aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine/InstCombinePHI.cpp
blob: b0a998cca76e1ab580e47a4fcc7bc88fdd73d78d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
//===- InstCombinePHI.cpp -------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitPHINode function.
//
//===----------------------------------------------------------------------===//

#include "InstCombine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/DataLayout.h"
using namespace llvm;

/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
/// and if a/b/c and the add's all have a single use, turn this into a phi
/// and a single binop.
Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
  assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
  unsigned Opc = FirstInst->getOpcode();
  Value *LHSVal = FirstInst->getOperand(0);
  Value *RHSVal = FirstInst->getOperand(1);
    
  Type *LHSType = LHSVal->getType();
  Type *RHSType = RHSVal->getType();
  
  bool isNUW = false, isNSW = false, isExact = false;
  if (OverflowingBinaryOperator *BO =
        dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
    isNUW = BO->hasNoUnsignedWrap();
    isNSW = BO->hasNoSignedWrap();
  } else if (PossiblyExactOperator *PEO =
               dyn_cast<PossiblyExactOperator>(FirstInst))
    isExact = PEO->isExact();
  
  // Scan to see if all operands are the same opcode, and all have one use.
  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
    if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
        // Verify type of the LHS matches so we don't fold cmp's of different
        // types.
        I->getOperand(0)->getType() != LHSType ||
        I->getOperand(1)->getType() != RHSType)
      return 0;

    // If they are CmpInst instructions, check their predicates
    if (CmpInst *CI = dyn_cast<CmpInst>(I))
      if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
        return 0;
    
    if (isNUW)
      isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
    if (isNSW)
      isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    if (isExact)
      isExact = cast<PossiblyExactOperator>(I)->isExact();
    
    // Keep track of which operand needs a phi node.
    if (I->getOperand(0) != LHSVal) LHSVal = 0;
    if (I->getOperand(1) != RHSVal) RHSVal = 0;
  }

  // If both LHS and RHS would need a PHI, don't do this transformation,
  // because it would increase the number of PHIs entering the block,
  // which leads to higher register pressure. This is especially
  // bad when the PHIs are in the header of a loop.
  if (!LHSVal && !RHSVal)
    return 0;
  
  // Otherwise, this is safe to transform!
  
  Value *InLHS = FirstInst->getOperand(0);
  Value *InRHS = FirstInst->getOperand(1);
  PHINode *NewLHS = 0, *NewRHS = 0;
  if (LHSVal == 0) {
    NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
                             FirstInst->getOperand(0)->getName() + ".pn");
    NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
    InsertNewInstBefore(NewLHS, PN);
    LHSVal = NewLHS;
  }
  
  if (RHSVal == 0) {
    NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
                             FirstInst->getOperand(1)->getName() + ".pn");
    NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
    InsertNewInstBefore(NewRHS, PN);
    RHSVal = NewRHS;
  }
  
  // Add all operands to the new PHIs.
  if (NewLHS || NewRHS) {
    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
      Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
      if (NewLHS) {
        Value *NewInLHS = InInst->getOperand(0);
        NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
      }
      if (NewRHS) {
        Value *NewInRHS = InInst->getOperand(1);
        NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
      }
    }
  }
    
  if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
    CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
                                     LHSVal, RHSVal);
    NewCI->setDebugLoc(FirstInst->getDebugLoc());
    return NewCI;
  }

  BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
  BinaryOperator *NewBinOp =
    BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
  if (isNUW) NewBinOp->setHasNoUnsignedWrap();
  if (isNSW) NewBinOp->setHasNoSignedWrap();
  if (isExact) NewBinOp->setIsExact();
  NewBinOp->setDebugLoc(FirstInst->getDebugLoc());
  return NewBinOp;
}

Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
  GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
  
  SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 
                                        FirstInst->op_end());
  // This is true if all GEP bases are allocas and if all indices into them are
  // constants.
  bool AllBasePointersAreAllocas = true;

  // We don't want to replace this phi if the replacement would require
  // more than one phi, which leads to higher register pressure. This is
  // especially bad when the PHIs are in the header of a loop.
  bool NeededPhi = false;
  
  bool AllInBounds = true;
  
  // Scan to see if all operands are the same opcode, and all have one use.
  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
    GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
    if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
      GEP->getNumOperands() != FirstInst->getNumOperands())
      return 0;

    AllInBounds &= GEP->isInBounds();
    
    // Keep track of whether or not all GEPs are of alloca pointers.
    if (AllBasePointersAreAllocas &&
        (!isa<AllocaInst>(GEP->getOperand(0)) ||
         !GEP->hasAllConstantIndices()))
      AllBasePointersAreAllocas = false;
    
    // Compare the operand lists.
    for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
      if (FirstInst->getOperand(op) == GEP->getOperand(op))
        continue;
      
      // Don't merge two GEPs when two operands differ (introducing phi nodes)
      // if one of the PHIs has a constant for the index.  The index may be
      // substantially cheaper to compute for the constants, so making it a
      // variable index could pessimize the path.  This also handles the case
      // for struct indices, which must always be constant.
      if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
          isa<ConstantInt>(GEP->getOperand(op)))
        return 0;
      
      if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
        return 0;

      // If we already needed a PHI for an earlier operand, and another operand
      // also requires a PHI, we'd be introducing more PHIs than we're
      // eliminating, which increases register pressure on entry to the PHI's
      // block.
      if (NeededPhi)
        return 0;

      FixedOperands[op] = 0;  // Needs a PHI.
      NeededPhi = true;
    }
  }
  
  // If all of the base pointers of the PHI'd GEPs are from allocas, don't
  // bother doing this transformation.  At best, this will just save a bit of
  // offset calculation, but all the predecessors will have to materialize the
  // stack address into a register anyway.  We'd actually rather *clone* the
  // load up into the predecessors so that we have a load of a gep of an alloca,
  // which can usually all be folded into the load.
  if (AllBasePointersAreAllocas)
    return 0;
  
  // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
  // that is variable.
  SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
  
  bool HasAnyPHIs = false;
  for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
    if (FixedOperands[i]) continue;  // operand doesn't need a phi.
    Value *FirstOp = FirstInst->getOperand(i);
    PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
                                     FirstOp->getName()+".pn");
    InsertNewInstBefore(NewPN, PN);
    
    NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
    OperandPhis[i] = NewPN;
    FixedOperands[i] = NewPN;
    HasAnyPHIs = true;
  }

  
  // Add all operands to the new PHIs.
  if (HasAnyPHIs) {
    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
      GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
      BasicBlock *InBB = PN.getIncomingBlock(i);
      
      for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
        if (PHINode *OpPhi = OperandPhis[op])
          OpPhi->addIncoming(InGEP->getOperand(op), InBB);
    }
  }
  
  Value *Base = FixedOperands[0];
  GetElementPtrInst *NewGEP = 
    GetElementPtrInst::Create(Base, makeArrayRef(FixedOperands).slice(1));
  if (AllInBounds) NewGEP->setIsInBounds();
  NewGEP->setDebugLoc(FirstInst->getDebugLoc());
  return NewGEP;
}


/// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
/// sink the load out of the block that defines it.  This means that it must be
/// obvious the value of the load is not changed from the point of the load to
/// the end of the block it is in.
///
/// Finally, it is safe, but not profitable, to sink a load targeting a
/// non-address-taken alloca.  Doing so will cause us to not promote the alloca
/// to a register.
static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
  BasicBlock::iterator BBI = L, E = L->getParent()->end();
  
  for (++BBI; BBI != E; ++BBI)
    if (BBI->mayWriteToMemory())
      return false;
  
  // Check for non-address taken alloca.  If not address-taken already, it isn't
  // profitable to do this xform.
  if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
    bool isAddressTaken = false;
    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
         UI != E; ++UI) {
      User *U = *UI;
      if (isa<LoadInst>(U)) continue;
      if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
        // If storing TO the alloca, then the address isn't taken.
        if (SI->getOperand(1) == AI) continue;
      }
      isAddressTaken = true;
      break;
    }
    
    if (!isAddressTaken && AI->isStaticAlloca())
      return false;
  }
  
  // If this load is a load from a GEP with a constant offset from an alloca,
  // then we don't want to sink it.  In its present form, it will be
  // load [constant stack offset].  Sinking it will cause us to have to
  // materialize the stack addresses in each predecessor in a register only to
  // do a shared load from register in the successor.
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
    if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
      if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
        return false;
  
  return true;
}

Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
  LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));

  // FIXME: This is overconservative; this transform is allowed in some cases
  // for atomic operations.
  if (FirstLI->isAtomic())
    return 0;

  // When processing loads, we need to propagate two bits of information to the
  // sunk load: whether it is volatile, and what its alignment is.  We currently
  // don't sink loads when some have their alignment specified and some don't.
  // visitLoadInst will propagate an alignment onto the load when TD is around,
  // and if TD isn't around, we can't handle the mixed case.
  bool isVolatile = FirstLI->isVolatile();
  unsigned LoadAlignment = FirstLI->getAlignment();
  unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
  
  // We can't sink the load if the loaded value could be modified between the
  // load and the PHI.
  if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
      !isSafeAndProfitableToSinkLoad(FirstLI))
    return 0;
  
  // If the PHI is of volatile loads and the load block has multiple
  // successors, sinking it would remove a load of the volatile value from
  // the path through the other successor.
  if (isVolatile && 
      FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
    return 0;
  
  // Check to see if all arguments are the same operation.
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
    LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
    if (!LI || !LI->hasOneUse())
      return 0;
    
    // We can't sink the load if the loaded value could be modified between 
    // the load and the PHI.
    if (LI->isVolatile() != isVolatile ||
        LI->getParent() != PN.getIncomingBlock(i) ||
        LI->getPointerAddressSpace() != LoadAddrSpace ||
        !isSafeAndProfitableToSinkLoad(LI))
      return 0;
      
    // If some of the loads have an alignment specified but not all of them,
    // we can't do the transformation.
    if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
      return 0;
    
    LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
    
    // If the PHI is of volatile loads and the load block has multiple
    // successors, sinking it would remove a load of the volatile value from
    // the path through the other successor.
    if (isVolatile &&
        LI->getParent()->getTerminator()->getNumSuccessors() != 1)
      return 0;
  }
  
  // Okay, they are all the same operation.  Create a new PHI node of the
  // correct type, and PHI together all of the LHS's of the instructions.
  PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
                                   PN.getNumIncomingValues(),
                                   PN.getName()+".in");
  
  Value *InVal = FirstLI->getOperand(0);
  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
  
  // Add all operands to the new PHI.
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
    Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
    if (NewInVal != InVal)
      InVal = 0;
    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
  }
  
  Value *PhiVal;
  if (InVal) {
    // The new PHI unions all of the same values together.  This is really
    // common, so we handle it intelligently here for compile-time speed.
    PhiVal = InVal;
    delete NewPN;
  } else {
    InsertNewInstBefore(NewPN, PN);
    PhiVal = NewPN;
  }
  
  // If this was a volatile load that we are merging, make sure to loop through
  // and mark all the input loads as non-volatile.  If we don't do this, we will
  // insert a new volatile load and the old ones will not be deletable.
  if (isVolatile)
    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
      cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
  
  LoadInst *NewLI = new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
  NewLI->setDebugLoc(FirstLI->getDebugLoc());
  return NewLI;
}



/// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
/// operator and they all are only used by the PHI, PHI together their
/// inputs, and do the operation once, to the result of the PHI.
Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));

  if (isa<GetElementPtrInst>(FirstInst))
    return FoldPHIArgGEPIntoPHI(PN);
  if (isa<LoadInst>(FirstInst))
    return FoldPHIArgLoadIntoPHI(PN);
  
  // Scan the instruction, looking for input operations that can be folded away.
  // If all input operands to the phi are the same instruction (e.g. a cast from
  // the same type or "+42") we can pull the operation through the PHI, reducing
  // code size and simplifying code.
  Constant *ConstantOp = 0;
  Type *CastSrcTy = 0;
  bool isNUW = false, isNSW = false, isExact = false;
  
  if (isa<CastInst>(FirstInst)) {
    CastSrcTy = FirstInst->getOperand(0)->getType();

    // Be careful about transforming integer PHIs.  We don't want to pessimize
    // the code by turning an i32 into an i1293.
    if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
      if (!ShouldChangeType(PN.getType(), CastSrcTy))
        return 0;
    }
  } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
    // Can fold binop, compare or shift here if the RHS is a constant, 
    // otherwise call FoldPHIArgBinOpIntoPHI.
    ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
    if (ConstantOp == 0)
      return FoldPHIArgBinOpIntoPHI(PN);
    
    if (OverflowingBinaryOperator *BO =
        dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
      isNUW = BO->hasNoUnsignedWrap();
      isNSW = BO->hasNoSignedWrap();
    } else if (PossiblyExactOperator *PEO =
               dyn_cast<PossiblyExactOperator>(FirstInst))
      isExact = PEO->isExact();
  } else {
    return 0;  // Cannot fold this operation.
  }

  // Check to see if all arguments are the same operation.
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
    if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
      return 0;
    if (CastSrcTy) {
      if (I->getOperand(0)->getType() != CastSrcTy)
        return 0;  // Cast operation must match.
    } else if (I->getOperand(1) != ConstantOp) {
      return 0;
    }
    
    if (isNUW)
      isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
    if (isNSW)
      isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    if (isExact)
      isExact = cast<PossiblyExactOperator>(I)->isExact();
  }

  // Okay, they are all the same operation.  Create a new PHI node of the
  // correct type, and PHI together all of the LHS's of the instructions.
  PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
                                   PN.getNumIncomingValues(),
                                   PN.getName()+".in");

  Value *InVal = FirstInst->getOperand(0);
  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));

  // Add all operands to the new PHI.
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
    Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
    if (NewInVal != InVal)
      InVal = 0;
    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
  }

  Value *PhiVal;
  if (InVal) {
    // The new PHI unions all of the same values together.  This is really
    // common, so we handle it intelligently here for compile-time speed.
    PhiVal = InVal;
    delete NewPN;
  } else {
    InsertNewInstBefore(NewPN, PN);
    PhiVal = NewPN;
  }

  // Insert and return the new operation.
  if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
    CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
                                       PN.getType());
    NewCI->setDebugLoc(FirstInst->getDebugLoc());
    return NewCI;
  }
  
  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
    BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
    if (isNUW) BinOp->setHasNoUnsignedWrap();
    if (isNSW) BinOp->setHasNoSignedWrap();
    if (isExact) BinOp->setIsExact();
    BinOp->setDebugLoc(FirstInst->getDebugLoc());
    return BinOp;
  }
  
  CmpInst *CIOp = cast<CmpInst>(FirstInst);
  CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
                                   PhiVal, ConstantOp);
  NewCI->setDebugLoc(FirstInst->getDebugLoc());
  return NewCI;
}

/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
/// that is dead.
static bool DeadPHICycle(PHINode *PN,
                         SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
  if (PN->use_empty()) return true;
  if (!PN->hasOneUse()) return false;

  // Remember this node, and if we find the cycle, return.
  if (!PotentiallyDeadPHIs.insert(PN))
    return true;
  
  // Don't scan crazily complex things.
  if (PotentiallyDeadPHIs.size() == 16)
    return false;

  if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
    return DeadPHICycle(PU, PotentiallyDeadPHIs);

  return false;
}

/// PHIsEqualValue - Return true if this phi node is always equal to
/// NonPhiInVal.  This happens with mutually cyclic phi nodes like:
///   z = some value; x = phi (y, z); y = phi (x, z)
static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 
                           SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
  // See if we already saw this PHI node.
  if (!ValueEqualPHIs.insert(PN))
    return true;
  
  // Don't scan crazily complex things.
  if (ValueEqualPHIs.size() == 16)
    return false;
 
  // Scan the operands to see if they are either phi nodes or are equal to
  // the value.
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    Value *Op = PN->getIncomingValue(i);
    if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
      if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
        return false;
    } else if (Op != NonPhiInVal)
      return false;
  }
  
  return true;
}


namespace {
struct PHIUsageRecord {
  unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
  unsigned Shift;     // The amount shifted.
  Instruction *Inst;  // The trunc instruction.
  
  PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
    : PHIId(pn), Shift(Sh), Inst(User) {}
  
  bool operator<(const PHIUsageRecord &RHS) const {
    if (PHIId < RHS.PHIId) return true;
    if (PHIId > RHS.PHIId) return false;
    if (Shift < RHS.Shift) return true;
    if (Shift > RHS.Shift) return false;
    return Inst->getType()->getPrimitiveSizeInBits() <
           RHS.Inst->getType()->getPrimitiveSizeInBits();
  }
};
  
struct LoweredPHIRecord {
  PHINode *PN;        // The PHI that was lowered.
  unsigned Shift;     // The amount shifted.
  unsigned Width;     // The width extracted.
  
  LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
    : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
  
  // Ctor form used by DenseMap.
  LoweredPHIRecord(PHINode *pn, unsigned Sh)
    : PN(pn), Shift(Sh), Width(0) {}
};
}

namespace llvm {
  template<>
  struct DenseMapInfo<LoweredPHIRecord> {
    static inline LoweredPHIRecord getEmptyKey() {
      return LoweredPHIRecord(0, 0);
    }
    static inline LoweredPHIRecord getTombstoneKey() {
      return LoweredPHIRecord(0, 1);
    }
    static unsigned getHashValue(const LoweredPHIRecord &Val) {
      return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
             (Val.Width>>3);
    }
    static bool isEqual(const LoweredPHIRecord &LHS,
                        const LoweredPHIRecord &RHS) {
      return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
             LHS.Width == RHS.Width;
    }
  };
  template <>
  struct isPodLike<LoweredPHIRecord> { static const bool value = true; };
}


/// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
/// illegal type: see if it is only used by trunc or trunc(lshr) operations.  If
/// so, we split the PHI into the various pieces being extracted.  This sort of
/// thing is introduced when SROA promotes an aggregate to large integer values.
///
/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
/// inttoptr.  We should produce new PHIs in the right type.
///
Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
  // PHIUsers - Keep track of all of the truncated values extracted from a set
  // of PHIs, along with their offset.  These are the things we want to rewrite.
  SmallVector<PHIUsageRecord, 16> PHIUsers;
  
  // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
  // nodes which are extracted from. PHIsToSlice is a set we use to avoid
  // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
  // check the uses of (to ensure they are all extracts).
  SmallVector<PHINode*, 8> PHIsToSlice;
  SmallPtrSet<PHINode*, 8> PHIsInspected;
  
  PHIsToSlice.push_back(&FirstPhi);
  PHIsInspected.insert(&FirstPhi);
  
  for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
    PHINode *PN = PHIsToSlice[PHIId];
    
    // Scan the input list of the PHI.  If any input is an invoke, and if the
    // input is defined in the predecessor, then we won't be split the critical
    // edge which is required to insert a truncate.  Because of this, we have to
    // bail out.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
      if (II == 0) continue;
      if (II->getParent() != PN->getIncomingBlock(i))
        continue;
     
      // If we have a phi, and if it's directly in the predecessor, then we have
      // a critical edge where we need to put the truncate.  Since we can't
      // split the edge in instcombine, we have to bail out.
      return 0;
    }
      
    
    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
         UI != E; ++UI) {
      Instruction *User = cast<Instruction>(*UI);
      
      // If the user is a PHI, inspect its uses recursively.
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
        if (PHIsInspected.insert(UserPN))
          PHIsToSlice.push_back(UserPN);
        continue;
      }
      
      // Truncates are always ok.
      if (isa<TruncInst>(User)) {
        PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User));
        continue;
      }
      
      // Otherwise it must be a lshr which can only be used by one trunc.
      if (User->getOpcode() != Instruction::LShr ||
          !User->hasOneUse() || !isa<TruncInst>(User->use_back()) ||
          !isa<ConstantInt>(User->getOperand(1)))
        return 0;
      
      unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue();
      PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back()));
    }
  }
  
  // If we have no users, they must be all self uses, just nuke the PHI.
  if (PHIUsers.empty())
    return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
  
  // If this phi node is transformable, create new PHIs for all the pieces
  // extracted out of it.  First, sort the users by their offset and size.
  array_pod_sort(PHIUsers.begin(), PHIUsers.end());
  
  DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n';
            for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
              errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n';
        );
  
  // PredValues - This is a temporary used when rewriting PHI nodes.  It is
  // hoisted out here to avoid construction/destruction thrashing.
  DenseMap<BasicBlock*, Value*> PredValues;
  
  // ExtractedVals - Each new PHI we introduce is saved here so we don't
  // introduce redundant PHIs.
  DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
  
  for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
    unsigned PHIId = PHIUsers[UserI].PHIId;
    PHINode *PN = PHIsToSlice[PHIId];
    unsigned Offset = PHIUsers[UserI].Shift;
    Type *Ty = PHIUsers[UserI].Inst->getType();
    
    PHINode *EltPHI;
    
    // If we've already lowered a user like this, reuse the previously lowered
    // value.
    if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) {
      
      // Otherwise, Create the new PHI node for this user.
      EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
                               PN->getName()+".off"+Twine(Offset), PN);
      assert(EltPHI->getType() != PN->getType() &&
             "Truncate didn't shrink phi?");
    
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        BasicBlock *Pred = PN->getIncomingBlock(i);
        Value *&PredVal = PredValues[Pred];
        
        // If we already have a value for this predecessor, reuse it.
        if (PredVal) {
          EltPHI->addIncoming(PredVal, Pred);
          continue;
        }

        // Handle the PHI self-reuse case.
        Value *InVal = PN->getIncomingValue(i);
        if (InVal == PN) {
          PredVal = EltPHI;
          EltPHI->addIncoming(PredVal, Pred);
          continue;
        }
        
        if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
          // If the incoming value was a PHI, and if it was one of the PHIs we
          // already rewrote it, just use the lowered value.
          if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
            PredVal = Res;
            EltPHI->addIncoming(PredVal, Pred);
            continue;
          }
        }
        
        // Otherwise, do an extract in the predecessor.
        Builder->SetInsertPoint(Pred, Pred->getTerminator());
        Value *Res = InVal;
        if (Offset)
          Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
                                                          Offset), "extract");
        Res = Builder->CreateTrunc(Res, Ty, "extract.t");
        PredVal = Res;
        EltPHI->addIncoming(Res, Pred);
        
        // If the incoming value was a PHI, and if it was one of the PHIs we are
        // rewriting, we will ultimately delete the code we inserted.  This
        // means we need to revisit that PHI to make sure we extract out the
        // needed piece.
        if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
          if (PHIsInspected.count(OldInVal)) {
            unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
                                          OldInVal)-PHIsToSlice.begin();
            PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset, 
                                              cast<Instruction>(Res)));
            ++UserE;
          }
      }
      PredValues.clear();
      
      DEBUG(errs() << "  Made element PHI for offset " << Offset << ": "
                   << *EltPHI << '\n');
      ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
    }
    
    // Replace the use of this piece with the PHI node.
    ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
  }
  
  // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
  // with undefs.
  Value *Undef = UndefValue::get(FirstPhi.getType());
  for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
    ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
  return ReplaceInstUsesWith(FirstPhi, Undef);
}

// PHINode simplification
//
Instruction *InstCombiner::visitPHINode(PHINode &PN) {
  if (Value *V = SimplifyInstruction(&PN, TD))
    return ReplaceInstUsesWith(PN, V);

  // If all PHI operands are the same operation, pull them through the PHI,
  // reducing code size.
  if (isa<Instruction>(PN.getIncomingValue(0)) &&
      isa<Instruction>(PN.getIncomingValue(1)) &&
      cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
      cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
      // FIXME: The hasOneUse check will fail for PHIs that use the value more
      // than themselves more than once.
      PN.getIncomingValue(0)->hasOneUse())
    if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
      return Result;

  // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
  // this PHI only has a single use (a PHI), and if that PHI only has one use (a
  // PHI)... break the cycle.
  if (PN.hasOneUse()) {
    Instruction *PHIUser = cast<Instruction>(PN.use_back());
    if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
      SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
      PotentiallyDeadPHIs.insert(&PN);
      if (DeadPHICycle(PU, PotentiallyDeadPHIs))
        return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
    }
   
    // If this phi has a single use, and if that use just computes a value for
    // the next iteration of a loop, delete the phi.  This occurs with unused
    // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
    // common case here is good because the only other things that catch this
    // are induction variable analysis (sometimes) and ADCE, which is only run
    // late.
    if (PHIUser->hasOneUse() &&
        (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
        PHIUser->use_back() == &PN) {
      return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
    }
  }

  // We sometimes end up with phi cycles that non-obviously end up being the
  // same value, for example:
  //   z = some value; x = phi (y, z); y = phi (x, z)
  // where the phi nodes don't necessarily need to be in the same block.  Do a
  // quick check to see if the PHI node only contains a single non-phi value, if
  // so, scan to see if the phi cycle is actually equal to that value.
  {
    unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
    // Scan for the first non-phi operand.
    while (InValNo != NumIncomingVals &&
           isa<PHINode>(PN.getIncomingValue(InValNo)))
      ++InValNo;

    if (InValNo != NumIncomingVals) {
      Value *NonPhiInVal = PN.getIncomingValue(InValNo);
      
      // Scan the rest of the operands to see if there are any conflicts, if so
      // there is no need to recursively scan other phis.
      for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
        Value *OpVal = PN.getIncomingValue(InValNo);
        if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
          break;
      }
      
      // If we scanned over all operands, then we have one unique value plus
      // phi values.  Scan PHI nodes to see if they all merge in each other or
      // the value.
      if (InValNo == NumIncomingVals) {
        SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
        if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
          return ReplaceInstUsesWith(PN, NonPhiInVal);
      }
    }
  }

  // If there are multiple PHIs, sort their operands so that they all list
  // the blocks in the same order. This will help identical PHIs be eliminated
  // by other passes. Other passes shouldn't depend on this for correctness
  // however.
  PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
  if (&PN != FirstPN)
    for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
      BasicBlock *BBA = PN.getIncomingBlock(i);
      BasicBlock *BBB = FirstPN->getIncomingBlock(i);
      if (BBA != BBB) {
        Value *VA = PN.getIncomingValue(i);
        unsigned j = PN.getBasicBlockIndex(BBB);
        Value *VB = PN.getIncomingValue(j);
        PN.setIncomingBlock(i, BBB);
        PN.setIncomingValue(i, VB);
        PN.setIncomingBlock(j, BBA);
        PN.setIncomingValue(j, VA);
        // NOTE: Instcombine normally would want us to "return &PN" if we
        // modified any of the operands of an instruction.  However, since we
        // aren't adding or removing uses (just rearranging them) we don't do
        // this in this case.
      }
    }

  // If this is an integer PHI and we know that it has an illegal type, see if
  // it is only used by trunc or trunc(lshr) operations.  If so, we split the
  // PHI into the various pieces being extracted.  This sort of thing is
  // introduced when SROA promotes an aggregate to a single large integer type.
  if (PN.getType()->isIntegerTy() && TD &&
      !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
    if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
      return Res;
  
  return 0;
}