", InsertPoint);
  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);

  // All done.
  return InnerResumeDest;
}

/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
/// block. When the landing pad block has only one predecessor, this is a simple
/// branch. When there is more than one predecessor, we need to split the
/// landing pad block after the landingpad instruction and jump to there.
void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
  BasicBlock *Dest = getInnerResumeDest();
  BasicBlock *Src = RI->getParent();

  BranchInst::Create(Dest, Src);

  // Update the PHIs in the destination. They were inserted in an order which
  // makes this work.
  addIncomingPHIValuesForInto(Src, Dest);

  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
  RI->eraseFromParent();
}

/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
/// an invoke, we have to turn all of the calls that can throw into
/// invokes.  This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
///
/// Returns true to indicate that the next block should be skipped.
static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
                                                   InvokeInliningInfo &Invoke) {
  LandingPadInst *LPI = Invoke.getLandingPadInst();

  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
    Instruction *I = BBI++;

    if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
      unsigned NumClauses = LPI->getNumClauses();
      L->reserveClauses(NumClauses);
      for (unsigned i = 0; i != NumClauses; ++i)
        L->addClause(LPI->getClause(i));
    }

    // We only need to check for function calls: inlined invoke
    // instructions require no special handling.
    CallInst *CI = dyn_cast<CallInst>(I);

    // If this call cannot unwind, don't convert it to an invoke.
    if (!CI || CI->doesNotThrow())
      continue;

    // Convert this function call into an invoke instruction.  First, split the
    // basic block.
    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");

    // Delete the unconditional branch inserted by splitBasicBlock
    BB->getInstList().pop_back();

    // Create the new invoke instruction.
    ImmutableCallSite CS(CI);
    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
                                        Invoke.getOuterResumeDest(),
                                        InvokeArgs, CI->getName(), BB);
    II->setCallingConv(CI->getCallingConv());
    II->setAttributes(CI->getAttributes());
    
    // Make sure that anything using the call now uses the invoke!  This also
    // updates the CallGraph if present, because it uses a WeakVH.
    CI->replaceAllUsesWith(II);

    // Delete the original call
    Split->getInstList().pop_front();

    // Update any PHI nodes in the exceptional block to indicate that there is
    // now a new entry in them.
    Invoke.addIncomingPHIValuesFor(BB);
    return false;
  }

  return false;
}

/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes.
///
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
                                ClonedCodeInfo &InlinedCodeInfo) {
  BasicBlock *InvokeDest = II->getUnwindDest();

  Function *Caller = FirstNewBlock->getParent();

  // The inlined code is currently at the end of the function, scan from the
  // start of the inlined code to its end, checking for stuff we need to
  // rewrite.  If the code doesn't have calls or unwinds, we know there is
  // nothing to rewrite.
  if (!InlinedCodeInfo.ContainsCalls) {
    // Now that everything is happy, we have one final detail.  The PHI nodes in
    // the exception destination block still have entries due to the original
    // invoke instruction.  Eliminate these entries (which might even delete the
    // PHI node) now.
    InvokeDest->removePredecessor(II->getParent());
    return;
  }

  InvokeInliningInfo Invoke(II);
  
  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
    if (InlinedCodeInfo.ContainsCalls)
      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
        // Honor a request to skip the next block.
        ++BB;
        continue;
      }

    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
      Invoke.forwardResume(RI);
  }

  // Now that everything is happy, we have one final detail.  The PHI nodes in
  // the exception destination block still have entries due to the original
  // invoke instruction.  Eliminate these entries (which might even delete the
  // PHI node) now.
  InvokeDest->removePredecessor(II->getParent());
}

/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
/// into the caller, update the specified callgraph to reflect the changes we
/// made.  Note that it's possible that not all code was copied over, so only
/// some edges of the callgraph may remain.
static void UpdateCallGraphAfterInlining(CallSite CS,
                                         Function::iterator FirstNewBlock,
                                         ValueToValueMapTy &VMap,
                                         InlineFunctionInfo &IFI) {
  CallGraph &CG = *IFI.CG;
  const Function *Caller = CS.getInstruction()->getParent()->getParent();
  const Function *Callee = CS.getCalledFunction();
  CallGraphNode *CalleeNode = CG[Callee];
  CallGraphNode *CallerNode = CG[Caller];

  // Since we inlined some uninlined call sites in the callee into the caller,
  // add edges from the caller to all of the callees of the callee.
  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();

  // Consider the case where CalleeNode == CallerNode.
  CallGraphNode::CalledFunctionsVector CallCache;
  if (CalleeNode == CallerNode) {
    CallCache.assign(I, E);
    I = CallCache.begin();
    E = CallCache.end();
  }

  for (; I != E; ++I) {
    const Value *OrigCall = I->first;

    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
    // Only copy the edge if the call was inlined!
    if (VMI == VMap.end() || VMI->second == 0)
      continue;
    
    // If the call was inlined, but then constant folded, there is no edge to
    // add.  Check for this case.
    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
    if (NewCall == 0) continue;

    // Remember that this call site got inlined for the client of
    // InlineFunction.
    IFI.InlinedCalls.push_back(NewCall);

    // It's possible that inlining the callsite will cause it to go from an
    // indirect to a direct call by resolving a function pointer.  If this
    // happens, set the callee of the new call site to a more precise
    // destination.  This can also happen if the call graph node of the caller
    // was just unnecessarily imprecise.
    if (I->second->getFunction() == 0)
      if (Function *F = CallSite(NewCall).getCalledFunction()) {
        // Indirect call site resolved to direct call.
        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);

        continue;
      }

    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
  }
  
  // Update the call graph by deleting the edge from Callee to Caller.  We must
  // do this after the loop above in case Caller and Callee are the same.
  CallerNode->removeCallEdgeFor(CS);
}

/// HandleByValArgument - When inlining a call site that has a byval argument,
/// we have to make the implicit memcpy explicit by adding it.
static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
                                  const Function *CalledFunc,
                                  InlineFunctionInfo &IFI,
                                  unsigned ByValAlignment) {
  Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();

  // If the called function is readonly, then it could not mutate the caller's
  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
  // temporary.
  if (CalledFunc->onlyReadsMemory()) {
    // If the byval argument has a specified alignment that is greater than the
    // passed in pointer, then we either have to round up the input pointer or
    // give up on this transformation.
    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
      return Arg;

    // If the pointer is already known to be sufficiently aligned, or if we can
    // round it up to a larger alignment, then we don't need a temporary.
    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
                                   IFI.TD) >= ByValAlignment)
      return Arg;
    
    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
    // for code quality, but rarely happens and is required for correctness.
  }
  
  LLVMContext &Context = Arg->getContext();

  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
  
  // Create the alloca.  If we have DataLayout, use nice alignment.
  unsigned Align = 1;
  if (IFI.TD)
    Align = IFI.TD->getPrefTypeAlignment(AggTy);
  
  // If the byval had an alignment specified, we *must* use at least that
  // alignment, as it is required by the byval argument (and uses of the
  // pointer inside the callee).
  Align = std::max(Align, ByValAlignment);
  
  Function *Caller = TheCall->getParent()->getParent(); 
  
  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 
                                    &*Caller->begin()->begin());
  // Emit a memcpy.
  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
                                                 Intrinsic::memcpy, 
                                                 Tys);
  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
  
  Value *Size;
  if (IFI.TD == 0)
    Size = ConstantExpr::getSizeOf(AggTy);
  else
    Size = ConstantInt::get(Type::getInt64Ty(Context),
                            IFI.TD->getTypeStoreSize(AggTy));
  
  // Always generate a memcpy of alignment 1 here because we don't know
  // the alignment of the src pointer.  Other optimizations can infer
  // better alignment.
  Value *CallArgs[] = {
    DestCast, SrcCast, Size,
    ConstantInt::get(Type::getInt32Ty(Context), 1),
    ConstantInt::getFalse(Context) // isVolatile
  };
  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
  
  // Uses of the argument in the function should use our new alloca
  // instead.
  return NewAlloca;
}

// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
// intrinsic.
static bool isUsedByLifetimeMarker(Value *V) {
  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
       ++UI) {
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
      switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::lifetime_start:
      case Intrinsic::lifetime_end:
        return true;
      }
    }
  }
  return false;
}

// hasLifetimeMarkers - Check whether the given alloca already has
// lifetime.start or lifetime.end intrinsics.
static bool hasLifetimeMarkers(AllocaInst *AI) {
  Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
  if (AI->getType() == Int8PtrTy)
    return isUsedByLifetimeMarker(AI);

  // Do a scan to find all the casts to i8*.
  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
       ++I) {
    if (I->getType() != Int8PtrTy) continue;
    if (I->stripPointerCasts() != AI) continue;
    if (isUsedByLifetimeMarker(*I))
      return true;
  }
  return false;
}

/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
/// recursively update InlinedAtEntry of a DebugLoc.
static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 
                                    const DebugLoc &InlinedAtDL,
                                    LLVMContext &Ctx) {
  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
    DebugLoc NewInlinedAtDL 
      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
                         NewInlinedAtDL.getAsMDNode(Ctx));
  }

  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
                       InlinedAtDL.getAsMDNode(Ctx));
}

/// fixupLineNumbers - Update inlined instructions' line numbers to 
/// to encode location where these instructions are inlined.
static void fixupLineNumbers(Function *Fn, Function::iterator FI,
                             Instruction *TheCall) {
  DebugLoc TheCallDL = TheCall->getDebugLoc();
  if (TheCallDL.isUnknown())
    return;

  for (; FI != Fn->end(); ++FI) {
    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
         BI != BE; ++BI) {
      DebugLoc DL = BI->getDebugLoc();
      if (!DL.isUnknown()) {
        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
          LLVMContext &Ctx = BI->getContext();
          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 
                                                   InlinedAt, Ctx));
        }
      }
    }
  }
}

/// InlineFunction - This function inlines the called function into the basic
/// block of the caller.  This returns false if it is not possible to inline
/// this call.  The program is still in a well defined state if this occurs
/// though.
///
/// Note that this only does one level of inlining.  For example, if the
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
/// exists in the instruction stream.  Similarly this will inline a recursive
/// function by one level.
bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
                          bool InsertLifetime) {
  Instruction *TheCall = CS.getInstruction();
  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
         "Instruction not in function!");

  // If IFI has any state in it, zap it before we fill it in.
  IFI.reset();
  
  const Function *CalledFunc = CS.getCalledFunction();
  if (CalledFunc == 0 ||          // Can't inline external function or indirect
      CalledFunc->isDeclaration() || // call, or call to a vararg function!
      CalledFunc->getFunctionType()->isVarArg()) return false;

  // If the call to the callee is not a tail call, we must clear the 'tail'
  // flags on any calls that we inline.
  bool MustClearTailCallFlags =
    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());

  // If the call to the callee cannot throw, set the 'nounwind' flag on any
  // calls that we inline.
  bool MarkNoUnwind = CS.doesNotThrow();

  BasicBlock *OrigBB = TheCall->getParent();
  Function *Caller = OrigBB->getParent();

  // GC poses two hazards to inlining, which only occur when the callee has GC:
  //  1. If the caller has no GC, then the callee's GC must be propagated to the
  //     caller.
  //  2. If the caller has a differing GC, it is invalid to inline.
  if (CalledFunc->hasGC()) {
    if (!Caller->hasGC())
      Caller->setGC(CalledFunc->getGC());
    else if (CalledFunc->getGC() != Caller->getGC())
      return false;
  }

  // Get the personality function from the callee if it contains a landing pad.
  Value *CalleePersonality = 0;
  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
       I != E; ++I)
    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
      const BasicBlock *BB = II->getUnwindDest();
      const LandingPadInst *LP = BB->getLandingPadInst();
      CalleePersonality = LP->getPersonalityFn();
      break;
    }

  // Find the personality function used by the landing pads of the caller. If it
  // exists, then check to see that it matches the personality function used in
  // the callee.
  if (CalleePersonality) {
    for (Function::const_iterator I = Caller->begin(), E = Caller->end();
         I != E; ++I)
      if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
        const BasicBlock *BB = II->getUnwindDest();
        const LandingPadInst *LP = BB->getLandingPadInst();

        // If the personality functions match, then we can perform the
        // inlining. Otherwise, we can't inline.
        // TODO: This isn't 100% true. Some personality functions are proper
        //       supersets of others and can be used in place of the other.
        if (LP->getPersonalityFn() != CalleePersonality)
          return false;

        break;
      }
  }

  // Get an iterator to the last basic block in the function, which will have
  // the new function inlined after it.
  Function::iterator LastBlock = &Caller->back();

  // Make sure to capture all of the return instructions from the cloned
  // function.
  SmallVector<ReturnInst*, 8> Returns;
  ClonedCodeInfo InlinedFunctionInfo;
  Function::iterator FirstNewBlock;

  { // Scope to destroy VMap after cloning.
    ValueToValueMapTy VMap;

    assert(CalledFunc->arg_size() == CS.arg_size() &&
           "No varargs calls can be inlined!");

    // Calculate the vector of arguments to pass into the function cloner, which
    // matches up the formal to the actual argument values.
    CallSite::arg_iterator AI = CS.arg_begin();
    unsigned ArgNo = 0;
    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
      Value *ActualArg = *AI;

      // When byval arguments actually inlined, we need to make the copy implied
      // by them explicit.  However, we don't do this if the callee is readonly
      // or readnone, because the copy would be unneeded: the callee doesn't
      // modify the struct.
      if (CS.isByValArgument(ArgNo)) {
        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
                                        CalledFunc->getParamAlignment(ArgNo+1));
 
        // Calls that we inline may use the new alloca, so we need to clear
        // their 'tail' flags if HandleByValArgument introduced a new alloca and
        // the callee has calls.
        MustClearTailCallFlags |= ActualArg != *AI;
      }

      VMap[I] = ActualArg;
    }

    // We want the inliner to prune the code as it copies.  We would LOVE to
    // have no dead or constant instructions leftover after inlining occurs
    // (which can happen, e.g., because an argument was constant), but we'll be
    // happy with whatever the cloner can do.
    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 
                              /*ModuleLevelChanges=*/false, Returns, ".i",
                              &InlinedFunctionInfo, IFI.TD, TheCall);

    // Remember the first block that is newly cloned over.
    FirstNewBlock = LastBlock; ++FirstNewBlock;

    // Update the callgraph if requested.
    if (IFI.CG)
      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);

    // Update inlined instructions' line number information.
    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
  }

  // If there are any alloca instructions in the block that used to be the entry
  // block for the callee, move them to the entry block of the caller.  First
  // calculate which instruction they should be inserted before.  We insert the
  // instructions at the end of the current alloca list.
  {
    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
    for (BasicBlock::iterator I = FirstNewBlock->begin(),
         E = FirstNewBlock->end(); I != E; ) {
      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
      if (AI == 0) continue;
      
      // If the alloca is now dead, remove it.  This often occurs due to code
      // specialization.
      if (AI->use_empty()) {
        AI->eraseFromParent();
        continue;
      }

      if (!isa<Constant>(AI->getArraySize()))
        continue;
      
      // Keep track of the static allocas that we inline into the caller.
      IFI.StaticAllocas.push_back(AI);
      
      // Scan for the block of allocas that we can move over, and move them
      // all at once.
      while (isa<AllocaInst>(I) &&
             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
        ++I;
      }

      // Transfer all of the allocas over in a block.  Using splice means
      // that the instructions aren't removed from the symbol table, then
      // reinserted.
      Caller->getEntryBlock().getInstList().splice(InsertPoint,
                                                   FirstNewBlock->getInstList(),
                                                   AI, I);
    }
  }

  // Leave lifetime markers for the static alloca's, scoping them to the
  // function we just inlined.
  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
    IRBuilder<> builder(FirstNewBlock->begin());
    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
      AllocaInst *AI = IFI.StaticAllocas[ai];

      // If the alloca is already scoped to something smaller than the whole
      // function then there's no need to add redundant, less accurate markers.
      if (hasLifetimeMarkers(AI))
        continue;

      // Try to determine the size of the allocation.
      ConstantInt *AllocaSize = 0;
      if (ConstantInt *AIArraySize =
          dyn_cast<ConstantInt>(AI->getArraySize())) {
        if (IFI.TD) {
          Type *AllocaType = AI->getAllocatedType();
          uint64_t AllocaTypeSize = IFI.TD->getTypeAllocSize(AllocaType);
          uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
          assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
          // Check that array size doesn't saturate uint64_t and doesn't
          // overflow when it's multiplied by type size.
          if (AllocaArraySize != ~0ULL &&
              UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
            AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
                                          AllocaArraySize * AllocaTypeSize);
          }
        }
      }

      builder.CreateLifetimeStart(AI, AllocaSize);
      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
        IRBuilder<> builder(Returns[ri]);
        builder.CreateLifetimeEnd(AI, AllocaSize);
      }
    }
  }

  // If the inlined code contained dynamic alloca instructions, wrap the inlined
  // code with llvm.stacksave/llvm.stackrestore intrinsics.
  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
    Module *M = Caller->getParent();
    // Get the two intrinsics we care about.
    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);

    // Insert the llvm.stacksave.
    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
      .CreateCall(StackSave, "savedstack");

    // Insert a call to llvm.stackrestore before any return instructions in the
    // inlined function.
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
      IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
    }
  }

  // If we are inlining tail call instruction through a call site that isn't
  // marked 'tail', we must remove the tail marker for any calls in the inlined
  // code.  Also, calls inlined through a 'nounwind' call site should be marked
  // 'nounwind'.
  if (InlinedFunctionInfo.ContainsCalls &&
      (MustClearTailCallFlags || MarkNoUnwind)) {
    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
         BB != E; ++BB)
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
        if (CallInst *CI = dyn_cast<CallInst>(I)) {
          if (MustClearTailCallFlags)
            CI->setTailCall(false);
          if (MarkNoUnwind)
            CI->setDoesNotThrow();
        }
  }

  // If we are inlining for an invoke instruction, we must make sure to rewrite
  // any call instructions into invoke instructions.
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);

  // If we cloned in _exactly one_ basic block, and if that block ends in a
  // return instruction, we splice the body of the inlined callee directly into
  // the calling basic block.
  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
    // Move all of the instructions right before the call.
    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
                                 FirstNewBlock->begin(), FirstNewBlock->end());
    // Remove the cloned basic block.
    Caller->getBasicBlockList().pop_back();

    // If the call site was an invoke instruction, add a branch to the normal
    // destination.
    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
      BranchInst::Create(II->getNormalDest(), TheCall);

    // If the return instruction returned a value, replace uses of the call with
    // uses of the returned value.
    if (!TheCall->use_empty()) {
      ReturnInst *R = Returns[0];
      if (TheCall == R->getReturnValue())
        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
      else
        TheCall->replaceAllUsesWith(R->getReturnValue());
    }
    // Since we are now done with the Call/Invoke, we can delete it.
    TheCall->eraseFromParent();

    // Since we are now done with the return instruction, delete it also.
    Returns[0]->eraseFromParent();

    // We are now done with the inlining.
    return true;
  }

  // Otherwise, we have the normal case, of more than one block to inline or
  // multiple return sites.

  // We want to clone the entire callee function into the hole between the
  // "starter" and "ender" blocks.  How we accomplish this depends on whether
  // this is an invoke instruction or a call instruction.
  BasicBlock *AfterCallBB;
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {

    // Add an unconditional branch to make this look like the CallInst case...
    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);

    // Split the basic block.  This guarantees that no PHI nodes will have to be
    // updated due to new incoming edges, and make the invoke case more
    // symmetric to the call case.
    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
                                          CalledFunc->getName()+".exit");

  } else {  // It's a call
    // If this is a call instruction, we need to split the basic block that
    // the call lives in.
    //
    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
                                          CalledFunc->getName()+".exit");
  }

  // Change the branch that used to go to AfterCallBB to branch to the first
  // basic block of the inlined function.
  //
  TerminatorInst *Br = OrigBB->getTerminator();
  assert(Br && Br->getOpcode() == Instruction::Br &&
         "splitBasicBlock broken!");
  Br->setOperand(0, FirstNewBlock);


  // Now that the function is correct, make it a little bit nicer.  In
  // particular, move the basic blocks inserted from the end of the function
  // into the space made by splitting the source basic block.
  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
                                     FirstNewBlock, Caller->end());

  // Handle all of the return instructions that we just cloned in, and eliminate
  // any users of the original call/invoke instruction.
  Type *RTy = CalledFunc->getReturnType();

  PHINode *PHI = 0;
  if (Returns.size() > 1) {
    // The PHI node should go at the front of the new basic block to merge all
    // possible incoming values.
    if (!TheCall->use_empty()) {
      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
                            AfterCallBB->begin());
      // Anything that used the result of the function call should now use the
      // PHI node as their operand.
      TheCall->replaceAllUsesWith(PHI);
    }

    // Loop over all of the return instructions adding entries to the PHI node
    // as appropriate.
    if (PHI) {
      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
        ReturnInst *RI = Returns[i];
        assert(RI->getReturnValue()->getType() == PHI->getType() &&
               "Ret value not consistent in function!");
        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
      }
    }


    // Add a branch to the merge points and remove return instructions.
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
      ReturnInst *RI = Returns[i];
      BranchInst::Create(AfterCallBB, RI);
      RI->eraseFromParent();
    }
  } else if (!Returns.empty()) {
    // Otherwise, if there is exactly one return value, just replace anything
    // using the return value of the call with the computed value.
    if (!TheCall->use_empty()) {
      if (TheCall == Returns[0]->getReturnValue())
        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
      else
        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
    }

    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
    BasicBlock *ReturnBB = Returns[0]->getParent();
    ReturnBB->replaceAllUsesWith(AfterCallBB);

    // Splice the code from the return block into the block that it will return
    // to, which contains the code that was after the call.
    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
                                      ReturnBB->getInstList());

    // Delete the return instruction now and empty ReturnBB now.
    Returns[0]->eraseFromParent();
    ReturnBB->eraseFromParent();
  } else if (!TheCall->use_empty()) {
    // No returns, but something is using the return value of the call.  Just
    // nuke the result.
    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
  }

  // Since we are now done with the Call/Invoke, we can delete it.
  TheCall->eraseFromParent();

  // We should always be able to fold the entry block of the function into the
  // single predecessor of the block...
  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);

  // Splice the code entry block into calling block, right before the
  // unconditional branch.
  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());

  // Remove the unconditional branch.
  OrigBB->getInstList().erase(Br);

  // Now we can remove the CalleeEntry block, which is now empty.
  Caller->getBasicBlockList().erase(CalleeEntry);

  // If we inserted a phi node, check to see if it has a single value (e.g. all
  // the entries are the same or undef).  If so, remove the PHI so it doesn't
  // block other optimizations.
  if (PHI) {
    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
      PHI->replaceAllUsesWith(V);
      PHI->eraseFromParent();
    }
  }

  return true;
}