1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
|
//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This transformation implements the well known scalar replacement of
/// aggregates transformation. It tries to identify promotable elements of an
/// aggregate alloca, and promote them to registers. It will also try to
/// convert uses of an element (or set of elements) of an alloca into a vector
/// or bitfield-style integer scalar if appropriate.
///
/// It works to do this with minimal slicing of the alloca so that regions
/// which are merely transferred in and out of external memory remain unchanged
/// and are not decomposed to scalar code.
///
/// Because this also performs alloca promotion, it can be thought of as also
/// serving the purpose of SSA formation. The algorithm iterates on the
/// function until all opportunities for promotion have been realized.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sroa"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DIBuilder.h"
#include "llvm/DebugInfo.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/IRBuilder.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Operator.h"
#include "llvm/Pass.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/DataLayout.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
STATISTIC(NumDeleted, "Number of instructions deleted");
STATISTIC(NumVectorized, "Number of vectorized aggregates");
/// Hidden option to force the pass to not use DomTree and mem2reg, instead
/// forming SSA values through the SSAUpdater infrastructure.
static cl::opt<bool>
ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
namespace {
/// \brief Alloca partitioning representation.
///
/// This class represents a partitioning of an alloca into slices, and
/// information about the nature of uses of each slice of the alloca. The goal
/// is that this information is sufficient to decide if and how to split the
/// alloca apart and replace slices with scalars. It is also intended that this
/// structure can capture the relevant information needed both to decide about
/// and to enact these transformations.
class AllocaPartitioning {
public:
/// \brief A common base class for representing a half-open byte range.
struct ByteRange {
/// \brief The beginning offset of the range.
uint64_t BeginOffset;
/// \brief The ending offset, not included in the range.
uint64_t EndOffset;
ByteRange() : BeginOffset(), EndOffset() {}
ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
: BeginOffset(BeginOffset), EndOffset(EndOffset) {}
/// \brief Support for ordering ranges.
///
/// This provides an ordering over ranges such that start offsets are
/// always increasing, and within equal start offsets, the end offsets are
/// decreasing. Thus the spanning range comes first in a cluster with the
/// same start position.
bool operator<(const ByteRange &RHS) const {
if (BeginOffset < RHS.BeginOffset) return true;
if (BeginOffset > RHS.BeginOffset) return false;
if (EndOffset > RHS.EndOffset) return true;
return false;
}
/// \brief Support comparison with a single offset to allow binary searches.
friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
return LHS.BeginOffset < RHSOffset;
}
friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
const ByteRange &RHS) {
return LHSOffset < RHS.BeginOffset;
}
bool operator==(const ByteRange &RHS) const {
return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
}
bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
};
/// \brief A partition of an alloca.
///
/// This structure represents a contiguous partition of the alloca. These are
/// formed by examining the uses of the alloca. During formation, they may
/// overlap but once an AllocaPartitioning is built, the Partitions within it
/// are all disjoint.
struct Partition : public ByteRange {
/// \brief Whether this partition is splittable into smaller partitions.
///
/// We flag partitions as splittable when they are formed entirely due to
/// accesses by trivially splittable operations such as memset and memcpy.
///
/// FIXME: At some point we should consider loads and stores of FCAs to be
/// splittable and eagerly split them into scalar values.
bool IsSplittable;
/// \brief Test whether a partition has been marked as dead.
bool isDead() const {
if (BeginOffset == UINT64_MAX) {
assert(EndOffset == UINT64_MAX);
return true;
}
return false;
}
/// \brief Kill a partition.
/// This is accomplished by setting both its beginning and end offset to
/// the maximum possible value.
void kill() {
assert(!isDead() && "He's Dead, Jim!");
BeginOffset = EndOffset = UINT64_MAX;
}
Partition() : ByteRange(), IsSplittable() {}
Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
: ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
};
/// \brief A particular use of a partition of the alloca.
///
/// This structure is used to associate uses of a partition with it. They
/// mark the range of bytes which are referenced by a particular instruction,
/// and includes a handle to the user itself and the pointer value in use.
/// The bounds of these uses are determined by intersecting the bounds of the
/// memory use itself with a particular partition. As a consequence there is
/// intentionally overlap between various uses of the same partition.
struct PartitionUse : public ByteRange {
/// \brief The use in question. Provides access to both user and used value.
///
/// Note that this may be null if the partition use is *dead*, that is, it
/// should be ignored.
Use *U;
PartitionUse() : ByteRange(), U() {}
PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U)
: ByteRange(BeginOffset, EndOffset), U(U) {}
};
/// \brief Construct a partitioning of a particular alloca.
///
/// Construction does most of the work for partitioning the alloca. This
/// performs the necessary walks of users and builds a partitioning from it.
AllocaPartitioning(const DataLayout &TD, AllocaInst &AI);
/// \brief Test whether a pointer to the allocation escapes our analysis.
///
/// If this is true, the partitioning is never fully built and should be
/// ignored.
bool isEscaped() const { return PointerEscapingInstr; }
/// \brief Support for iterating over the partitions.
/// @{
typedef SmallVectorImpl<Partition>::iterator iterator;
iterator begin() { return Partitions.begin(); }
iterator end() { return Partitions.end(); }
typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
const_iterator begin() const { return Partitions.begin(); }
const_iterator end() const { return Partitions.end(); }
/// @}
/// \brief Support for iterating over and manipulating a particular
/// partition's uses.
///
/// The iteration support provided for uses is more limited, but also
/// includes some manipulation routines to support rewriting the uses of
/// partitions during SROA.
/// @{
typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
const_use_iterator use_begin(const_iterator I) const {
return Uses[I - begin()].begin();
}
const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
const_use_iterator use_end(const_iterator I) const {
return Uses[I - begin()].end();
}
unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); }
unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); }
const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const {
return Uses[PIdx][UIdx];
}
const PartitionUse &getUse(const_iterator I, unsigned UIdx) const {
return Uses[I - begin()][UIdx];
}
void use_push_back(unsigned Idx, const PartitionUse &PU) {
Uses[Idx].push_back(PU);
}
void use_push_back(const_iterator I, const PartitionUse &PU) {
Uses[I - begin()].push_back(PU);
}
/// @}
/// \brief Allow iterating the dead users for this alloca.
///
/// These are instructions which will never actually use the alloca as they
/// are outside the allocated range. They are safe to replace with undef and
/// delete.
/// @{
typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
/// @}
/// \brief Allow iterating the dead expressions referring to this alloca.
///
/// These are operands which have cannot actually be used to refer to the
/// alloca as they are outside its range and the user doesn't correct for
/// that. These mostly consist of PHI node inputs and the like which we just
/// need to replace with undef.
/// @{
typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
/// @}
/// \brief MemTransferInst auxiliary data.
/// This struct provides some auxiliary data about memory transfer
/// intrinsics such as memcpy and memmove. These intrinsics can use two
/// different ranges within the same alloca, and provide other challenges to
/// correctly represent. We stash extra data to help us untangle this
/// after the partitioning is complete.
struct MemTransferOffsets {
/// The destination begin and end offsets when the destination is within
/// this alloca. If the end offset is zero the destination is not within
/// this alloca.
uint64_t DestBegin, DestEnd;
/// The source begin and end offsets when the source is within this alloca.
/// If the end offset is zero, the source is not within this alloca.
uint64_t SourceBegin, SourceEnd;
/// Flag for whether an alloca is splittable.
bool IsSplittable;
};
MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
return MemTransferInstData.lookup(&II);
}
/// \brief Map from a PHI or select operand back to a partition.
///
/// When manipulating PHI nodes or selects, they can use more than one
/// partition of an alloca. We store a special mapping to allow finding the
/// partition referenced by each of these operands, if any.
iterator findPartitionForPHIOrSelectOperand(Use *U) {
SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
= PHIOrSelectOpMap.find(U);
if (MapIt == PHIOrSelectOpMap.end())
return end();
return begin() + MapIt->second.first;
}
/// \brief Map from a PHI or select operand back to the specific use of
/// a partition.
///
/// Similar to mapping these operands back to the partitions, this maps
/// directly to the use structure of that partition.
use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
= PHIOrSelectOpMap.find(U);
assert(MapIt != PHIOrSelectOpMap.end());
return Uses[MapIt->second.first].begin() + MapIt->second.second;
}
/// \brief Compute a common type among the uses of a particular partition.
///
/// This routines walks all of the uses of a particular partition and tries
/// to find a common type between them. Untyped operations such as memset and
/// memcpy are ignored.
Type *getCommonType(iterator I) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
void printUsers(raw_ostream &OS, const_iterator I,
StringRef Indent = " ") const;
void print(raw_ostream &OS) const;
void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
#endif
private:
template <typename DerivedT, typename RetT = void> class BuilderBase;
class PartitionBuilder;
friend class AllocaPartitioning::PartitionBuilder;
class UseBuilder;
friend class AllocaPartitioning::UseBuilder;
#ifndef NDEBUG
/// \brief Handle to alloca instruction to simplify method interfaces.
AllocaInst &AI;
#endif
/// \brief The instruction responsible for this alloca having no partitioning.
///
/// When an instruction (potentially) escapes the pointer to the alloca, we
/// store a pointer to that here and abort trying to partition the alloca.
/// This will be null if the alloca is partitioned successfully.
Instruction *PointerEscapingInstr;
/// \brief The partitions of the alloca.
///
/// We store a vector of the partitions over the alloca here. This vector is
/// sorted by increasing begin offset, and then by decreasing end offset. See
/// the Partition inner class for more details. Initially (during
/// construction) there are overlaps, but we form a disjoint sequence of
/// partitions while finishing construction and a fully constructed object is
/// expected to always have this as a disjoint space.
SmallVector<Partition, 8> Partitions;
/// \brief The uses of the partitions.
///
/// This is essentially a mapping from each partition to a list of uses of
/// that partition. The mapping is done with a Uses vector that has the exact
/// same number of entries as the partition vector. Each entry is itself
/// a vector of the uses.
SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
/// \brief Instructions which will become dead if we rewrite the alloca.
///
/// Note that these are not separated by partition. This is because we expect
/// a partitioned alloca to be completely rewritten or not rewritten at all.
/// If rewritten, all these instructions can simply be removed and replaced
/// with undef as they come from outside of the allocated space.
SmallVector<Instruction *, 8> DeadUsers;
/// \brief Operands which will become dead if we rewrite the alloca.
///
/// These are operands that in their particular use can be replaced with
/// undef when we rewrite the alloca. These show up in out-of-bounds inputs
/// to PHI nodes and the like. They aren't entirely dead (there might be
/// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
/// want to swap this particular input for undef to simplify the use lists of
/// the alloca.
SmallVector<Use *, 8> DeadOperands;
/// \brief The underlying storage for auxiliary memcpy and memset info.
SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
/// \brief A side datastructure used when building up the partitions and uses.
///
/// This mapping is only really used during the initial building of the
/// partitioning so that we can retain information about PHI and select nodes
/// processed.
SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
/// \brief Auxiliary information for particular PHI or select operands.
SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
/// \brief A utility routine called from the constructor.
///
/// This does what it says on the tin. It is the key of the alloca partition
/// splitting and merging. After it is called we have the desired disjoint
/// collection of partitions.
void splitAndMergePartitions();
};
}
template <typename DerivedT, typename RetT>
class AllocaPartitioning::BuilderBase
: public InstVisitor<DerivedT, RetT> {
public:
BuilderBase(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
: TD(TD),
AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
P(P) {
enqueueUsers(AI, 0);
}
protected:
const DataLayout &TD;
const uint64_t AllocSize;
AllocaPartitioning &P;
SmallPtrSet<Use *, 8> VisitedUses;
struct OffsetUse {
Use *U;
int64_t Offset;
};
SmallVector<OffsetUse, 8> Queue;
// The active offset and use while visiting.
Use *U;
int64_t Offset;
void enqueueUsers(Instruction &I, int64_t UserOffset) {
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI) {
if (VisitedUses.insert(&UI.getUse())) {
OffsetUse OU = { &UI.getUse(), UserOffset };
Queue.push_back(OU);
}
}
}
bool computeConstantGEPOffset(GetElementPtrInst &GEPI, int64_t &GEPOffset) {
GEPOffset = Offset;
unsigned int AS = GEPI.getPointerAddressSpace();
for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI);
GTI != GTE; ++GTI) {
ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
if (!OpC)
return false;
if (OpC->isZero())
continue;
// Handle a struct index, which adds its field offset to the pointer.
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
unsigned ElementIdx = OpC->getZExtValue();
const StructLayout *SL = TD.getStructLayout(STy);
uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
// Check that we can continue to model this GEP in a signed 64-bit offset.
if (ElementOffset > INT64_MAX ||
(GEPOffset >= 0 &&
((uint64_t)GEPOffset + ElementOffset) > INT64_MAX)) {
DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
<< "what can be represented in an int64_t!\n"
<< " alloca: " << P.AI << "\n");
return false;
}
if (GEPOffset < 0)
GEPOffset = ElementOffset + (uint64_t)-GEPOffset;
else
GEPOffset += ElementOffset;
continue;
}
APInt Index = OpC->getValue().sextOrTrunc(TD.getPointerSizeInBits(AS));
Index *= APInt(Index.getBitWidth(),
TD.getTypeAllocSize(GTI.getIndexedType()));
Index += APInt(Index.getBitWidth(), (uint64_t)GEPOffset,
/*isSigned*/true);
// Check if the result can be stored in our int64_t offset.
if (!Index.isSignedIntN(sizeof(GEPOffset) * 8)) {
DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
<< "what can be represented in an int64_t!\n"
<< " alloca: " << P.AI << "\n");
return false;
}
GEPOffset = Index.getSExtValue();
}
return true;
}
Value *foldSelectInst(SelectInst &SI) {
// If the condition being selected on is a constant or the same value is
// being selected between, fold the select. Yes this does (rarely) happen
// early on.
if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
return SI.getOperand(1+CI->isZero());
if (SI.getOperand(1) == SI.getOperand(2)) {
assert(*U == SI.getOperand(1));
return SI.getOperand(1);
}
return 0;
}
};
/// \brief Builder for the alloca partitioning.
///
/// This class builds an alloca partitioning by recursively visiting the uses
/// of an alloca and splitting the partitions for each load and store at each
/// offset.
class AllocaPartitioning::PartitionBuilder
: public BuilderBase<PartitionBuilder, bool> {
friend class InstVisitor<PartitionBuilder, bool>;
SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
public:
PartitionBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
: BuilderBase<PartitionBuilder, bool>(TD, AI, P) {}
/// \brief Run the builder over the allocation.
bool operator()() {
// Note that we have to re-evaluate size on each trip through the loop as
// the queue grows at the tail.
for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
U = Queue[Idx].U;
Offset = Queue[Idx].Offset;
if (!visit(cast<Instruction>(U->getUser())))
return false;
}
return true;
}
private:
bool markAsEscaping(Instruction &I) {
P.PointerEscapingInstr = &I;
return false;
}
void insertUse(Instruction &I, int64_t Offset, uint64_t Size,
bool IsSplittable = false) {
// Completely skip uses which have a zero size or don't overlap the
// allocation.
if (Size == 0 ||
(Offset >= 0 && (uint64_t)Offset >= AllocSize) ||
(Offset < 0 && (uint64_t)-Offset >= Size)) {
DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
<< " which starts past the end of the " << AllocSize
<< " byte alloca:\n"
<< " alloca: " << P.AI << "\n"
<< " use: " << I << "\n");
return;
}
// Clamp the start to the beginning of the allocation.
if (Offset < 0) {
DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
<< " to start at the beginning of the alloca:\n"
<< " alloca: " << P.AI << "\n"
<< " use: " << I << "\n");
Size -= (uint64_t)-Offset;
Offset = 0;
}
uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
// Clamp the end offset to the end of the allocation. Note that this is
// formulated to handle even the case where "BeginOffset + Size" overflows.
assert(AllocSize >= BeginOffset); // Established above.
if (Size > AllocSize - BeginOffset) {
DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
<< " to remain within the " << AllocSize << " byte alloca:\n"
<< " alloca: " << P.AI << "\n"
<< " use: " << I << "\n");
EndOffset = AllocSize;
}
Partition New(BeginOffset, EndOffset, IsSplittable);
P.Partitions.push_back(New);
}
bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
uint64_t Size = TD.getTypeStoreSize(Ty);
// If this memory access can be shown to *statically* extend outside the
// bounds of of the allocation, it's behavior is undefined, so simply
// ignore it. Note that this is more strict than the generic clamping
// behavior of insertUse. We also try to handle cases which might run the
// risk of overflow.
// FIXME: We should instead consider the pointer to have escaped if this
// function is being instrumented for addressing bugs or race conditions.
if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
Size > (AllocSize - (uint64_t)Offset)) {
DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
<< (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
<< " which extends past the end of the " << AllocSize
<< " byte alloca:\n"
<< " alloca: " << P.AI << "\n"
<< " use: " << I << "\n");
return true;
}
insertUse(I, Offset, Size);
return true;
}
bool visitBitCastInst(BitCastInst &BC) {
enqueueUsers(BC, Offset);
return true;
}
bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
int64_t GEPOffset;
if (!computeConstantGEPOffset(GEPI, GEPOffset))
return markAsEscaping(GEPI);
enqueueUsers(GEPI, GEPOffset);
return true;
}
bool visitLoadInst(LoadInst &LI) {
assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
"All simple FCA loads should have been pre-split");
return handleLoadOrStore(LI.getType(), LI, Offset);
}
bool visitStoreInst(StoreInst &SI) {
Value *ValOp = SI.getValueOperand();
if (ValOp == *U)
return markAsEscaping(SI);
assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
"All simple FCA stores should have been pre-split");
return handleLoadOrStore(ValOp->getType(), SI, Offset);
}
bool visitMemSetInst(MemSetInst &II) {
assert(II.getRawDest() == *U && "Pointer use is not the destination?");
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
insertUse(II, Offset, Size, Length);
return true;
}
bool visitMemTransferInst(MemTransferInst &II) {
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
if (!Size)
// Zero-length mem transfer intrinsics can be ignored entirely.
return true;
MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
// Only intrinsics with a constant length can be split.
Offsets.IsSplittable = Length;
if (*U == II.getRawDest()) {
Offsets.DestBegin = Offset;
Offsets.DestEnd = Offset + Size;
}
if (*U == II.getRawSource()) {
Offsets.SourceBegin = Offset;
Offsets.SourceEnd = Offset + Size;
}
// If we have set up end offsets for both the source and the destination,
// we have found both sides of this transfer pointing at the same alloca.
bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd;
if (SeenBothEnds && II.getRawDest() != II.getRawSource()) {
unsigned PrevIdx = MemTransferPartitionMap[&II];
// Check if the begin offsets match and this is a non-volatile transfer.
// In that case, we can completely elide the transfer.
if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
P.Partitions[PrevIdx].kill();
return true;
}
// Otherwise we have an offset transfer within the same alloca. We can't
// split those.
P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false;
} else if (SeenBothEnds) {
// Handle the case where this exact use provides both ends of the
// operation.
assert(II.getRawDest() == II.getRawSource());
// For non-volatile transfers this is a no-op.
if (!II.isVolatile())
return true;
// Otherwise just suppress splitting.
Offsets.IsSplittable = false;
}
// Insert the use now that we've fixed up the splittable nature.
insertUse(II, Offset, Size, Offsets.IsSplittable);
// Setup the mapping from intrinsic to partition of we've not seen both
// ends of this transfer.
if (!SeenBothEnds) {
unsigned NewIdx = P.Partitions.size() - 1;
bool Inserted
= MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second;
assert(Inserted &&
"Already have intrinsic in map but haven't seen both ends");
(void)Inserted;
}
return true;
}
// Disable SRoA for any intrinsics except for lifetime invariants.
// FIXME: What about debug instrinsics? This matches old behavior, but
// doesn't make sense.
bool visitIntrinsicInst(IntrinsicInst &II) {
if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
II.getIntrinsicID() == Intrinsic::lifetime_end) {
ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue());
insertUse(II, Offset, Size, true);
return true;
}
return markAsEscaping(II);
}
Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
// We consider any PHI or select that results in a direct load or store of
// the same offset to be a viable use for partitioning purposes. These uses
// are considered unsplittable and the size is the maximum loaded or stored
// size.
SmallPtrSet<Instruction *, 4> Visited;
SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
Visited.insert(Root);
Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
// If there are no loads or stores, the access is dead. We mark that as
// a size zero access.
Size = 0;
do {
Instruction *I, *UsedI;
llvm::tie(UsedI, I) = Uses.pop_back_val();
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Size = std::max(Size, TD.getTypeStoreSize(LI->getType()));
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
Value *Op = SI->getOperand(0);
if (Op == UsedI)
return SI;
Size = std::max(Size, TD.getTypeStoreSize(Op->getType()));
continue;
}
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
if (!GEP->hasAllZeroIndices())
return GEP;
} else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
!isa<SelectInst>(I)) {
return I;
}
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
++UI)
if (Visited.insert(cast<Instruction>(*UI)))
Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
} while (!Uses.empty());
return 0;
}
bool visitPHINode(PHINode &PN) {
// See if we already have computed info on this node.
std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
if (PHIInfo.first) {
PHIInfo.second = true;
insertUse(PN, Offset, PHIInfo.first);
return true;
}
// Check for an unsafe use of the PHI node.
if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
return markAsEscaping(*EscapingI);
insertUse(PN, Offset, PHIInfo.first);
return true;
}
bool visitSelectInst(SelectInst &SI) {
if (Value *Result = foldSelectInst(SI)) {
if (Result == *U)
// If the result of the constant fold will be the pointer, recurse
// through the select as if we had RAUW'ed it.
enqueueUsers(SI, Offset);
return true;
}
// See if we already have computed info on this node.
std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
if (SelectInfo.first) {
SelectInfo.second = true;
insertUse(SI, Offset, SelectInfo.first);
return true;
}
// Check for an unsafe use of the PHI node.
if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
return markAsEscaping(*EscapingI);
insertUse(SI, Offset, SelectInfo.first);
return true;
}
/// \brief Disable SROA entirely if there are unhandled users of the alloca.
bool visitInstruction(Instruction &I) { return markAsEscaping(I); }
};
/// \brief Use adder for the alloca partitioning.
///
/// This class adds the uses of an alloca to all of the partitions which they
/// use. For splittable partitions, this can end up doing essentially a linear
/// walk of the partitions, but the number of steps remains bounded by the
/// total result instruction size:
/// - The number of partitions is a result of the number unsplittable
/// instructions using the alloca.
/// - The number of users of each partition is at worst the total number of
/// splittable instructions using the alloca.
/// Thus we will produce N * M instructions in the end, where N are the number
/// of unsplittable uses and M are the number of splittable. This visitor does
/// the exact same number of updates to the partitioning.
///
/// In the more common case, this visitor will leverage the fact that the
/// partition space is pre-sorted, and do a logarithmic search for the
/// partition needed, making the total visit a classical ((N + M) * log(N))
/// complexity operation.
class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> {
friend class InstVisitor<UseBuilder>;
/// \brief Set to de-duplicate dead instructions found in the use walk.
SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
public:
UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
: BuilderBase<UseBuilder>(TD, AI, P) {}
/// \brief Run the builder over the allocation.
void operator()() {
// Note that we have to re-evaluate size on each trip through the loop as
// the queue grows at the tail.
for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
U = Queue[Idx].U;
Offset = Queue[Idx].Offset;
this->visit(cast<Instruction>(U->getUser()));
}
}
private:
void markAsDead(Instruction &I) {
if (VisitedDeadInsts.insert(&I))
P.DeadUsers.push_back(&I);
}
void insertUse(Instruction &User, int64_t Offset, uint64_t Size) {
// If the use has a zero size or extends outside of the allocation, record
// it as a dead use for elimination later.
if (Size == 0 || (uint64_t)Offset >= AllocSize ||
(Offset < 0 && (uint64_t)-Offset >= Size))
return markAsDead(User);
// Clamp the start to the beginning of the allocation.
if (Offset < 0) {
Size -= (uint64_t)-Offset;
Offset = 0;
}
uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
// Clamp the end offset to the end of the allocation. Note that this is
// formulated to handle even the case where "BeginOffset + Size" overflows.
assert(AllocSize >= BeginOffset); // Established above.
if (Size > AllocSize - BeginOffset)
EndOffset = AllocSize;
// NB: This only works if we have zero overlapping partitions.
iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
B = llvm::prior(B);
for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
++I) {
PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
std::min(I->EndOffset, EndOffset), U);
P.use_push_back(I, NewPU);
if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
P.PHIOrSelectOpMap[U]
= std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
}
}
void handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
uint64_t Size = TD.getTypeStoreSize(Ty);
// If this memory access can be shown to *statically* extend outside the
// bounds of of the allocation, it's behavior is undefined, so simply
// ignore it. Note that this is more strict than the generic clamping
// behavior of insertUse.
if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
Size > (AllocSize - (uint64_t)Offset))
return markAsDead(I);
insertUse(I, Offset, Size);
}
void visitBitCastInst(BitCastInst &BC) {
if (BC.use_empty())
return markAsDead(BC);
enqueueUsers(BC, Offset);
}
void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
if (GEPI.use_empty())
return markAsDead(GEPI);
int64_t GEPOffset;
if (!computeConstantGEPOffset(GEPI, GEPOffset))
llvm_unreachable("Unable to compute constant offset for use");
enqueueUsers(GEPI, GEPOffset);
}
void visitLoadInst(LoadInst &LI) {
handleLoadOrStore(LI.getType(), LI, Offset);
}
void visitStoreInst(StoreInst &SI) {
handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
}
void visitMemSetInst(MemSetInst &II) {
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
insertUse(II, Offset, Size);
}
void visitMemTransferInst(MemTransferInst &II) {
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
if (!Size)
return markAsDead(II);
MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
Offsets.DestBegin == Offsets.SourceBegin)
return markAsDead(II); // Skip identity transfers without side-effects.
insertUse(II, Offset, Size);
}
void visitIntrinsicInst(IntrinsicInst &II) {
assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
II.getIntrinsicID() == Intrinsic::lifetime_end);
ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
insertUse(II, Offset,
std::min(AllocSize - Offset, Length->getLimitedValue()));
}
void insertPHIOrSelect(Instruction &User, uint64_t Offset) {
uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
// For PHI and select operands outside the alloca, we can't nuke the entire
// phi or select -- the other side might still be relevant, so we special
// case them here and use a separate structure to track the operands
// themselves which should be replaced with undef.
if (Offset >= AllocSize) {
P.DeadOperands.push_back(U);
return;
}
insertUse(User, Offset, Size);
}
void visitPHINode(PHINode &PN) {
if (PN.use_empty())
return markAsDead(PN);
insertPHIOrSelect(PN, Offset);
}
void visitSelectInst(SelectInst &SI) {
if (SI.use_empty())
return markAsDead(SI);
if (Value *Result = foldSelectInst(SI)) {
if (Result == *U)
// If the result of the constant fold will be the pointer, recurse
// through the select as if we had RAUW'ed it.
enqueueUsers(SI, Offset);
else
// Otherwise the operand to the select is dead, and we can replace it
// with undef.
P.DeadOperands.push_back(U);
return;
}
insertPHIOrSelect(SI, Offset);
}
/// \brief Unreachable, we've already visited the alloca once.
void visitInstruction(Instruction &I) {
llvm_unreachable("Unhandled instruction in use builder.");
}
};
void AllocaPartitioning::splitAndMergePartitions() {
size_t NumDeadPartitions = 0;
// Track the range of splittable partitions that we pass when accumulating
// overlapping unsplittable partitions.
uint64_t SplitEndOffset = 0ull;
Partition New(0ull, 0ull, false);
for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
++j;
if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
assert(New.BeginOffset == New.EndOffset);
New = Partitions[i];
} else {
assert(New.IsSplittable);
New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
}
assert(New.BeginOffset != New.EndOffset);
// Scan the overlapping partitions.
while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
// If the new partition we are forming is splittable, stop at the first
// unsplittable partition.
if (New.IsSplittable && !Partitions[j].IsSplittable)
break;
// Grow the new partition to include any equally splittable range. 'j' is
// always equally splittable when New is splittable, but when New is not
// splittable, we may subsume some (or part of some) splitable partition
// without growing the new one.
if (New.IsSplittable == Partitions[j].IsSplittable) {
New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
} else {
assert(!New.IsSplittable);
assert(Partitions[j].IsSplittable);
SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
}
Partitions[j].kill();
++NumDeadPartitions;
++j;
}
// If the new partition is splittable, chop off the end as soon as the
// unsplittable subsequent partition starts and ensure we eventually cover
// the splittable area.
if (j != e && New.IsSplittable) {
SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
}
// Add the new partition if it differs from the original one and is
// non-empty. We can end up with an empty partition here if it was
// splittable but there is an unsplittable one that starts at the same
// offset.
if (New != Partitions[i]) {
if (New.BeginOffset != New.EndOffset)
Partitions.push_back(New);
// Mark the old one for removal.
Partitions[i].kill();
++NumDeadPartitions;
}
New.BeginOffset = New.EndOffset;
if (!New.IsSplittable) {
New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
if (j != e && !Partitions[j].IsSplittable)
New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
New.IsSplittable = true;
// If there is a trailing splittable partition which won't be fused into
// the next splittable partition go ahead and add it onto the partitions
// list.
if (New.BeginOffset < New.EndOffset &&
(j == e || !Partitions[j].IsSplittable ||
New.EndOffset < Partitions[j].BeginOffset)) {
Partitions.push_back(New);
New.BeginOffset = New.EndOffset = 0ull;
}
}
}
// Re-sort the partitions now that they have been split and merged into
// disjoint set of partitions. Also remove any of the dead partitions we've
// replaced in the process.
std::sort(Partitions.begin(), Partitions.end());
if (NumDeadPartitions) {
assert(Partitions.back().isDead());
assert((ptrdiff_t)NumDeadPartitions ==
std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
}
Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
}
AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
:
#ifndef NDEBUG
AI(AI),
#endif
PointerEscapingInstr(0) {
PartitionBuilder PB(TD, AI, *this);
if (!PB())
return;
// Sort the uses. This arranges for the offsets to be in ascending order,
// and the sizes to be in descending order.
std::sort(Partitions.begin(), Partitions.end());
// Remove any partitions from the back which are marked as dead.
while (!Partitions.empty() && Partitions.back().isDead())
Partitions.pop_back();
if (Partitions.size() > 1) {
// Intersect splittability for all partitions with equal offsets and sizes.
// Then remove all but the first so that we have a sequence of non-equal but
// potentially overlapping partitions.
for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
I = J) {
++J;
while (J != E && *I == *J) {
I->IsSplittable &= J->IsSplittable;
++J;
}
}
Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
Partitions.end());
// Split splittable and merge unsplittable partitions into a disjoint set
// of partitions over the used space of the allocation.
splitAndMergePartitions();
}
// Now build up the user lists for each of these disjoint partitions by
// re-walking the recursive users of the alloca.
Uses.resize(Partitions.size());
UseBuilder UB(TD, AI, *this);
UB();
}
Type *AllocaPartitioning::getCommonType(iterator I) const {
Type *Ty = 0;
for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
if (!UI->U)
continue; // Skip dead uses.
if (isa<IntrinsicInst>(*UI->U->getUser()))
continue;
if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
continue;
Type *UserTy = 0;
if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser())) {
UserTy = LI->getType();
} else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) {
UserTy = SI->getValueOperand()->getType();
}
if (Ty && Ty != UserTy)
return 0;
Ty = UserTy;
}
return Ty;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
StringRef Indent) const {
OS << Indent << "partition #" << (I - begin())
<< " [" << I->BeginOffset << "," << I->EndOffset << ")"
<< (I->IsSplittable ? " (splittable)" : "")
<< (Uses[I - begin()].empty() ? " (zero uses)" : "")
<< "\n";
}
void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
StringRef Indent) const {
for (const_use_iterator UI = use_begin(I), UE = use_end(I);
UI != UE; ++UI) {
if (!UI->U)
continue; // Skip dead uses.
OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") "
<< "used by: " << *UI->U->getUser() << "\n";
if (MemTransferInst *II = dyn_cast<MemTransferInst>(UI->U->getUser())) {
const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
bool IsDest;
if (!MTO.IsSplittable)
IsDest = UI->BeginOffset == MTO.DestBegin;
else
IsDest = MTO.DestBegin != 0u;
OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": "
<< "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
<< "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
}
}
}
void AllocaPartitioning::print(raw_ostream &OS) const {
if (PointerEscapingInstr) {
OS << "No partitioning for alloca: " << AI << "\n"
<< " A pointer to this alloca escaped by:\n"
<< " " << *PointerEscapingInstr << "\n";
return;
}
OS << "Partitioning of alloca: " << AI << "\n";
unsigned Num = 0;
for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
print(OS, I);
printUsers(OS, I);
}
}
void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
void AllocaPartitioning::dump() const { print(dbgs()); }
#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
namespace {
/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
///
/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
/// the loads and stores of an alloca instruction, as well as updating its
/// debug information. This is used when a domtree is unavailable and thus
/// mem2reg in its full form can't be used to handle promotion of allocas to
/// scalar values.
class AllocaPromoter : public LoadAndStorePromoter {
AllocaInst &AI;
DIBuilder &DIB;
SmallVector<DbgDeclareInst *, 4> DDIs;
SmallVector<DbgValueInst *, 4> DVIs;
public:
AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
AllocaInst &AI, DIBuilder &DIB)
: LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
void run(const SmallVectorImpl<Instruction*> &Insts) {
// Remember which alloca we're promoting (for isInstInList).
if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
for (Value::use_iterator UI = DebugNode->use_begin(),
UE = DebugNode->use_end();
UI != UE; ++UI)
if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
DDIs.push_back(DDI);
else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
DVIs.push_back(DVI);
}
LoadAndStorePromoter::run(Insts);
AI.eraseFromParent();
while (!DDIs.empty())
DDIs.pop_back_val()->eraseFromParent();
while (!DVIs.empty())
DVIs.pop_back_val()->eraseFromParent();
}
virtual bool isInstInList(Instruction *I,
const SmallVectorImpl<Instruction*> &Insts) const {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->getOperand(0) == &AI;
return cast<StoreInst>(I)->getPointerOperand() == &AI;
}
virtual void updateDebugInfo(Instruction *Inst) const {
for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
E = DDIs.end(); I != E; ++I) {
DbgDeclareInst *DDI = *I;
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
}
for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
E = DVIs.end(); I != E; ++I) {
DbgValueInst *DVI = *I;
Value *Arg = NULL;
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// If an argument is zero extended then use argument directly. The ZExt
// may be zapped by an optimization pass in future.
if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
Arg = dyn_cast<Argument>(ZExt->getOperand(0));
if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
Arg = dyn_cast<Argument>(SExt->getOperand(0));
if (!Arg)
Arg = SI->getOperand(0);
} else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
Arg = LI->getOperand(0);
} else {
continue;
}
Instruction *DbgVal =
DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
Inst);
DbgVal->setDebugLoc(DVI->getDebugLoc());
}
}
};
} // end anon namespace
namespace {
/// \brief An optimization pass providing Scalar Replacement of Aggregates.
///
/// This pass takes allocations which can be completely analyzed (that is, they
/// don't escape) and tries to turn them into scalar SSA values. There are
/// a few steps to this process.
///
/// 1) It takes allocations of aggregates and analyzes the ways in which they
/// are used to try to split them into smaller allocations, ideally of
/// a single scalar data type. It will split up memcpy and memset accesses
/// as necessary and try to isolate invidual scalar accesses.
/// 2) It will transform accesses into forms which are suitable for SSA value
/// promotion. This can be replacing a memset with a scalar store of an
/// integer value, or it can involve speculating operations on a PHI or
/// select to be a PHI or select of the results.
/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
/// onto insert and extract operations on a vector value, and convert them to
/// this form. By doing so, it will enable promotion of vector aggregates to
/// SSA vector values.
class SROA : public FunctionPass {
const bool RequiresDomTree;
LLVMContext *C;
const DataLayout *TD;
DominatorTree *DT;
/// \brief Worklist of alloca instructions to simplify.
///
/// Each alloca in the function is added to this. Each new alloca formed gets
/// added to it as well to recursively simplify unless that alloca can be
/// directly promoted. Finally, each time we rewrite a use of an alloca other
/// the one being actively rewritten, we add it back onto the list if not
/// already present to ensure it is re-visited.
SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
/// \brief A collection of instructions to delete.
/// We try to batch deletions to simplify code and make things a bit more
/// efficient.
SmallVector<Instruction *, 8> DeadInsts;
/// \brief A set to prevent repeatedly marking an instruction split into many
/// uses as dead. Only used to guard insertion into DeadInsts.
SmallPtrSet<Instruction *, 4> DeadSplitInsts;
/// \brief Post-promotion worklist.
///
/// Sometimes we discover an alloca which has a high probability of becoming
/// viable for SROA after a round of promotion takes place. In those cases,
/// the alloca is enqueued here for re-processing.
///
/// Note that we have to be very careful to clear allocas out of this list in
/// the event they are deleted.
SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
/// \brief A collection of alloca instructions we can directly promote.
std::vector<AllocaInst *> PromotableAllocas;
public:
SROA(bool RequiresDomTree = true)
: FunctionPass(ID), RequiresDomTree(RequiresDomTree),
C(0), TD(0), DT(0) {
initializeSROAPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F);
void getAnalysisUsage(AnalysisUsage &AU) const;
const char *getPassName() const { return "SROA"; }
static char ID;
private:
friend class PHIOrSelectSpeculator;
friend class AllocaPartitionRewriter;
friend class AllocaPartitionVectorRewriter;
bool rewriteAllocaPartition(AllocaInst &AI,
AllocaPartitioning &P,
AllocaPartitioning::iterator PI);
bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
bool runOnAlloca(AllocaInst &AI);
void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
bool promoteAllocas(Function &F);
};
}
char SROA::ID = 0;
FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
return new SROA(RequiresDomTree);
}
INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
false, false)
namespace {
/// \brief Visitor to speculate PHIs and Selects where possible.
class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
// Befriend the base class so it can delegate to private visit methods.
friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
const DataLayout &TD;
AllocaPartitioning &P;
SROA &Pass;
public:
PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass)
: TD(TD), P(P), Pass(Pass) {}
/// \brief Visit the users of an alloca partition and rewrite them.
void visitUsers(AllocaPartitioning::const_iterator PI) {
// Note that we need to use an index here as the underlying vector of uses
// may be grown during speculation. However, we never need to re-visit the
// new uses, and so we can use the initial size bound.
for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
const AllocaPartitioning::PartitionUse &PU = P.getUse(PI, Idx);
if (!PU.U)
continue; // Skip dead use.
visit(cast<Instruction>(PU.U->getUser()));
}
}
private:
// By default, skip this instruction.
void visitInstruction(Instruction &I) {}
/// PHI instructions that use an alloca and are subsequently loaded can be
/// rewritten to load both input pointers in the pred blocks and then PHI the
/// results, allowing the load of the alloca to be promoted.
/// From this:
/// %P2 = phi [i32* %Alloca, i32* %Other]
/// %V = load i32* %P2
/// to:
/// %V1 = load i32* %Alloca -> will be mem2reg'd
/// ...
/// %V2 = load i32* %Other
/// ...
/// %V = phi [i32 %V1, i32 %V2]
///
/// We can do this to a select if its only uses are loads and if the operands
/// to the select can be loaded unconditionally.
///
/// FIXME: This should be hoisted into a generic utility, likely in
/// Transforms/Util/Local.h
bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
// For now, we can only do this promotion if the load is in the same block
// as the PHI, and if there are no stores between the phi and load.
// TODO: Allow recursive phi users.
// TODO: Allow stores.
BasicBlock *BB = PN.getParent();
unsigned MaxAlign = 0;
for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
UI != UE; ++UI) {
LoadInst *LI = dyn_cast<LoadInst>(*UI);
if (LI == 0 || !LI->isSimple()) return false;
// For now we only allow loads in the same block as the PHI. This is
// a common case that happens when instcombine merges two loads through
// a PHI.
if (LI->getParent() != BB) return false;
// Ensure that there are no instructions between the PHI and the load that
// could store.
for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
if (BBI->mayWriteToMemory())
return false;
MaxAlign = std::max(MaxAlign, LI->getAlignment());
Loads.push_back(LI);
}
// We can only transform this if it is safe to push the loads into the
// predecessor blocks. The only thing to watch out for is that we can't put
// a possibly trapping load in the predecessor if it is a critical edge.
for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
++Idx) {
TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
Value *InVal = PN.getIncomingValue(Idx);
// If the value is produced by the terminator of the predecessor (an
// invoke) or it has side-effects, there is no valid place to put a load
// in the predecessor.
if (TI == InVal || TI->mayHaveSideEffects())
return false;
// If the predecessor has a single successor, then the edge isn't
// critical.
if (TI->getNumSuccessors() == 1)
continue;
// If this pointer is always safe to load, or if we can prove that there
// is already a load in the block, then we can move the load to the pred
// block.
if (InVal->isDereferenceablePointer() ||
isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
continue;
return false;
}
return true;
}
void visitPHINode(PHINode &PN) {
DEBUG(dbgs() << " original: " << PN << "\n");
SmallVector<LoadInst *, 4> Loads;
if (!isSafePHIToSpeculate(PN, Loads))
return;
assert(!Loads.empty());
Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
IRBuilder<> PHIBuilder(&PN);
PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
PN.getName() + ".sroa.speculated");
// Get the TBAA tag and alignment to use from one of the loads. It doesn't
// matter which one we get and if any differ, it doesn't matter.
LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
unsigned Align = SomeLoad->getAlignment();
// Rewrite all loads of the PN to use the new PHI.
do {
LoadInst *LI = Loads.pop_back_val();
LI->replaceAllUsesWith(NewPN);
Pass.DeadInsts.push_back(LI);
} while (!Loads.empty());
// Inject loads into all of the pred blocks.
for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
BasicBlock *Pred = PN.getIncomingBlock(Idx);
TerminatorInst *TI = Pred->getTerminator();
Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
Value *InVal = PN.getIncomingValue(Idx);
IRBuilder<> PredBuilder(TI);
LoadInst *Load
= PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
Pred->getName()));
++NumLoadsSpeculated;
Load->setAlignment(Align);
if (TBAATag)
Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
NewPN->addIncoming(Load, Pred);
Instruction *Ptr = dyn_cast<Instruction>(InVal);
if (!Ptr)
// No uses to rewrite.
continue;
// Try to lookup and rewrite any partition uses corresponding to this phi
// input.
AllocaPartitioning::iterator PI
= P.findPartitionForPHIOrSelectOperand(InUse);
if (PI == P.end())
continue;
// Replace the Use in the PartitionUse for this operand with the Use
// inside the load.
AllocaPartitioning::use_iterator UI
= P.findPartitionUseForPHIOrSelectOperand(InUse);
assert(isa<PHINode>(*UI->U->getUser()));
UI->U = &Load->getOperandUse(Load->getPointerOperandIndex());
}
DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
}
/// Select instructions that use an alloca and are subsequently loaded can be
/// rewritten to load both input pointers and then select between the result,
/// allowing the load of the alloca to be promoted.
/// From this:
/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
/// %V = load i32* %P2
/// to:
/// %V1 = load i32* %Alloca -> will be mem2reg'd
/// %V2 = load i32* %Other
/// %V = select i1 %cond, i32 %V1, i32 %V2
///
/// We can do this to a select if its only uses are loads and if the operand
/// to the select can be loaded unconditionally.
bool isSafeSelectToSpeculate(SelectInst &SI,
SmallVectorImpl<LoadInst *> &Loads) {
Value *TValue = SI.getTrueValue();
Value *FValue = SI.getFalseValue();
bool TDerefable = TValue->isDereferenceablePointer();
bool FDerefable = FValue->isDereferenceablePointer();
for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
UI != UE; ++UI) {
LoadInst *LI = dyn_cast<LoadInst>(*UI);
if (LI == 0 || !LI->isSimple()) return false;
// Both operands to the select need to be dereferencable, either
// absolutely (e.g. allocas) or at this point because we can see other
// accesses to it.
if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
LI->getAlignment(), &TD))
return false;
if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
LI->getAlignment(), &TD))
return false;
Loads.push_back(LI);
}
return true;
}
void visitSelectInst(SelectInst &SI) {
DEBUG(dbgs() << " original: " << SI << "\n");
IRBuilder<> IRB(&SI);
// If the select isn't safe to speculate, just use simple logic to emit it.
SmallVector<LoadInst *, 4> Loads;
if (!isSafeSelectToSpeculate(SI, Loads))
return;
Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
AllocaPartitioning::iterator PIs[2];
AllocaPartitioning::PartitionUse PUs[2];
for (unsigned i = 0, e = 2; i != e; ++i) {
PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
if (PIs[i] != P.end()) {
// If the pointer is within the partitioning, remove the select from
// its uses. We'll add in the new loads below.
AllocaPartitioning::use_iterator UI
= P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
PUs[i] = *UI;
// Clear out the use here so that the offsets into the use list remain
// stable but this use is ignored when rewriting.
UI->U = 0;
}
}
Value *TV = SI.getTrueValue();
Value *FV = SI.getFalseValue();
// Replace the loads of the select with a select of two loads.
while (!Loads.empty()) {
LoadInst *LI = Loads.pop_back_val();
IRB.SetInsertPoint(LI);
LoadInst *TL =
IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
LoadInst *FL =
IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
NumLoadsSpeculated += 2;
// Transfer alignment and TBAA info if present.
TL->setAlignment(LI->getAlignment());
FL->setAlignment(LI->getAlignment());
if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
TL->setMetadata(LLVMContext::MD_tbaa, Tag);
FL->setMetadata(LLVMContext::MD_tbaa, Tag);
}
Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
LI->getName() + ".sroa.speculated");
LoadInst *Loads[2] = { TL, FL };
for (unsigned i = 0, e = 2; i != e; ++i) {
if (PIs[i] != P.end()) {
Use *LoadUse = &Loads[i]->getOperandUse(0);
assert(PUs[i].U->get() == LoadUse->get());
PUs[i].U = LoadUse;
P.use_push_back(PIs[i], PUs[i]);
}
}
DEBUG(dbgs() << " speculated to: " << *V << "\n");
LI->replaceAllUsesWith(V);
Pass.DeadInsts.push_back(LI);
}
}
};
}
/// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
///
/// If the provided GEP is all-constant, the total byte offset formed by the
/// GEP is computed and Offset is set to it. If the GEP has any non-constant
/// operands, the function returns false and the value of Offset is unmodified.
static bool accumulateGEPOffsets(const DataLayout &TD, GEPOperator &GEP,
APInt &Offset) {
APInt GEPOffset(Offset.getBitWidth(), 0);
for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
GTI != GTE; ++GTI) {
ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
if (!OpC)
return false;
if (OpC->isZero()) continue;
// Handle a struct index, which adds its field offset to the pointer.
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
unsigned ElementIdx = OpC->getZExtValue();
const StructLayout *SL = TD.getStructLayout(STy);
GEPOffset += APInt(Offset.getBitWidth(),
SL->getElementOffset(ElementIdx));
continue;
}
APInt TypeSize(Offset.getBitWidth(),
TD.getTypeAllocSize(GTI.getIndexedType()));
if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
assert((VTy->getScalarSizeInBits() % 8) == 0 &&
"vector element size is not a multiple of 8, cannot GEP over it");
TypeSize = VTy->getScalarSizeInBits() / 8;
}
GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
}
Offset = GEPOffset;
return true;
}
/// \brief Build a GEP out of a base pointer and indices.
///
/// This will return the BasePtr if that is valid, or build a new GEP
/// instruction using the IRBuilder if GEP-ing is needed.
static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
SmallVectorImpl<Value *> &Indices,
const Twine &Prefix) {
if (Indices.empty())
return BasePtr;
// A single zero index is a no-op, so check for this and avoid building a GEP
// in that case.
if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
return BasePtr;
return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
}
/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
/// TargetTy without changing the offset of the pointer.
///
/// This routine assumes we've already established a properly offset GEP with
/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
/// zero-indices down through type layers until we find one the same as
/// TargetTy. If we can't find one with the same type, we at least try to use
/// one with the same size. If none of that works, we just produce the GEP as
/// indicated by Indices to have the correct offset.
static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD,
Value *BasePtr, Type *Ty, Type *TargetTy,
SmallVectorImpl<Value *> &Indices,
const Twine &Prefix) {
if (Ty == TargetTy)
return buildGEP(IRB, BasePtr, Indices, Prefix);
// See if we can descend into a struct and locate a field with the correct
// type.
unsigned NumLayers = 0;
Type *ElementTy = Ty;
do {
if (ElementTy->isPointerTy())
break;
if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
ElementTy = SeqTy->getElementType();
Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(
ElementTy->isPointerTy() ?
cast<PointerType>(ElementTy)->getAddressSpace(): 0), 0)));
} else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
if (STy->element_begin() == STy->element_end())
break; // Nothing left to descend into.
ElementTy = *STy->element_begin();
Indices.push_back(IRB.getInt32(0));
} else {
break;
}
++NumLayers;
} while (ElementTy != TargetTy);
if (ElementTy != TargetTy)
Indices.erase(Indices.end() - NumLayers, Indices.end());
return buildGEP(IRB, BasePtr, Indices, Prefix);
}
/// \brief Recursively compute indices for a natural GEP.
///
/// This is the recursive step for getNaturalGEPWithOffset that walks down the
/// element types adding appropriate indices for the GEP.
static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
Value *Ptr, Type *Ty, APInt &Offset,
Type *TargetTy,
SmallVectorImpl<Value *> &Indices,
const Twine &Prefix) {
if (Offset == 0)
return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
// We can't recurse through pointer types.
if (Ty->isPointerTy())
return 0;
// We try to analyze GEPs over vectors here, but note that these GEPs are
// extremely poorly defined currently. The long-term goal is to remove GEPing
// over a vector from the IR completely.
if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
if (ElementSizeInBits % 8)
return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
APInt NumSkippedElements = Offset.udiv(ElementSize);
if (NumSkippedElements.ugt(VecTy->getNumElements()))
return 0;
Offset -= NumSkippedElements * ElementSize;
Indices.push_back(IRB.getInt(NumSkippedElements));
return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
Offset, TargetTy, Indices, Prefix);
}
if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
Type *ElementTy = ArrTy->getElementType();
APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
APInt NumSkippedElements = Offset.udiv(ElementSize);
if (NumSkippedElements.ugt(ArrTy->getNumElements()))
return 0;
Offset -= NumSkippedElements * ElementSize;
Indices.push_back(IRB.getInt(NumSkippedElements));
return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
Indices, Prefix);
}
StructType *STy = dyn_cast<StructType>(Ty);
if (!STy)
return 0;
const StructLayout *SL = TD.getStructLayout(STy);
uint64_t StructOffset = Offset.getZExtValue();
if (StructOffset >= SL->getSizeInBytes())
return 0;
unsigned Index = SL->getElementContainingOffset(StructOffset);
Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
Type *ElementTy = STy->getElementType(Index);
if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
return 0; // The offset points into alignment padding.
Indices.push_back(IRB.getInt32(Index));
return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
Indices, Prefix);
}
/// \brief Get a natural GEP from a base pointer to a particular offset and
/// resulting in a particular type.
///
/// The goal is to produce a "natural" looking GEP that works with the existing
/// composite types to arrive at the appropriate offset and element type for
/// a pointer. TargetTy is the element type the returned GEP should point-to if
/// possible. We recurse by decreasing Offset, adding the appropriate index to
/// Indices, and setting Ty to the result subtype.
///
/// If no natural GEP can be constructed, this function returns null.
static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
Value *Ptr, APInt Offset, Type *TargetTy,
SmallVectorImpl<Value *> &Indices,
const Twine &Prefix) {
PointerType *Ty = cast<PointerType>(Ptr->getType());
// Don't consider any GEPs through an i8* as natural unless the TargetTy is
// an i8.
if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
return 0;
Type *ElementTy = Ty->getElementType();
if (!ElementTy->isSized())
return 0; // We can't GEP through an unsized element.
APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
if (ElementSize == 0)
return 0; // Zero-length arrays can't help us build a natural GEP.
APInt NumSkippedElements = Offset.udiv(ElementSize);
Offset -= NumSkippedElements * ElementSize;
Indices.push_back(IRB.getInt(NumSkippedElements));
return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
Indices, Prefix);
}
/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
/// resulting pointer has PointerTy.
///
/// This tries very hard to compute a "natural" GEP which arrives at the offset
/// and produces the pointer type desired. Where it cannot, it will try to use
/// the natural GEP to arrive at the offset and bitcast to the type. Where that
/// fails, it will try to use an existing i8* and GEP to the byte offset and
/// bitcast to the type.
///
/// The strategy for finding the more natural GEPs is to peel off layers of the
/// pointer, walking back through bit casts and GEPs, searching for a base
/// pointer from which we can compute a natural GEP with the desired
/// properities. The algorithm tries to fold as many constant indices into
/// a single GEP as possible, thus making each GEP more independent of the
/// surrounding code.
static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
Value *Ptr, APInt Offset, Type *PointerTy,
const Twine &Prefix) {
// Even though we don't look through PHI nodes, we could be called on an
// instruction in an unreachable block, which may be on a cycle.
SmallPtrSet<Value *, 4> Visited;
Visited.insert(Ptr);
SmallVector<Value *, 4> Indices;
// We may end up computing an offset pointer that has the wrong type. If we
// never are able to compute one directly that has the correct type, we'll
// fall back to it, so keep it around here.
Value *OffsetPtr = 0;
// Remember any i8 pointer we come across to re-use if we need to do a raw
// byte offset.
Value *Int8Ptr = 0;
APInt Int8PtrOffset(Offset.getBitWidth(), 0);
Type *TargetTy = PointerTy->getPointerElementType();
do {
// First fold any existing GEPs into the offset.
while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
APInt GEPOffset(Offset.getBitWidth(), 0);
if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
break;
Offset += GEPOffset;
Ptr = GEP->getPointerOperand();
if (!Visited.insert(Ptr))
break;
}
// See if we can perform a natural GEP here.
Indices.clear();
if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
Indices, Prefix)) {
if (P->getType() == PointerTy) {
// Zap any offset pointer that we ended up computing in previous rounds.
if (OffsetPtr && OffsetPtr->use_empty())
if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
I->eraseFromParent();
return P;
}
if (!OffsetPtr) {
OffsetPtr = P;
}
}
// Stash this pointer if we've found an i8*.
if (Ptr->getType()->isIntegerTy(8)) {
Int8Ptr = Ptr;
Int8PtrOffset = Offset;
}
// Peel off a layer of the pointer and update the offset appropriately.
if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
Ptr = cast<Operator>(Ptr)->getOperand(0);
} else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
if (GA->mayBeOverridden())
break;
Ptr = GA->getAliasee();
} else {
break;
}
assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
} while (Visited.insert(Ptr));
if (!OffsetPtr) {
if (!Int8Ptr) {
Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
Prefix + ".raw_cast");
Int8PtrOffset = Offset;
}
OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
Prefix + ".raw_idx");
}
Ptr = OffsetPtr;
// On the off chance we were targeting i8*, guard the bitcast here.
if (Ptr->getType() != PointerTy)
Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
return Ptr;
}
/// \brief Test whether we can convert a value from the old to the new type.
///
/// This predicate should be used to guard calls to convertValue in order to
/// ensure that we only try to convert viable values. The strategy is that we
/// will peel off single element struct and array wrappings to get to an
/// underlying value, and convert that value.
static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
if (OldTy == NewTy)
return true;
if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
return false;
if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
return false;
if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
if (NewTy->isPointerTy() && OldTy->isPointerTy())
return true;
if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
return true;
return false;
}
return true;
}
/// \brief Generic routine to convert an SSA value to a value of a different
/// type.
///
/// This will try various different casting techniques, such as bitcasts,
/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
/// two types for viability with this routine.
static Value *convertValue(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
Type *Ty) {
assert(canConvertValue(DL, V->getType(), Ty) &&
"Value not convertable to type");
if (V->getType() == Ty)
return V;
if (V->getType()->isIntegerTy() && Ty->isPointerTy())
return IRB.CreateIntToPtr(V, Ty);
if (V->getType()->isPointerTy() && Ty->isIntegerTy())
return IRB.CreatePtrToInt(V, Ty);
return IRB.CreateBitCast(V, Ty);
}
/// \brief Test whether the given alloca partition can be promoted to a vector.
///
/// This is a quick test to check whether we can rewrite a particular alloca
/// partition (and its newly formed alloca) into a vector alloca with only
/// whole-vector loads and stores such that it could be promoted to a vector
/// SSA value. We only can ensure this for a limited set of operations, and we
/// don't want to do the rewrites unless we are confident that the result will
/// be promotable, so we have an early test here.
static bool isVectorPromotionViable(const DataLayout &TD,
Type *AllocaTy,
AllocaPartitioning &P,
uint64_t PartitionBeginOffset,
uint64_t PartitionEndOffset,
AllocaPartitioning::const_use_iterator I,
AllocaPartitioning::const_use_iterator E) {
VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
if (!Ty)
return false;
uint64_t VecSize = TD.getTypeSizeInBits(Ty);
uint64_t ElementSize = Ty->getScalarSizeInBits();
// While the definition of LLVM vectors is bitpacked, we don't support sizes
// that aren't byte sized.
if (ElementSize % 8)
return false;
assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
VecSize /= 8;
ElementSize /= 8;
for (; I != E; ++I) {
if (!I->U)
continue; // Skip dead use.
uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
uint64_t BeginIndex = BeginOffset / ElementSize;
if (BeginIndex * ElementSize != BeginOffset ||
BeginIndex >= Ty->getNumElements())
return false;
uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
uint64_t EndIndex = EndOffset / ElementSize;
if (EndIndex * ElementSize != EndOffset ||
EndIndex > Ty->getNumElements())
return false;
// FIXME: We should build shuffle vector instructions to handle
// non-element-sized accesses.
if ((EndOffset - BeginOffset) != ElementSize &&
(EndOffset - BeginOffset) != VecSize)
return false;
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
if (MI->isVolatile())
return false;
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
const AllocaPartitioning::MemTransferOffsets &MTO
= P.getMemTransferOffsets(*MTI);
if (!MTO.IsSplittable)
return false;
}
} else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) {
// Disable vector promotion when there are loads or stores of an FCA.
return false;
} else if (!isa<LoadInst>(I->U->getUser()) &&
!isa<StoreInst>(I->U->getUser())) {
return false;
}
}
return true;
}
/// \brief Test whether the given alloca partition's integer operations can be
/// widened to promotable ones.
///
/// This is a quick test to check whether we can rewrite the integer loads and
/// stores to a particular alloca into wider loads and stores and be able to
/// promote the resulting alloca.
static bool isIntegerWideningViable(const DataLayout &TD,
Type *AllocaTy,
uint64_t AllocBeginOffset,
AllocaPartitioning &P,
AllocaPartitioning::const_use_iterator I,
AllocaPartitioning::const_use_iterator E) {
uint64_t SizeInBits = TD.getTypeSizeInBits(AllocaTy);
// Don't try to handle allocas with bit-padding.
if (SizeInBits != TD.getTypeStoreSizeInBits(AllocaTy))
return false;
uint64_t Size = TD.getTypeStoreSize(AllocaTy);
// Check the uses to ensure the uses are (likely) promoteable integer uses.
// Also ensure that the alloca has a covering load or store. We don't want
// to widen the integer operotains only to fail to promote due to some other
// unsplittable entry (which we may make splittable later).
bool WholeAllocaOp = false;
for (; I != E; ++I) {
if (!I->U)
continue; // Skip dead use.
uint64_t RelBegin = I->BeginOffset - AllocBeginOffset;
uint64_t RelEnd = I->EndOffset - AllocBeginOffset;
// We can't reasonably handle cases where the load or store extends past
// the end of the aloca's type and into its padding.
if (RelEnd > Size)
return false;
if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
if (LI->isVolatile())
return false;
if (RelBegin == 0 && RelEnd == Size)
WholeAllocaOp = true;
if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
if (ITy->getBitWidth() < TD.getTypeStoreSize(ITy))
return false;
continue;
}
// Non-integer loads need to be convertible from the alloca type so that
// they are promotable.
if (RelBegin != 0 || RelEnd != Size ||
!canConvertValue(TD, AllocaTy, LI->getType()))
return false;
} else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
Type *ValueTy = SI->getValueOperand()->getType();
if (SI->isVolatile())
return false;
if (RelBegin == 0 && RelEnd == Size)
WholeAllocaOp = true;
if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
if (ITy->getBitWidth() < TD.getTypeStoreSize(ITy))
return false;
continue;
}
// Non-integer stores need to be convertible to the alloca type so that
// they are promotable.
if (RelBegin != 0 || RelEnd != Size ||
!canConvertValue(TD, ValueTy, AllocaTy))
return false;
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
if (MI->isVolatile())
return false;
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
const AllocaPartitioning::MemTransferOffsets &MTO
= P.getMemTransferOffsets(*MTI);
if (!MTO.IsSplittable)
return false;
}
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->U->getUser())) {
if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
II->getIntrinsicID() != Intrinsic::lifetime_end)
return false;
} else {
return false;
}
}
return WholeAllocaOp;
}
namespace {
/// \brief Visitor to rewrite instructions using a partition of an alloca to
/// use a new alloca.
///
/// Also implements the rewriting to vector-based accesses when the partition
/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
/// lives here.
class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
bool> {
// Befriend the base class so it can delegate to private visit methods.
friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
const DataLayout &TD;
AllocaPartitioning &P;
SROA &Pass;
AllocaInst &OldAI, &NewAI;
const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
Type *NewAllocaTy;
// If we are rewriting an alloca partition which can be written as pure
// vector operations, we stash extra information here. When VecTy is
// non-null, we have some strict guarantees about the rewriten alloca:
// - The new alloca is exactly the size of the vector type here.
// - The accesses all either map to the entire vector or to a single
// element.
// - The set of accessing instructions is only one of those handled above
// in isVectorPromotionViable. Generally these are the same access kinds
// which are promotable via mem2reg.
VectorType *VecTy;
Type *ElementTy;
uint64_t ElementSize;
// This is a convenience and flag variable that will be null unless the new
// alloca's integer operations should be widened to this integer type due to
// passing isIntegerWideningViable above. If it is non-null, the desired
// integer type will be stored here for easy access during rewriting.
IntegerType *IntTy;
// The offset of the partition user currently being rewritten.
uint64_t BeginOffset, EndOffset;
Use *OldUse;
Instruction *OldPtr;
// The name prefix to use when rewriting instructions for this alloca.
std::string NamePrefix;
public:
AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P,
AllocaPartitioning::iterator PI,
SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
uint64_t NewBeginOffset, uint64_t NewEndOffset)
: TD(TD), P(P), Pass(Pass),
OldAI(OldAI), NewAI(NewAI),
NewAllocaBeginOffset(NewBeginOffset),
NewAllocaEndOffset(NewEndOffset),
NewAllocaTy(NewAI.getAllocatedType()),
VecTy(), ElementTy(), ElementSize(), IntTy(),
BeginOffset(), EndOffset() {
}
/// \brief Visit the users of the alloca partition and rewrite them.
bool visitUsers(AllocaPartitioning::const_use_iterator I,
AllocaPartitioning::const_use_iterator E) {
if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
NewAllocaBeginOffset, NewAllocaEndOffset,
I, E)) {
++NumVectorized;
VecTy = cast<VectorType>(NewAI.getAllocatedType());
ElementTy = VecTy->getElementType();
assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
"Only multiple-of-8 sized vector elements are viable");
ElementSize = VecTy->getScalarSizeInBits() / 8;
} else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(),
NewAllocaBeginOffset, P, I, E)) {
IntTy = Type::getIntNTy(NewAI.getContext(),
TD.getTypeSizeInBits(NewAI.getAllocatedType()));
}
bool CanSROA = true;
for (; I != E; ++I) {
if (!I->U)
continue; // Skip dead uses.
BeginOffset = I->BeginOffset;
EndOffset = I->EndOffset;
OldUse = I->U;
OldPtr = cast<Instruction>(I->U->get());
NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
CanSROA &= visit(cast<Instruction>(I->U->getUser()));
}
if (VecTy) {
assert(CanSROA);
VecTy = 0;
ElementTy = 0;
ElementSize = 0;
}
if (IntTy) {
assert(CanSROA);
IntTy = 0;
}
return CanSROA;
}
private:
// Every instruction which can end up as a user must have a rewrite rule.
bool visitInstruction(Instruction &I) {
DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
llvm_unreachable("No rewrite rule for this instruction!");
}
Twine getName(const Twine &Suffix) {
return NamePrefix + Suffix;
}
Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
assert(BeginOffset >= NewAllocaBeginOffset);
unsigned AS = cast<PointerType>(PointerTy)->getAddressSpace();
APInt Offset(TD.getPointerSizeInBits(AS), BeginOffset - NewAllocaBeginOffset);
return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
}
/// \brief Compute suitable alignment to access an offset into the new alloca.
unsigned getOffsetAlign(uint64_t Offset) {
unsigned NewAIAlign = NewAI.getAlignment();
if (!NewAIAlign)
NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType());
return MinAlign(NewAIAlign, Offset);
}
/// \brief Compute suitable alignment to access this partition of the new
/// alloca.
unsigned getPartitionAlign() {
return getOffsetAlign(BeginOffset - NewAllocaBeginOffset);
}
/// \brief Compute suitable alignment to access a type at an offset of the
/// new alloca.
///
/// \returns zero if the type's ABI alignment is a suitable alignment,
/// otherwise returns the maximal suitable alignment.
unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
unsigned Align = getOffsetAlign(Offset);
return Align == TD.getABITypeAlignment(Ty) ? 0 : Align;
}
/// \brief Compute suitable alignment to access a type at the beginning of
/// this partition of the new alloca.
///
/// See \c getOffsetTypeAlign for details; this routine delegates to it.
unsigned getPartitionTypeAlign(Type *Ty) {
return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
}
ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) {
assert(VecTy && "Can only call getIndex when rewriting a vector");
uint64_t RelOffset = Offset - NewAllocaBeginOffset;
assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
uint32_t Index = RelOffset / ElementSize;
assert(Index * ElementSize == RelOffset);
return IRB.getInt32(Index);
}
Value *extractInteger(IRBuilder<> &IRB, IntegerType *TargetTy,
uint64_t Offset) {
assert(IntTy && "We cannot extract an integer from the alloca");
Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
getName(".load"));
V = convertValue(TD, IRB, V, IntTy);
assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t RelOffset = Offset - NewAllocaBeginOffset;
assert(TD.getTypeStoreSize(TargetTy) + RelOffset <=
TD.getTypeStoreSize(IntTy) &&
"Element load outside of alloca store");
uint64_t ShAmt = 8*RelOffset;
if (TD.isBigEndian())
ShAmt = 8*(TD.getTypeStoreSize(IntTy) -
TD.getTypeStoreSize(TargetTy) - RelOffset);
if (ShAmt)
V = IRB.CreateLShr(V, ShAmt, getName(".shift"));
assert(TargetTy->getBitWidth() <= IntTy->getBitWidth() &&
"Cannot extract to a larger integer!");
if (TargetTy != IntTy)
V = IRB.CreateTrunc(V, TargetTy, getName(".trunc"));
return V;
}
StoreInst *insertInteger(IRBuilder<> &IRB, Value *V, uint64_t Offset) {
IntegerType *Ty = cast<IntegerType>(V->getType());
assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
"Cannot insert a larger integer!");
if (Ty != IntTy)
V = IRB.CreateZExt(V, IntTy, getName(".ext"));
assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t RelOffset = Offset - NewAllocaBeginOffset;
assert(TD.getTypeStoreSize(Ty) + RelOffset <=
TD.getTypeStoreSize(IntTy) &&
"Element store outside of alloca store");
uint64_t ShAmt = 8*RelOffset;
if (TD.isBigEndian())
ShAmt = 8*(TD.getTypeStoreSize(IntTy) - TD.getTypeStoreSize(Ty)
- RelOffset);
if (ShAmt)
V = IRB.CreateShl(V, ShAmt, getName(".shift"));
if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
getName(".oldload"));
Old = convertValue(TD, IRB, Old, IntTy);
Old = IRB.CreateAnd(Old, Mask, getName(".mask"));
V = IRB.CreateOr(Old, V, getName(".insert"));
}
V = convertValue(TD, IRB, V, NewAllocaTy);
return IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
}
void deleteIfTriviallyDead(Value *V) {
Instruction *I = cast<Instruction>(V);
if (isInstructionTriviallyDead(I))
Pass.DeadInsts.push_back(I);
}
bool rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
Value *Result;
if (LI.getType() == VecTy->getElementType() ||
BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
Result = IRB.CreateExtractElement(
IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
getIndex(IRB, BeginOffset), getName(".extract"));
} else {
Result = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
getName(".load"));
}
if (Result->getType() != LI.getType())
Result = convertValue(TD, IRB, Result, LI.getType());
LI.replaceAllUsesWith(Result);
Pass.DeadInsts.push_back(&LI);
DEBUG(dbgs() << " to: " << *Result << "\n");
return true;
}
bool rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
assert(!LI.isVolatile());
Value *Result = extractInteger(IRB, cast<IntegerType>(LI.getType()),
BeginOffset);
LI.replaceAllUsesWith(Result);
Pass.DeadInsts.push_back(&LI);
DEBUG(dbgs() << " to: " << *Result << "\n");
return true;
}
bool visitLoadInst(LoadInst &LI) {
DEBUG(dbgs() << " original: " << LI << "\n");
Value *OldOp = LI.getOperand(0);
assert(OldOp == OldPtr);
IRBuilder<> IRB(&LI);
if (VecTy)
return rewriteVectorizedLoadInst(IRB, LI, OldOp);
if (IntTy && LI.getType()->isIntegerTy())
return rewriteIntegerLoad(IRB, LI);
if (BeginOffset == NewAllocaBeginOffset &&
canConvertValue(TD, NewAllocaTy, LI.getType())) {
Value *NewLI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
LI.isVolatile(), getName(".load"));
Value *NewV = convertValue(TD, IRB, NewLI, LI.getType());
LI.replaceAllUsesWith(NewV);
Pass.DeadInsts.push_back(&LI);
DEBUG(dbgs() << " to: " << *NewLI << "\n");
return !LI.isVolatile();
}
assert(!IntTy && "Invalid load found with int-op widening enabled");
Value *NewPtr = getAdjustedAllocaPtr(IRB,
LI.getPointerOperand()->getType());
LI.setOperand(0, NewPtr);
LI.setAlignment(getPartitionTypeAlign(LI.getType()));
DEBUG(dbgs() << " to: " << LI << "\n");
deleteIfTriviallyDead(OldOp);
return NewPtr == &NewAI && !LI.isVolatile();
}
bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, StoreInst &SI,
Value *OldOp) {
Value *V = SI.getValueOperand();
if (V->getType() == ElementTy ||
BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
if (V->getType() != ElementTy)
V = convertValue(TD, IRB, V, ElementTy);
LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
getName(".load"));
V = IRB.CreateInsertElement(LI, V, getIndex(IRB, BeginOffset),
getName(".insert"));
} else if (V->getType() != VecTy) {
V = convertValue(TD, IRB, V, VecTy);
}
StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Pass.DeadInsts.push_back(&SI);
(void)Store;
DEBUG(dbgs() << " to: " << *Store << "\n");
return true;
}
bool rewriteIntegerStore(IRBuilder<> &IRB, StoreInst &SI) {
assert(!SI.isVolatile());
StoreInst *Store = insertInteger(IRB, SI.getValueOperand(), BeginOffset);
Pass.DeadInsts.push_back(&SI);
(void)Store;
DEBUG(dbgs() << " to: " << *Store << "\n");
return true;
}
bool visitStoreInst(StoreInst &SI) {
DEBUG(dbgs() << " original: " << SI << "\n");
Value *OldOp = SI.getOperand(1);
assert(OldOp == OldPtr);
IRBuilder<> IRB(&SI);
if (VecTy)
return rewriteVectorizedStoreInst(IRB, SI, OldOp);
Type *ValueTy = SI.getValueOperand()->getType();
if (IntTy && ValueTy->isIntegerTy())
return rewriteIntegerStore(IRB, SI);
// Strip all inbounds GEPs and pointer casts to try to dig out any root
// alloca that should be re-examined after promoting this alloca.
if (ValueTy->isPointerTy())
if (AllocaInst *AI = dyn_cast<AllocaInst>(SI.getValueOperand()
->stripInBoundsOffsets()))
Pass.PostPromotionWorklist.insert(AI);
if (BeginOffset == NewAllocaBeginOffset &&
canConvertValue(TD, ValueTy, NewAllocaTy)) {
Value *NewV = convertValue(TD, IRB, SI.getValueOperand(), NewAllocaTy);
StoreInst *NewSI = IRB.CreateAlignedStore(NewV, &NewAI, NewAI.getAlignment(),
SI.isVolatile());
(void)NewSI;
Pass.DeadInsts.push_back(&SI);
DEBUG(dbgs() << " to: " << *NewSI << "\n");
return !SI.isVolatile();
}
assert(!IntTy && "Invalid store found with int-op widening enabled");
Value *NewPtr = getAdjustedAllocaPtr(IRB,
SI.getPointerOperand()->getType());
SI.setOperand(1, NewPtr);
SI.setAlignment(getPartitionTypeAlign(SI.getValueOperand()->getType()));
DEBUG(dbgs() << " to: " << SI << "\n");
deleteIfTriviallyDead(OldOp);
return NewPtr == &NewAI && !SI.isVolatile();
}
bool visitMemSetInst(MemSetInst &II) {
DEBUG(dbgs() << " original: " << II << "\n");
IRBuilder<> IRB(&II);
assert(II.getRawDest() == OldPtr);
// If the memset has a variable size, it cannot be split, just adjust the
// pointer to the new alloca.
if (!isa<Constant>(II.getLength())) {
II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
Type *CstTy = II.getAlignmentCst()->getType();
II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign()));
deleteIfTriviallyDead(OldPtr);
return false;
}
// Record this instruction for deletion.
if (Pass.DeadSplitInsts.insert(&II))
Pass.DeadInsts.push_back(&II);
Type *AllocaTy = NewAI.getAllocatedType();
Type *ScalarTy = AllocaTy->getScalarType();
// If this doesn't map cleanly onto the alloca type, and that type isn't
// a single value type, just emit a memset.
if (!VecTy && !IntTy &&
(BeginOffset != NewAllocaBeginOffset ||
EndOffset != NewAllocaEndOffset ||
!AllocaTy->isSingleValueType() ||
!TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
Type *SizeTy = II.getLength()->getType();
Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
CallInst *New
= IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
II.getRawDest()->getType()),
II.getValue(), Size, getPartitionAlign(),
II.isVolatile());
(void)New;
DEBUG(dbgs() << " to: " << *New << "\n");
return false;
}
// If we can represent this as a simple value, we have to build the actual
// value to store, which requires expanding the byte present in memset to
// a sensible representation for the alloca type. This is essentially
// splatting the byte to a sufficiently wide integer, bitcasting to the
// desired scalar type, and splatting it across any desired vector type.
uint64_t Size = EndOffset - BeginOffset;
Value *V = II.getValue();
IntegerType *VTy = cast<IntegerType>(V->getType());
Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
if (Size*8 > VTy->getBitWidth())
V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")),
ConstantExpr::getUDiv(
Constant::getAllOnesValue(SplatIntTy),
ConstantExpr::getZExt(
Constant::getAllOnesValue(V->getType()),
SplatIntTy)),
getName(".isplat"));
// If this is an element-wide memset of a vectorizable alloca, insert it.
if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
EndOffset < NewAllocaEndOffset)) {
if (V->getType() != ScalarTy)
V = convertValue(TD, IRB, V, ScalarTy);
StoreInst *Store = IRB.CreateAlignedStore(
IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI,
NewAI.getAlignment(),
getName(".load")),
V, getIndex(IRB, BeginOffset),
getName(".insert")),
&NewAI, NewAI.getAlignment());
(void)Store;
DEBUG(dbgs() << " to: " << *Store << "\n");
return true;
}
// If this is a memset on an alloca where we can widen stores, insert the
// set integer.
if (IntTy && (BeginOffset > NewAllocaBeginOffset ||
EndOffset < NewAllocaEndOffset)) {
assert(!II.isVolatile());
StoreInst *Store = insertInteger(IRB, V, BeginOffset);
(void)Store;
DEBUG(dbgs() << " to: " << *Store << "\n");
return true;
}
if (V->getType() != AllocaTy)
V = convertValue(TD, IRB, V, AllocaTy);
Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
II.isVolatile());
(void)New;
DEBUG(dbgs() << " to: " << *New << "\n");
return !II.isVolatile();
}
bool visitMemTransferInst(MemTransferInst &II) {
// Rewriting of memory transfer instructions can be a bit tricky. We break
// them into two categories: split intrinsics and unsplit intrinsics.
DEBUG(dbgs() << " original: " << II << "\n");
IRBuilder<> IRB(&II);
assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
bool IsDest = II.getRawDest() == OldPtr;
const AllocaPartitioning::MemTransferOffsets &MTO
= P.getMemTransferOffsets(II);
assert(OldPtr->getType()->isPointerTy() && "Must be a pointer type!");
unsigned AS = cast<PointerType>(OldPtr->getType())->getAddressSpace();
// Compute the relative offset within the transfer.
unsigned IntPtrWidth = TD.getPointerSizeInBits(AS);
APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
: MTO.SourceBegin));
unsigned Align = II.getAlignment();
if (Align > 1)
Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
MinAlign(II.getAlignment(), getPartitionAlign()));
// For unsplit intrinsics, we simply modify the source and destination
// pointers in place. This isn't just an optimization, it is a matter of
// correctness. With unsplit intrinsics we may be dealing with transfers
// within a single alloca before SROA ran, or with transfers that have
// a variable length. We may also be dealing with memmove instead of
// memcpy, and so simply updating the pointers is the necessary for us to
// update both source and dest of a single call.
if (!MTO.IsSplittable) {
Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
if (IsDest)
II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
else
II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
Type *CstTy = II.getAlignmentCst()->getType();
II.setAlignment(ConstantInt::get(CstTy, Align));
DEBUG(dbgs() << " to: " << II << "\n");
deleteIfTriviallyDead(OldOp);
return false;
}
// For split transfer intrinsics we have an incredibly useful assurance:
// the source and destination do not reside within the same alloca, and at
// least one of them does not escape. This means that we can replace
// memmove with memcpy, and we don't need to worry about all manner of
// downsides to splitting and transforming the operations.
// If this doesn't map cleanly onto the alloca type, and that type isn't
// a single value type, just emit a memcpy.
bool EmitMemCpy
= !VecTy && !IntTy && (BeginOffset != NewAllocaBeginOffset ||
EndOffset != NewAllocaEndOffset ||
!NewAI.getAllocatedType()->isSingleValueType());
// If we're just going to emit a memcpy, the alloca hasn't changed, and the
// size hasn't been shrunk based on analysis of the viable range, this is
// a no-op.
if (EmitMemCpy && &OldAI == &NewAI) {
uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
// Ensure the start lines up.
assert(BeginOffset == OrigBegin);
(void)OrigBegin;
// Rewrite the size as needed.
if (EndOffset != OrigEnd)
II.setLength(ConstantInt::get(II.getLength()->getType(),
EndOffset - BeginOffset));
return false;
}
// Record this instruction for deletion.
if (Pass.DeadSplitInsts.insert(&II))
Pass.DeadInsts.push_back(&II);
bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
EndOffset == NewAllocaEndOffset;
bool IsVectorElement = VecTy && !IsWholeAlloca;
uint64_t Size = EndOffset - BeginOffset;
IntegerType *SubIntTy
= IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
: II.getRawDest()->getType();
if (!EmitMemCpy) {
if (IsVectorElement)
OtherPtrTy = VecTy->getElementType()->getPointerTo();
else if (IntTy && !IsWholeAlloca)
OtherPtrTy = SubIntTy->getPointerTo();
else
OtherPtrTy = NewAI.getType();
}
// Compute the other pointer, folding as much as possible to produce
// a single, simple GEP in most cases.
Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
getName("." + OtherPtr->getName()));
// Strip all inbounds GEPs and pointer casts to try to dig out any root
// alloca that should be re-examined after rewriting this instruction.
if (AllocaInst *AI
= dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
Pass.Worklist.insert(AI);
if (EmitMemCpy) {
Value *OurPtr
= getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
: II.getRawSource()->getType());
Type *SizeTy = II.getLength()->getType();
Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
IsDest ? OtherPtr : OurPtr,
Size, Align, II.isVolatile());
(void)New;
DEBUG(dbgs() << " to: " << *New << "\n");
return false;
}
// Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
// is equivalent to 1, but that isn't true if we end up rewriting this as
// a load or store.
if (!Align)
Align = 1;
Value *SrcPtr = OtherPtr;
Value *DstPtr = &NewAI;
if (!IsDest)
std::swap(SrcPtr, DstPtr);
Value *Src;
if (IsVectorElement && !IsDest) {
// We have to extract rather than load.
Src = IRB.CreateExtractElement(
IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")),
getIndex(IRB, BeginOffset),
getName(".copyextract"));
} else if (IntTy && !IsWholeAlloca && !IsDest) {
Src = extractInteger(IRB, SubIntTy, BeginOffset);
} else {
Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
getName(".copyload"));
}
if (IntTy && !IsWholeAlloca && IsDest) {
StoreInst *Store = insertInteger(IRB, Src, BeginOffset);
(void)Store;
DEBUG(dbgs() << " to: " << *Store << "\n");
return true;
}
if (IsVectorElement && IsDest) {
// We have to insert into a loaded copy before storing.
Src = IRB.CreateInsertElement(
IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
Src, getIndex(IRB, BeginOffset),
getName(".insert"));
}
StoreInst *Store = cast<StoreInst>(
IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
(void)Store;
DEBUG(dbgs() << " to: " << *Store << "\n");
return !II.isVolatile();
}
bool visitIntrinsicInst(IntrinsicInst &II) {
assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
II.getIntrinsicID() == Intrinsic::lifetime_end);
DEBUG(dbgs() << " original: " << II << "\n");
IRBuilder<> IRB(&II);
assert(II.getArgOperand(1) == OldPtr);
// Record this instruction for deletion.
if (Pass.DeadSplitInsts.insert(&II))
Pass.DeadInsts.push_back(&II);
ConstantInt *Size
= ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
EndOffset - BeginOffset);
Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
Value *New;
if (II.getIntrinsicID() == Intrinsic::lifetime_start)
New = IRB.CreateLifetimeStart(Ptr, Size);
else
New = IRB.CreateLifetimeEnd(Ptr, Size);
DEBUG(dbgs() << " to: " << *New << "\n");
return true;
}
bool visitPHINode(PHINode &PN) {
DEBUG(dbgs() << " original: " << PN << "\n");
// We would like to compute a new pointer in only one place, but have it be
// as local as possible to the PHI. To do that, we re-use the location of
// the old pointer, which necessarily must be in the right position to
// dominate the PHI.
IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
// Replace the operands which were using the old pointer.
User::op_iterator OI = PN.op_begin(), OE = PN.op_end();
for (; OI != OE; ++OI)
if (*OI == OldPtr)
*OI = NewPtr;
DEBUG(dbgs() << " to: " << PN << "\n");
deleteIfTriviallyDead(OldPtr);
return false;
}
bool visitSelectInst(SelectInst &SI) {
DEBUG(dbgs() << " original: " << SI << "\n");
IRBuilder<> IRB(&SI);
// Find the operand we need to rewrite here.
bool IsTrueVal = SI.getTrueValue() == OldPtr;
if (IsTrueVal)
assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
else
assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
DEBUG(dbgs() << " to: " << SI << "\n");
deleteIfTriviallyDead(OldPtr);
return false;
}
};
}
namespace {
/// \brief Visitor to rewrite aggregate loads and stores as scalar.
///
/// This pass aggressively rewrites all aggregate loads and stores on
/// a particular pointer (or any pointer derived from it which we can identify)
/// with scalar loads and stores.
class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
// Befriend the base class so it can delegate to private visit methods.
friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
const DataLayout &TD;
/// Queue of pointer uses to analyze and potentially rewrite.
SmallVector<Use *, 8> Queue;
/// Set to prevent us from cycling with phi nodes and loops.
SmallPtrSet<User *, 8> Visited;
/// The current pointer use being rewritten. This is used to dig up the used
/// value (as opposed to the user).
Use *U;
public:
AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {}
/// Rewrite loads and stores through a pointer and all pointers derived from
/// it.
bool rewrite(Instruction &I) {
DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
enqueueUsers(I);
bool Changed = false;
while (!Queue.empty()) {
U = Queue.pop_back_val();
Changed |= visit(cast<Instruction>(U->getUser()));
}
return Changed;
}
private:
/// Enqueue all the users of the given instruction for further processing.
/// This uses a set to de-duplicate users.
void enqueueUsers(Instruction &I) {
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
++UI)
if (Visited.insert(*UI))
Queue.push_back(&UI.getUse());
}
// Conservative default is to not rewrite anything.
bool visitInstruction(Instruction &I) { return false; }
/// \brief Generic recursive split emission class.
template <typename Derived>
class OpSplitter {
protected:
/// The builder used to form new instructions.
IRBuilder<> IRB;
/// The indices which to be used with insert- or extractvalue to select the
/// appropriate value within the aggregate.
SmallVector<unsigned, 4> Indices;
/// The indices to a GEP instruction which will move Ptr to the correct slot
/// within the aggregate.
SmallVector<Value *, 4> GEPIndices;
/// The base pointer of the original op, used as a base for GEPing the
/// split operations.
Value *Ptr;
/// Initialize the splitter with an insertion point, Ptr and start with a
/// single zero GEP index.
OpSplitter(Instruction *InsertionPoint, Value *Ptr)
: IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
public:
/// \brief Generic recursive split emission routine.
///
/// This method recursively splits an aggregate op (load or store) into
/// scalar or vector ops. It splits recursively until it hits a single value
/// and emits that single value operation via the template argument.
///
/// The logic of this routine relies on GEPs and insertvalue and
/// extractvalue all operating with the same fundamental index list, merely
/// formatted differently (GEPs need actual values).
///
/// \param Ty The type being split recursively into smaller ops.
/// \param Agg The aggregate value being built up or stored, depending on
/// whether this is splitting a load or a store respectively.
void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
if (Ty->isSingleValueType())
return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
unsigned OldSize = Indices.size();
(void)OldSize;
for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
++Idx) {
assert(Indices.size() == OldSize && "Did not return to the old size");
Indices.push_back(Idx);
GEPIndices.push_back(IRB.getInt32(Idx));
emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
GEPIndices.pop_back();
Indices.pop_back();
}
return;
}
if (StructType *STy = dyn_cast<StructType>(Ty)) {
unsigned OldSize = Indices.size();
(void)OldSize;
for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
++Idx) {
assert(Indices.size() == OldSize && "Did not return to the old size");
Indices.push_back(Idx);
GEPIndices.push_back(IRB.getInt32(Idx));
emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
GEPIndices.pop_back();
Indices.pop_back();
}
return;
}
llvm_unreachable("Only arrays and structs are aggregate loadable types");
}
};
struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
: OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
/// Emit a leaf load of a single value. This is called at the leaves of the
/// recursive emission to actually load values.
void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
assert(Ty->isSingleValueType());
// Load the single value and insert it using the indices.
Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
Name + ".gep"),
Name + ".load");
Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
DEBUG(dbgs() << " to: " << *Load << "\n");
}
};
bool visitLoadInst(LoadInst &LI) {
assert(LI.getPointerOperand() == *U);
if (!LI.isSimple() || LI.getType()->isSingleValueType())
return false;
// We have an aggregate being loaded, split it apart.
DEBUG(dbgs() << " original: " << LI << "\n");
LoadOpSplitter Splitter(&LI, *U);
Value *V = UndefValue::get(LI.getType());
Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
LI.replaceAllUsesWith(V);
LI.eraseFromParent();
return true;
}
struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
: OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
/// Emit a leaf store of a single value. This is called at the leaves of the
/// recursive emission to actually produce stores.
void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
assert(Ty->isSingleValueType());
// Extract the single value and store it using the indices.
Value *Store = IRB.CreateStore(
IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
(void)Store;
DEBUG(dbgs() << " to: " << *Store << "\n");
}
};
bool visitStoreInst(StoreInst &SI) {
if (!SI.isSimple() || SI.getPointerOperand() != *U)
return false;
Value *V = SI.getValueOperand();
if (V->getType()->isSingleValueType())
return false;
// We have an aggregate being stored, split it apart.
DEBUG(dbgs() << " original: " << SI << "\n");
StoreOpSplitter Splitter(&SI, *U);
Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
SI.eraseFromParent();
return true;
}
bool visitBitCastInst(BitCastInst &BC) {
enqueueUsers(BC);
return false;
}
bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
enqueueUsers(GEPI);
return false;
}
bool visitPHINode(PHINode &PN) {
enqueueUsers(PN);
return false;
}
bool visitSelectInst(SelectInst &SI) {
enqueueUsers(SI);
return false;
}
};
}
/// \brief Strip aggregate type wrapping.
///
/// This removes no-op aggregate types wrapping an underlying type. It will
/// strip as many layers of types as it can without changing either the type
/// size or the allocated size.
static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
if (Ty->isSingleValueType())
return Ty;
uint64_t AllocSize = DL.getTypeAllocSize(Ty);
uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
Type *InnerTy;
if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
InnerTy = ArrTy->getElementType();
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SL = DL.getStructLayout(STy);
unsigned Index = SL->getElementContainingOffset(0);
InnerTy = STy->getElementType(Index);
} else {
return Ty;
}
if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
TypeSize > DL.getTypeSizeInBits(InnerTy))
return Ty;
return stripAggregateTypeWrapping(DL, InnerTy);
}
/// \brief Try to find a partition of the aggregate type passed in for a given
/// offset and size.
///
/// This recurses through the aggregate type and tries to compute a subtype
/// based on the offset and size. When the offset and size span a sub-section
/// of an array, it will even compute a new array type for that sub-section,
/// and the same for structs.
///
/// Note that this routine is very strict and tries to find a partition of the
/// type which produces the *exact* right offset and size. It is not forgiving
/// when the size or offset cause either end of type-based partition to be off.
/// Also, this is a best-effort routine. It is reasonable to give up and not
/// return a type if necessary.
static Type *getTypePartition(const DataLayout &TD, Type *Ty,
uint64_t Offset, uint64_t Size) {
if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
return stripAggregateTypeWrapping(TD, Ty);
if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
// We can't partition pointers...
if (SeqTy->isPointerTy())
return 0;
Type *ElementTy = SeqTy->getElementType();
uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
uint64_t NumSkippedElements = Offset / ElementSize;
if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
if (NumSkippedElements >= ArrTy->getNumElements())
return 0;
if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
if (NumSkippedElements >= VecTy->getNumElements())
return 0;
Offset -= NumSkippedElements * ElementSize;
// First check if we need to recurse.
if (Offset > 0 || Size < ElementSize) {
// Bail if the partition ends in a different array element.
if ((Offset + Size) > ElementSize)
return 0;
// Recurse through the element type trying to peel off offset bytes.
return getTypePartition(TD, ElementTy, Offset, Size);
}
assert(Offset == 0);
if (Size == ElementSize)
return stripAggregateTypeWrapping(TD, ElementTy);
assert(Size > ElementSize);
uint64_t NumElements = Size / ElementSize;
if (NumElements * ElementSize != Size)
return 0;
return ArrayType::get(ElementTy, NumElements);
}
StructType *STy = dyn_cast<StructType>(Ty);
if (!STy)
return 0;
const StructLayout *SL = TD.getStructLayout(STy);
if (Offset >= SL->getSizeInBytes())
return 0;
uint64_t EndOffset = Offset + Size;
if (EndOffset > SL->getSizeInBytes())
return 0;
unsigned Index = SL->getElementContainingOffset(Offset);
Offset -= SL->getElementOffset(Index);
Type *ElementTy = STy->getElementType(Index);
uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
if (Offset >= ElementSize)
return 0; // The offset points into alignment padding.
// See if any partition must be contained by the element.
if (Offset > 0 || Size < ElementSize) {
if ((Offset + Size) > ElementSize)
return 0;
return getTypePartition(TD, ElementTy, Offset, Size);
}
assert(Offset == 0);
if (Size == ElementSize)
return stripAggregateTypeWrapping(TD, ElementTy);
StructType::element_iterator EI = STy->element_begin() + Index,
EE = STy->element_end();
if (EndOffset < SL->getSizeInBytes()) {
unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
if (Index == EndIndex)
return 0; // Within a single element and its padding.
// Don't try to form "natural" types if the elements don't line up with the
// expected size.
// FIXME: We could potentially recurse down through the last element in the
// sub-struct to find a natural end point.
if (SL->getElementOffset(EndIndex) != EndOffset)
return 0;
assert(Index < EndIndex);
EE = STy->element_begin() + EndIndex;
}
// Try to build up a sub-structure.
SmallVector<Type *, 4> ElementTys;
do {
ElementTys.push_back(*EI++);
} while (EI != EE);
StructType *SubTy = StructType::get(STy->getContext(), ElementTys,
STy->isPacked());
const StructLayout *SubSL = TD.getStructLayout(SubTy);
if (Size != SubSL->getSizeInBytes())
return 0; // The sub-struct doesn't have quite the size needed.
return SubTy;
}
/// \brief Rewrite an alloca partition's users.
///
/// This routine drives both of the rewriting goals of the SROA pass. It tries
/// to rewrite uses of an alloca partition to be conducive for SSA value
/// promotion. If the partition needs a new, more refined alloca, this will
/// build that new alloca, preserving as much type information as possible, and
/// rewrite the uses of the old alloca to point at the new one and have the
/// appropriate new offsets. It also evaluates how successful the rewrite was
/// at enabling promotion and if it was successful queues the alloca to be
/// promoted.
bool SROA::rewriteAllocaPartition(AllocaInst &AI,
AllocaPartitioning &P,
AllocaPartitioning::iterator PI) {
uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
bool IsLive = false;
for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
UE = P.use_end(PI);
UI != UE && !IsLive; ++UI)
if (UI->U)
IsLive = true;
if (!IsLive)
return false; // No live uses left of this partition.
DEBUG(dbgs() << "Speculating PHIs and selects in partition "
<< "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
PHIOrSelectSpeculator Speculator(*TD, P, *this);
DEBUG(dbgs() << " speculating ");
DEBUG(P.print(dbgs(), PI, ""));
Speculator.visitUsers(PI);
// Try to compute a friendly type for this partition of the alloca. This
// won't always succeed, in which case we fall back to a legal integer type
// or an i8 array of an appropriate size.
Type *AllocaTy = 0;
if (Type *PartitionTy = P.getCommonType(PI))
if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
AllocaTy = PartitionTy;
if (!AllocaTy)
if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
PI->BeginOffset, AllocaSize))
AllocaTy = PartitionTy;
if ((!AllocaTy ||
(AllocaTy->isArrayTy() &&
AllocaTy->getArrayElementType()->isIntegerTy())) &&
TD->isLegalInteger(AllocaSize * 8))
AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
if (!AllocaTy)
AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
// Check for the case where we're going to rewrite to a new alloca of the
// exact same type as the original, and with the same access offsets. In that
// case, re-use the existing alloca, but still run through the rewriter to
// performe phi and select speculation.
AllocaInst *NewAI;
if (AllocaTy == AI.getAllocatedType()) {
assert(PI->BeginOffset == 0 &&
"Non-zero begin offset but same alloca type");
assert(PI == P.begin() && "Begin offset is zero on later partition");
NewAI = &AI;
} else {
unsigned Alignment = AI.getAlignment();
if (!Alignment) {
// The minimum alignment which users can rely on when the explicit
// alignment is omitted or zero is that required by the ABI for this
// type.
Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
}
Alignment = MinAlign(Alignment, PI->BeginOffset);
// If we will get at least this much alignment from the type alone, leave
// the alloca's alignment unconstrained.
if (Alignment <= TD->getABITypeAlignment(AllocaTy))
Alignment = 0;
NewAI = new AllocaInst(AllocaTy, 0, Alignment,
AI.getName() + ".sroa." + Twine(PI - P.begin()),
&AI);
++NumNewAllocas;
}
DEBUG(dbgs() << "Rewriting alloca partition "
<< "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
<< *NewAI << "\n");
// Track the high watermark of the post-promotion worklist. We will reset it
// to this point if the alloca is not in fact scheduled for promotion.
unsigned PPWOldSize = PostPromotionWorklist.size();
AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
PI->BeginOffset, PI->EndOffset);
DEBUG(dbgs() << " rewriting ");
DEBUG(P.print(dbgs(), PI, ""));
bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI));
if (Promotable) {
DEBUG(dbgs() << " and queuing for promotion\n");
PromotableAllocas.push_back(NewAI);
} else if (NewAI != &AI) {
// If we can't promote the alloca, iterate on it to check for new
// refinements exposed by splitting the current alloca. Don't iterate on an
// alloca which didn't actually change and didn't get promoted.
Worklist.insert(NewAI);
}
// Drop any post-promotion work items if promotion didn't happen.
if (!Promotable)
while (PostPromotionWorklist.size() > PPWOldSize)
PostPromotionWorklist.pop_back();
return true;
}
/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
bool Changed = false;
for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
++PI)
Changed |= rewriteAllocaPartition(AI, P, PI);
return Changed;
}
/// \brief Analyze an alloca for SROA.
///
/// This analyzes the alloca to ensure we can reason about it, builds
/// a partitioning of the alloca, and then hands it off to be split and
/// rewritten as needed.
bool SROA::runOnAlloca(AllocaInst &AI) {
DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
++NumAllocasAnalyzed;
// Special case dead allocas, as they're trivial.
if (AI.use_empty()) {
AI.eraseFromParent();
return true;
}
// Skip alloca forms that this analysis can't handle.
if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
return false;
bool Changed = false;
// First, split any FCA loads and stores touching this alloca to promote
// better splitting and promotion opportunities.
AggLoadStoreRewriter AggRewriter(*TD);
Changed |= AggRewriter.rewrite(AI);
// Build the partition set using a recursive instruction-visiting builder.
AllocaPartitioning P(*TD, AI);
DEBUG(P.print(dbgs()));
if (P.isEscaped())
return Changed;
// Delete all the dead users of this alloca before splitting and rewriting it.
for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
DE = P.dead_user_end();
DI != DE; ++DI) {
Changed = true;
(*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
DeadInsts.push_back(*DI);
}
for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
DE = P.dead_op_end();
DO != DE; ++DO) {
Value *OldV = **DO;
// Clobber the use with an undef value.
**DO = UndefValue::get(OldV->getType());
if (Instruction *OldI = dyn_cast<Instruction>(OldV))
if (isInstructionTriviallyDead(OldI)) {
Changed = true;
DeadInsts.push_back(OldI);
}
}
// No partitions to split. Leave the dead alloca for a later pass to clean up.
if (P.begin() == P.end())
return Changed;
return splitAlloca(AI, P) || Changed;
}
/// \brief Delete the dead instructions accumulated in this run.
///
/// Recursively deletes the dead instructions we've accumulated. This is done
/// at the very end to maximize locality of the recursive delete and to
/// minimize the problems of invalidated instruction pointers as such pointers
/// are used heavily in the intermediate stages of the algorithm.
///
/// We also record the alloca instructions deleted here so that they aren't
/// subsequently handed to mem2reg to promote.
void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
DeadSplitInsts.clear();
while (!DeadInsts.empty()) {
Instruction *I = DeadInsts.pop_back_val();
DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
if (Instruction *U = dyn_cast<Instruction>(*OI)) {
// Zero out the operand and see if it becomes trivially dead.
*OI = 0;
if (isInstructionTriviallyDead(U))
DeadInsts.push_back(U);
}
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
DeletedAllocas.insert(AI);
++NumDeleted;
I->eraseFromParent();
}
}
/// \brief Promote the allocas, using the best available technique.
///
/// This attempts to promote whatever allocas have been identified as viable in
/// the PromotableAllocas list. If that list is empty, there is nothing to do.
/// If there is a domtree available, we attempt to promote using the full power
/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
/// based on the SSAUpdater utilities. This function returns whether any
/// promotion occured.
bool SROA::promoteAllocas(Function &F) {
if (PromotableAllocas.empty())
return false;
NumPromoted += PromotableAllocas.size();
if (DT && !ForceSSAUpdater) {
DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
PromoteMemToReg(PromotableAllocas, *DT);
PromotableAllocas.clear();
return true;
}
DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
SSAUpdater SSA;
DIBuilder DIB(*F.getParent());
SmallVector<Instruction*, 64> Insts;
for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
AllocaInst *AI = PromotableAllocas[Idx];
for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
UI != UE;) {
Instruction *I = cast<Instruction>(*UI++);
// FIXME: Currently the SSAUpdater infrastructure doesn't reason about
// lifetime intrinsics and so we strip them (and the bitcasts+GEPs
// leading to them) here. Eventually it should use them to optimize the
// scalar values produced.
if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
assert(onlyUsedByLifetimeMarkers(I) &&
"Found a bitcast used outside of a lifetime marker.");
while (!I->use_empty())
cast<Instruction>(*I->use_begin())->eraseFromParent();
I->eraseFromParent();
continue;
}
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
II->getIntrinsicID() == Intrinsic::lifetime_end);
II->eraseFromParent();
continue;
}
Insts.push_back(I);
}
AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
Insts.clear();
}
PromotableAllocas.clear();
return true;
}
namespace {
/// \brief A predicate to test whether an alloca belongs to a set.
class IsAllocaInSet {
typedef SmallPtrSet<AllocaInst *, 4> SetType;
const SetType &Set;
public:
typedef AllocaInst *argument_type;
IsAllocaInSet(const SetType &Set) : Set(Set) {}
bool operator()(AllocaInst *AI) const { return Set.count(AI); }
};
}
bool SROA::runOnFunction(Function &F) {
DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
C = &F.getContext();
TD = getAnalysisIfAvailable<DataLayout>();
if (!TD) {
DEBUG(dbgs() << " Skipping SROA -- no target data!\n");
return false;
}
DT = getAnalysisIfAvailable<DominatorTree>();
BasicBlock &EntryBB = F.getEntryBlock();
for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
I != E; ++I)
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
Worklist.insert(AI);
bool Changed = false;
// A set of deleted alloca instruction pointers which should be removed from
// the list of promotable allocas.
SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
do {
while (!Worklist.empty()) {
Changed |= runOnAlloca(*Worklist.pop_back_val());
deleteDeadInstructions(DeletedAllocas);
// Remove the deleted allocas from various lists so that we don't try to
// continue processing them.
if (!DeletedAllocas.empty()) {
Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
PromotableAllocas.end(),
IsAllocaInSet(DeletedAllocas)),
PromotableAllocas.end());
DeletedAllocas.clear();
}
}
Changed |= promoteAllocas(F);
Worklist = PostPromotionWorklist;
PostPromotionWorklist.clear();
} while (!Worklist.empty());
return Changed;
}
void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
if (RequiresDomTree)
AU.addRequired<DominatorTree>();
AU.setPreservesCFG();
}
|