aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86ISelDAGToDAG.cpp
blob: c5234413aba63406b6be48d2b5cca7f9ec6cf141 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a DAG pattern matching instruction selector for X86,
// converting from a legalized dag to a X86 dag.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "x86-isel"
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/CFG.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;

STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");

//===----------------------------------------------------------------------===//
//                      Pattern Matcher Implementation
//===----------------------------------------------------------------------===//

namespace {
  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
  /// SDValue's instead of register numbers for the leaves of the matched
  /// tree.
  struct X86ISelAddressMode {
    enum {
      RegBase,
      FrameIndexBase
    } BaseType;

    // This is really a union, discriminated by BaseType!
    SDValue Base_Reg;
    int Base_FrameIndex;

    unsigned Scale;
    SDValue IndexReg; 
    int32_t Disp;
    SDValue Segment;
    const GlobalValue *GV;
    const Constant *CP;
    const BlockAddress *BlockAddr;
    const char *ES;
    int JT;
    unsigned Align;    // CP alignment.
    unsigned char SymbolFlags;  // X86II::MO_*

    X86ISelAddressMode()
      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
        SymbolFlags(X86II::MO_NO_FLAG) {
    }

    bool hasSymbolicDisplacement() const {
      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
    }
    
    bool hasBaseOrIndexReg() const {
      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
    }
    
    /// isRIPRelative - Return true if this addressing mode is already RIP
    /// relative.
    bool isRIPRelative() const {
      if (BaseType != RegBase) return false;
      if (RegisterSDNode *RegNode =
            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
        return RegNode->getReg() == X86::RIP;
      return false;
    }
    
    void setBaseReg(SDValue Reg) {
      BaseType = RegBase;
      Base_Reg = Reg;
    }

    void dump() {
      dbgs() << "X86ISelAddressMode " << this << '\n';
      dbgs() << "Base_Reg ";
      if (Base_Reg.getNode() != 0)
        Base_Reg.getNode()->dump(); 
      else
        dbgs() << "nul";
      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
             << " Scale" << Scale << '\n'
             << "IndexReg ";
      if (IndexReg.getNode() != 0)
        IndexReg.getNode()->dump();
      else
        dbgs() << "nul"; 
      dbgs() << " Disp " << Disp << '\n'
             << "GV ";
      if (GV)
        GV->dump();
      else
        dbgs() << "nul";
      dbgs() << " CP ";
      if (CP)
        CP->dump();
      else
        dbgs() << "nul";
      dbgs() << '\n'
             << "ES ";
      if (ES)
        dbgs() << ES;
      else
        dbgs() << "nul";
      dbgs() << " JT" << JT << " Align" << Align << '\n';
    }
  };
}

namespace {
  //===--------------------------------------------------------------------===//
  /// ISel - X86 specific code to select X86 machine instructions for
  /// SelectionDAG operations.
  ///
  class X86DAGToDAGISel : public SelectionDAGISel {
    /// X86Lowering - This object fully describes how to lower LLVM code to an
    /// X86-specific SelectionDAG.
    const X86TargetLowering &X86Lowering;

    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget *Subtarget;

    /// OptForSize - If true, selector should try to optimize for code size
    /// instead of performance.
    bool OptForSize;

  public:
    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
      : SelectionDAGISel(tm, OptLevel),
        X86Lowering(*tm.getTargetLowering()),
        Subtarget(&tm.getSubtarget<X86Subtarget>()),
        OptForSize(false) {}

    virtual const char *getPassName() const {
      return "X86 DAG->DAG Instruction Selection";
    }

    virtual void EmitFunctionEntryCode();

    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;

    virtual void PreprocessISelDAG();

    inline bool immSext8(SDNode *N) const {
      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
    }

    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
    // sign extended field.
    inline bool i64immSExt32(SDNode *N) const {
      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
      return (int64_t)v == (int32_t)v;
    }

// Include the pieces autogenerated from the target description.
#include "X86GenDAGISel.inc"

  private:
    SDNode *Select(SDNode *N);
    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);

    bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
    bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
                                 unsigned Depth);
    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
    bool SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
                    SDValue &Scale, SDValue &Index, SDValue &Disp,
                    SDValue &Segment);
    bool SelectLEAAddr(SDNode *Op, SDValue N, SDValue &Base,
                       SDValue &Scale, SDValue &Index, SDValue &Disp,
                       SDValue &Segment);
    bool SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base,
                           SDValue &Scale, SDValue &Index, SDValue &Disp,
                           SDValue &Segment);
    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
                             SDValue &Base, SDValue &Scale,
                             SDValue &Index, SDValue &Disp,
                             SDValue &Segment,
                             SDValue &NodeWithChain);
    
    bool TryFoldLoad(SDNode *P, SDValue N,
                     SDValue &Base, SDValue &Scale,
                     SDValue &Index, SDValue &Disp,
                     SDValue &Segment);
    
    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    /// inline asm expressions.
    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
                                              char ConstraintCode,
                                              std::vector<SDValue> &OutOps);
    
    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);

    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, 
                                   SDValue &Scale, SDValue &Index,
                                   SDValue &Disp, SDValue &Segment) {
      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
        AM.Base_Reg;
      Scale = getI8Imm(AM.Scale);
      Index = AM.IndexReg;
      // These are 32-bit even in 64-bit mode since RIP relative offset
      // is 32-bit.
      if (AM.GV)
        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
                                              MVT::i32, AM.Disp,
                                              AM.SymbolFlags);
      else if (AM.CP)
        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
                                             AM.Align, AM.Disp, AM.SymbolFlags);
      else if (AM.ES)
        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
      else if (AM.JT != -1)
        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
      else if (AM.BlockAddr)
        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
                                       true, AM.SymbolFlags);
      else
        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);

      if (AM.Segment.getNode())
        Segment = AM.Segment;
      else
        Segment = CurDAG->getRegister(0, MVT::i32);
    }

    /// getI8Imm - Return a target constant with the specified value, of type
    /// i8.
    inline SDValue getI8Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i8);
    }

    /// getI16Imm - Return a target constant with the specified value, of type
    /// i16.
    inline SDValue getI16Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i16);
    }

    /// getI32Imm - Return a target constant with the specified value, of type
    /// i32.
    inline SDValue getI32Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i32);
    }

    /// getGlobalBaseReg - Return an SDNode that returns the value of
    /// the global base register. Output instructions required to
    /// initialize the global base register, if necessary.
    ///
    SDNode *getGlobalBaseReg();

    /// getTargetMachine - Return a reference to the TargetMachine, casted
    /// to the target-specific type.
    const X86TargetMachine &getTargetMachine() {
      return static_cast<const X86TargetMachine &>(TM);
    }

    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
    /// to the target-specific type.
    const X86InstrInfo *getInstrInfo() {
      return getTargetMachine().getInstrInfo();
    }
  };
}


bool
X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
  if (OptLevel == CodeGenOpt::None) return false;

  if (!N.hasOneUse())
    return false;

  if (N.getOpcode() != ISD::LOAD)
    return true;

  // If N is a load, do additional profitability checks.
  if (U == Root) {
    switch (U->getOpcode()) {
    default: break;
    case X86ISD::ADD:
    case X86ISD::SUB:
    case X86ISD::AND:
    case X86ISD::XOR:
    case X86ISD::OR:
    case ISD::ADD:
    case ISD::ADDC:
    case ISD::ADDE:
    case ISD::AND:
    case ISD::OR:
    case ISD::XOR: {
      SDValue Op1 = U->getOperand(1);

      // If the other operand is a 8-bit immediate we should fold the immediate
      // instead. This reduces code size.
      // e.g.
      // movl 4(%esp), %eax
      // addl $4, %eax
      // vs.
      // movl $4, %eax
      // addl 4(%esp), %eax
      // The former is 2 bytes shorter. In case where the increment is 1, then
      // the saving can be 4 bytes (by using incl %eax).
      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
        if (Imm->getAPIntValue().isSignedIntN(8))
          return false;

      // If the other operand is a TLS address, we should fold it instead.
      // This produces
      // movl    %gs:0, %eax
      // leal    i@NTPOFF(%eax), %eax
      // instead of
      // movl    $i@NTPOFF, %eax
      // addl    %gs:0, %eax
      // if the block also has an access to a second TLS address this will save
      // a load.
      // FIXME: This is probably also true for non TLS addresses.
      if (Op1.getOpcode() == X86ISD::Wrapper) {
        SDValue Val = Op1.getOperand(0);
        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
          return false;
      }
    }
    }
  }

  return true;
}

/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
/// load's chain operand and move load below the call's chain operand.
static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
                                  SDValue Call, SDValue OrigChain) {
  SmallVector<SDValue, 8> Ops;
  SDValue Chain = OrigChain.getOperand(0);
  if (Chain.getNode() == Load.getNode())
    Ops.push_back(Load.getOperand(0));
  else {
    assert(Chain.getOpcode() == ISD::TokenFactor &&
           "Unexpected chain operand");
    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
      if (Chain.getOperand(i).getNode() == Load.getNode())
        Ops.push_back(Load.getOperand(0));
      else
        Ops.push_back(Chain.getOperand(i));
    SDValue NewChain =
      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
                      MVT::Other, &Ops[0], Ops.size());
    Ops.clear();
    Ops.push_back(NewChain);
  }
  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
    Ops.push_back(OrigChain.getOperand(i));
  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
                             Load.getOperand(1), Load.getOperand(2));
  Ops.clear();
  Ops.push_back(SDValue(Load.getNode(), 1));
  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
    Ops.push_back(Call.getOperand(i));
  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
}

/// isCalleeLoad - Return true if call address is a load and it can be
/// moved below CALLSEQ_START and the chains leading up to the call.
/// Return the CALLSEQ_START by reference as a second output.
/// In the case of a tail call, there isn't a callseq node between the call
/// chain and the load.
static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
    return false;
  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
  if (!LD ||
      LD->isVolatile() ||
      LD->getAddressingMode() != ISD::UNINDEXED ||
      LD->getExtensionType() != ISD::NON_EXTLOAD)
    return false;

  // Now let's find the callseq_start.
  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
    if (!Chain.hasOneUse())
      return false;
    Chain = Chain.getOperand(0);
  }

  if (!Chain.getNumOperands())
    return false;
  if (Chain.getOperand(0).getNode() == Callee.getNode())
    return true;
  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
      Callee.getValue(1).hasOneUse())
    return true;
  return false;
}

void X86DAGToDAGISel::PreprocessISelDAG() {
  // OptForSize is used in pattern predicates that isel is matching.
  OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
  
  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
       E = CurDAG->allnodes_end(); I != E; ) {
    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.

    if (OptLevel != CodeGenOpt::None &&
        (N->getOpcode() == X86ISD::CALL ||
         N->getOpcode() == X86ISD::TC_RETURN)) {
      /// Also try moving call address load from outside callseq_start to just
      /// before the call to allow it to be folded.
      ///
      ///     [Load chain]
      ///         ^
      ///         |
      ///       [Load]
      ///       ^    ^
      ///       |    |
      ///      /      \--
      ///     /          |
      ///[CALLSEQ_START] |
      ///     ^          |
      ///     |          |
      /// [LOAD/C2Reg]   |
      ///     |          |
      ///      \        /
      ///       \      /
      ///       [CALL]
      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
      SDValue Chain = N->getOperand(0);
      SDValue Load  = N->getOperand(1);
      if (!isCalleeLoad(Load, Chain, HasCallSeq))
        continue;
      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
      ++NumLoadMoved;
      continue;
    }
    
    // Lower fpround and fpextend nodes that target the FP stack to be store and
    // load to the stack.  This is a gross hack.  We would like to simply mark
    // these as being illegal, but when we do that, legalize produces these when
    // it expands calls, then expands these in the same legalize pass.  We would
    // like dag combine to be able to hack on these between the call expansion
    // and the node legalization.  As such this pass basically does "really
    // late" legalization of these inline with the X86 isel pass.
    // FIXME: This should only happen when not compiled with -O0.
    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
      continue;
    
    // If the source and destination are SSE registers, then this is a legal
    // conversion that should not be lowered.
    EVT SrcVT = N->getOperand(0).getValueType();
    EVT DstVT = N->getValueType(0);
    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
    if (SrcIsSSE && DstIsSSE)
      continue;

    if (!SrcIsSSE && !DstIsSSE) {
      // If this is an FPStack extension, it is a noop.
      if (N->getOpcode() == ISD::FP_EXTEND)
        continue;
      // If this is a value-preserving FPStack truncation, it is a noop.
      if (N->getConstantOperandVal(1))
        continue;
    }
   
    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
    // FPStack has extload and truncstore.  SSE can fold direct loads into other
    // operations.  Based on this, decide what we want to do.
    EVT MemVT;
    if (N->getOpcode() == ISD::FP_ROUND)
      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
    else
      MemVT = SrcIsSSE ? SrcVT : DstVT;
    
    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
    DebugLoc dl = N->getDebugLoc();
    
    // FIXME: optimize the case where the src/dest is a load or store?
    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
                                          N->getOperand(0),
                                          MemTmp, NULL, 0, MemVT,
                                          false, false, 0);
    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, DstVT, dl, Store, MemTmp,
                                        NULL, 0, MemVT, false, false, 0);

    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
    // extload we created.  This will cause general havok on the dag because
    // anything below the conversion could be folded into other existing nodes.
    // To avoid invalidating 'I', back it up to the convert node.
    --I;
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
    
    // Now that we did that, the node is dead.  Increment the iterator to the
    // next node to process, then delete N.
    ++I;
    CurDAG->DeleteNode(N);
  }  
}


/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
/// the main function.
void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
                                             MachineFrameInfo *MFI) {
  const TargetInstrInfo *TII = TM.getInstrInfo();
  if (Subtarget->isTargetCygMing())
    BuildMI(BB, DebugLoc(),
            TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
}

void X86DAGToDAGISel::EmitFunctionEntryCode() {
  // If this is main, emit special code for main.
  if (const Function *Fn = MF->getFunction())
    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
}


bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
                                              X86ISelAddressMode &AM) {
  assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
  SDValue Segment = N.getOperand(0);

  if (AM.Segment.getNode() == 0) {
    AM.Segment = Segment;
    return false;
  }

  return true;
}

bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
  // This optimization is valid because the GNU TLS model defines that
  // gs:0 (or fs:0 on X86-64) contains its own address.
  // For more information see http://people.redhat.com/drepper/tls.pdf

  SDValue Address = N.getOperand(1);
  if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
      !MatchSegmentBaseAddress (Address, AM))
    return false;

  return true;
}

/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
/// into an addressing mode.  These wrap things that will resolve down into a
/// symbol reference.  If no match is possible, this returns true, otherwise it
/// returns false.
bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
  // If the addressing mode already has a symbol as the displacement, we can
  // never match another symbol.
  if (AM.hasSymbolicDisplacement())
    return true;

  SDValue N0 = N.getOperand(0);
  CodeModel::Model M = TM.getCodeModel();

  // Handle X86-64 rip-relative addresses.  We check this before checking direct
  // folding because RIP is preferable to non-RIP accesses.
  if (Subtarget->is64Bit() &&
      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
      // they cannot be folded into immediate fields.
      // FIXME: This can be improved for kernel and other models?
      (M == CodeModel::Small || M == CodeModel::Kernel) &&
      // Base and index reg must be 0 in order to use %rip as base and lowering
      // must allow RIP.
      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
      int64_t Offset = AM.Disp + G->getOffset();
      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
      AM.GV = G->getGlobal();
      AM.Disp = Offset;
      AM.SymbolFlags = G->getTargetFlags();
    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
      int64_t Offset = AM.Disp + CP->getOffset();
      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
      AM.CP = CP->getConstVal();
      AM.Align = CP->getAlignment();
      AM.Disp = Offset;
      AM.SymbolFlags = CP->getTargetFlags();
    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
      AM.ES = S->getSymbol();
      AM.SymbolFlags = S->getTargetFlags();
    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
      AM.JT = J->getIndex();
      AM.SymbolFlags = J->getTargetFlags();
    } else {
      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
    }

    if (N.getOpcode() == X86ISD::WrapperRIP)
      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
    return false;
  }

  // Handle the case when globals fit in our immediate field: This is true for
  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
  // mode, this results in a non-RIP-relative computation.
  if (!Subtarget->is64Bit() ||
      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
       TM.getRelocationModel() == Reloc::Static)) {
    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
      AM.GV = G->getGlobal();
      AM.Disp += G->getOffset();
      AM.SymbolFlags = G->getTargetFlags();
    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
      AM.CP = CP->getConstVal();
      AM.Align = CP->getAlignment();
      AM.Disp += CP->getOffset();
      AM.SymbolFlags = CP->getTargetFlags();
    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
      AM.ES = S->getSymbol();
      AM.SymbolFlags = S->getTargetFlags();
    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
      AM.JT = J->getIndex();
      AM.SymbolFlags = J->getTargetFlags();
    } else {
      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
    }
    return false;
  }

  return true;
}

/// MatchAddress - Add the specified node to the specified addressing mode,
/// returning true if it cannot be done.  This just pattern matches for the
/// addressing mode.
bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
  if (MatchAddressRecursively(N, AM, 0))
    return true;

  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
  // a smaller encoding and avoids a scaled-index.
  if (AM.Scale == 2 &&
      AM.BaseType == X86ISelAddressMode::RegBase &&
      AM.Base_Reg.getNode() == 0) {
    AM.Base_Reg = AM.IndexReg;
    AM.Scale = 1;
  }

  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
  // because it has a smaller encoding.
  // TODO: Which other code models can use this?
  if (TM.getCodeModel() == CodeModel::Small &&
      Subtarget->is64Bit() &&
      AM.Scale == 1 &&
      AM.BaseType == X86ISelAddressMode::RegBase &&
      AM.Base_Reg.getNode() == 0 &&
      AM.IndexReg.getNode() == 0 &&
      AM.SymbolFlags == X86II::MO_NO_FLAG &&
      AM.hasSymbolicDisplacement())
    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);

  return false;
}

/// isLogicallyAddWithConstant - Return true if this node is semantically an
/// add of a value with a constantint.
static bool isLogicallyAddWithConstant(SDValue V, SelectionDAG *CurDAG) {
  // Check for (add x, Cst)
  if (V->getOpcode() == ISD::ADD)
    return isa<ConstantSDNode>(V->getOperand(1));

  // Check for (or x, Cst), where Cst & x == 0.
  if (V->getOpcode() != ISD::OR ||
      !isa<ConstantSDNode>(V->getOperand(1)))
    return false;
  
  // Handle "X | C" as "X + C" iff X is known to have C bits clear.
  ConstantSDNode *CN = cast<ConstantSDNode>(V->getOperand(1));
    
  // Check to see if the LHS & C is zero.
  return CurDAG->MaskedValueIsZero(V->getOperand(0), CN->getAPIntValue());
}

bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
                                              unsigned Depth) {
  bool is64Bit = Subtarget->is64Bit();
  DebugLoc dl = N.getDebugLoc();
  DEBUG({
      dbgs() << "MatchAddress: ";
      AM.dump();
    });
  // Limit recursion.
  if (Depth > 5)
    return MatchAddressBase(N, AM);

  CodeModel::Model M = TM.getCodeModel();

  // If this is already a %rip relative address, we can only merge immediates
  // into it.  Instead of handling this in every case, we handle it here.
  // RIP relative addressing: %rip + 32-bit displacement!
  if (AM.isRIPRelative()) {
    // FIXME: JumpTable and ExternalSymbol address currently don't like
    // displacements.  It isn't very important, but this should be fixed for
    // consistency.
    if (!AM.ES && AM.JT != -1) return true;

    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
      int64_t Val = AM.Disp + Cst->getSExtValue();
      if (X86::isOffsetSuitableForCodeModel(Val, M,
                                            AM.hasSymbolicDisplacement())) {
        AM.Disp = Val;
        return false;
      }
    }
    return true;
  }

  switch (N.getOpcode()) {
  default: break;
  case ISD::Constant: {
    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
    if (!is64Bit ||
        X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
                                          AM.hasSymbolicDisplacement())) {
      AM.Disp += Val;
      return false;
    }
    break;
  }

  case X86ISD::SegmentBaseAddress:
    if (!MatchSegmentBaseAddress(N, AM))
      return false;
    break;

  case X86ISD::Wrapper:
  case X86ISD::WrapperRIP:
    if (!MatchWrapper(N, AM))
      return false;
    break;

  case ISD::LOAD:
    if (!MatchLoad(N, AM))
      return false;
    break;

  case ISD::FrameIndex:
    if (AM.BaseType == X86ISelAddressMode::RegBase
        && AM.Base_Reg.getNode() == 0) {
      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
      return false;
    }
    break;

  case ISD::SHL:
    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
      break;
      
    if (ConstantSDNode
          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
      unsigned Val = CN->getZExtValue();
      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
      // that the base operand remains free for further matching. If
      // the base doesn't end up getting used, a post-processing step
      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
      if (Val == 1 || Val == 2 || Val == 3) {
        AM.Scale = 1 << Val;
        SDValue ShVal = N.getNode()->getOperand(0);

        // Okay, we know that we have a scale by now.  However, if the scaled
        // value is an add of something and a constant, we can fold the
        // constant into the disp field here.
        if (isLogicallyAddWithConstant(ShVal, CurDAG)) {
          AM.IndexReg = ShVal.getNode()->getOperand(0);
          ConstantSDNode *AddVal =
            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
          if (!is64Bit ||
              X86::isOffsetSuitableForCodeModel(Disp, M,
                                                AM.hasSymbolicDisplacement()))
            AM.Disp = Disp;
          else
            AM.IndexReg = ShVal;
        } else {
          AM.IndexReg = ShVal;
        }
        return false;
      }
    break;
    }

  case ISD::SMUL_LOHI:
  case ISD::UMUL_LOHI:
    // A mul_lohi where we need the low part can be folded as a plain multiply.
    if (N.getResNo() != 0) break;
    // FALL THROUGH
  case ISD::MUL:
  case X86ISD::MUL_IMM:
    // X*[3,5,9] -> X+X*[2,4,8]
    if (AM.BaseType == X86ISelAddressMode::RegBase &&
        AM.Base_Reg.getNode() == 0 &&
        AM.IndexReg.getNode() == 0) {
      if (ConstantSDNode
            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
            CN->getZExtValue() == 9) {
          AM.Scale = unsigned(CN->getZExtValue())-1;

          SDValue MulVal = N.getNode()->getOperand(0);
          SDValue Reg;

          // Okay, we know that we have a scale by now.  However, if the scaled
          // value is an add of something and a constant, we can fold the
          // constant into the disp field here.
          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
            Reg = MulVal.getNode()->getOperand(0);
            ConstantSDNode *AddVal =
              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
                                      CN->getZExtValue();
            if (!is64Bit ||
                X86::isOffsetSuitableForCodeModel(Disp, M,
                                                  AM.hasSymbolicDisplacement()))
              AM.Disp = Disp;
            else
              Reg = N.getNode()->getOperand(0);
          } else {
            Reg = N.getNode()->getOperand(0);
          }

          AM.IndexReg = AM.Base_Reg = Reg;
          return false;
        }
    }
    break;

  case ISD::SUB: {
    // Given A-B, if A can be completely folded into the address and
    // the index field with the index field unused, use -B as the index.
    // This is a win if a has multiple parts that can be folded into
    // the address. Also, this saves a mov if the base register has
    // other uses, since it avoids a two-address sub instruction, however
    // it costs an additional mov if the index register has other uses.

    // Add an artificial use to this node so that we can keep track of
    // it if it gets CSE'd with a different node.
    HandleSDNode Handle(N);

    // Test if the LHS of the sub can be folded.
    X86ISelAddressMode Backup = AM;
    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
      AM = Backup;
      break;
    }
    // Test if the index field is free for use.
    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
      AM = Backup;
      break;
    }

    int Cost = 0;
    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
    // If the RHS involves a register with multiple uses, this
    // transformation incurs an extra mov, due to the neg instruction
    // clobbering its operand.
    if (!RHS.getNode()->hasOneUse() ||
        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
      ++Cost;
    // If the base is a register with multiple uses, this
    // transformation may save a mov.
    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
         AM.Base_Reg.getNode() &&
         !AM.Base_Reg.getNode()->hasOneUse()) ||
        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
      --Cost;
    // If the folded LHS was interesting, this transformation saves
    // address arithmetic.
    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
        ((AM.Disp != 0) && (Backup.Disp == 0)) +
        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
      --Cost;
    // If it doesn't look like it may be an overall win, don't do it.
    if (Cost >= 0) {
      AM = Backup;
      break;
    }

    // Ok, the transformation is legal and appears profitable. Go for it.
    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
    AM.IndexReg = Neg;
    AM.Scale = 1;

    // Insert the new nodes into the topological ordering.
    if (Zero.getNode()->getNodeId() == -1 ||
        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
    }
    if (Neg.getNode()->getNodeId() == -1 ||
        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
    }
    return false;
  }

  case ISD::ADD: {
    // Add an artificial use to this node so that we can keep track of
    // it if it gets CSE'd with a different node.
    HandleSDNode Handle(N);
    SDValue LHS = Handle.getValue().getNode()->getOperand(0);
    SDValue RHS = Handle.getValue().getNode()->getOperand(1);

    X86ISelAddressMode Backup = AM;
    if (!MatchAddressRecursively(LHS, AM, Depth+1) &&
        !MatchAddressRecursively(RHS, AM, Depth+1))
      return false;
    AM = Backup;
    LHS = Handle.getValue().getNode()->getOperand(0);
    RHS = Handle.getValue().getNode()->getOperand(1);

    // Try again after commuting the operands.
    if (!MatchAddressRecursively(RHS, AM, Depth+1) &&
        !MatchAddressRecursively(LHS, AM, Depth+1))
      return false;
    AM = Backup;
    LHS = Handle.getValue().getNode()->getOperand(0);
    RHS = Handle.getValue().getNode()->getOperand(1);

    // If we couldn't fold both operands into the address at the same time,
    // see if we can just put each operand into a register and fold at least
    // the add.
    if (AM.BaseType == X86ISelAddressMode::RegBase &&
        !AM.Base_Reg.getNode() &&
        !AM.IndexReg.getNode()) {
      AM.Base_Reg = LHS;
      AM.IndexReg = RHS;
      AM.Scale = 1;
      return false;
    }
    break;
  }

  case ISD::OR:
    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
    if (isLogicallyAddWithConstant(N, CurDAG)) {
      X86ISelAddressMode Backup = AM;
      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
      uint64_t Offset = CN->getSExtValue();

      // Start with the LHS as an addr mode.
      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
          // Address could not have picked a GV address for the displacement.
          AM.GV == NULL &&
          // On x86-64, the resultant disp must fit in 32-bits.
          (!is64Bit ||
           X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
                                             AM.hasSymbolicDisplacement()))) {
        AM.Disp += Offset;
        return false;
      }
      AM = Backup;
    }
    break;
      
  case ISD::AND: {
    // Perform some heroic transforms on an and of a constant-count shift
    // with a constant to enable use of the scaled offset field.

    SDValue Shift = N.getOperand(0);
    if (Shift.getNumOperands() != 2) break;

    // Scale must not be used already.
    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;

    SDValue X = Shift.getOperand(0);
    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
    if (!C1 || !C2) break;

    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
    // allows us to convert the shift and and into an h-register extract and
    // a scaled index.
    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
      unsigned ScaleLog = 8 - C1->getZExtValue();
      if (ScaleLog > 0 && ScaleLog < 4 &&
          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
                                      X, Eight);
        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
                                      Srl, Mask);
        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
                                      And, ShlCount);

        // Insert the new nodes into the topological ordering.
        if (Eight.getNode()->getNodeId() == -1 ||
            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
        }
        if (Mask.getNode()->getNodeId() == -1 ||
            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
        }
        if (Srl.getNode()->getNodeId() == -1 ||
            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
        }
        if (And.getNode()->getNodeId() == -1 ||
            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
          CurDAG->RepositionNode(N.getNode(), And.getNode());
          And.getNode()->setNodeId(N.getNode()->getNodeId());
        }
        if (ShlCount.getNode()->getNodeId() == -1 ||
            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
        }
        if (Shl.getNode()->getNodeId() == -1 ||
            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
        }
        CurDAG->ReplaceAllUsesWith(N, Shl);
        AM.IndexReg = And;
        AM.Scale = (1 << ScaleLog);
        return false;
      }
    }

    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
    // allows us to fold the shift into this addressing mode.
    if (Shift.getOpcode() != ISD::SHL) break;

    // Not likely to be profitable if either the AND or SHIFT node has more
    // than one use (unless all uses are for address computation). Besides,
    // isel mechanism requires their node ids to be reused.
    if (!N.hasOneUse() || !Shift.hasOneUse())
      break;
    
    // Verify that the shift amount is something we can fold.
    unsigned ShiftCst = C1->getZExtValue();
    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
      break;
    
    // Get the new AND mask, this folds to a constant.
    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
                                         SDValue(C2, 0), SDValue(C1, 0));
    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X, 
                                     NewANDMask);
    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
                                       NewAND, SDValue(C1, 0));

    // Insert the new nodes into the topological ordering.
    if (C1->getNodeId() > X.getNode()->getNodeId()) {
      CurDAG->RepositionNode(X.getNode(), C1);
      C1->setNodeId(X.getNode()->getNodeId());
    }
    if (NewANDMask.getNode()->getNodeId() == -1 ||
        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
    }
    if (NewAND.getNode()->getNodeId() == -1 ||
        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
    }
    if (NewSHIFT.getNode()->getNodeId() == -1 ||
        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
    }

    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
    
    AM.Scale = 1 << ShiftCst;
    AM.IndexReg = NewAND;
    return false;
  }
  }

  return MatchAddressBase(N, AM);
}

/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
/// specified addressing mode without any further recursion.
bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
  // Is the base register already occupied?
  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
    // If so, check to see if the scale index register is set.
    if (AM.IndexReg.getNode() == 0) {
      AM.IndexReg = N;
      AM.Scale = 1;
      return false;
    }

    // Otherwise, we cannot select it.
    return true;
  }

  // Default, generate it as a register.
  AM.BaseType = X86ISelAddressMode::RegBase;
  AM.Base_Reg = N;
  return false;
}

/// SelectAddr - returns true if it is able pattern match an addressing mode.
/// It returns the operands which make up the maximal addressing mode it can
/// match by reference.
bool X86DAGToDAGISel::SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
                                 SDValue &Scale, SDValue &Index,
                                 SDValue &Disp, SDValue &Segment) {
  X86ISelAddressMode AM;
  if (MatchAddress(N, AM))
    return false;

  EVT VT = N.getValueType();
  if (AM.BaseType == X86ISelAddressMode::RegBase) {
    if (!AM.Base_Reg.getNode())
      AM.Base_Reg = CurDAG->getRegister(0, VT);
  }

  if (!AM.IndexReg.getNode())
    AM.IndexReg = CurDAG->getRegister(0, VT);

  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
  return true;
}

/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
/// match a load whose top elements are either undef or zeros.  The load flavor
/// is derived from the type of N, which is either v4f32 or v2f64.
///
/// We also return:
///   PatternChainNode: this is the matched node that has a chain input and
///   output.
bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
                                          SDValue N, SDValue &Base,
                                          SDValue &Scale, SDValue &Index,
                                          SDValue &Disp, SDValue &Segment,
                                          SDValue &PatternNodeWithChain) {
  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
    PatternNodeWithChain = N.getOperand(0);
    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
        PatternNodeWithChain.hasOneUse() &&
        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
      if (!SelectAddr(Root, LD->getBasePtr(), Base, Scale, Index, Disp,Segment))
        return false;
      return true;
    }
  }

  // Also handle the case where we explicitly require zeros in the top
  // elements.  This is a vector shuffle from the zero vector.
  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
      // Check to see if the top elements are all zeros (or bitcast of zeros).
      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 
      N.getOperand(0).getNode()->hasOneUse() &&
      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
      N.getOperand(0).getOperand(0).hasOneUse() &&
      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
    // Okay, this is a zero extending load.  Fold it.
    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
    if (!SelectAddr(Root, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
      return false;
    PatternNodeWithChain = SDValue(LD, 0);
    return true;
  }
  return false;
}


/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
/// mode it matches can be cost effectively emitted as an LEA instruction.
bool X86DAGToDAGISel::SelectLEAAddr(SDNode *Op, SDValue N,
                                    SDValue &Base, SDValue &Scale,
                                    SDValue &Index, SDValue &Disp,
                                    SDValue &Segment) {
  X86ISelAddressMode AM;

  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
  // segments.
  SDValue Copy = AM.Segment;
  SDValue T = CurDAG->getRegister(0, MVT::i32);
  AM.Segment = T;
  if (MatchAddress(N, AM))
    return false;
  assert (T == AM.Segment);
  AM.Segment = Copy;

  EVT VT = N.getValueType();
  unsigned Complexity = 0;
  if (AM.BaseType == X86ISelAddressMode::RegBase)
    if (AM.Base_Reg.getNode())
      Complexity = 1;
    else
      AM.Base_Reg = CurDAG->getRegister(0, VT);
  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
    Complexity = 4;

  if (AM.IndexReg.getNode())
    Complexity++;
  else
    AM.IndexReg = CurDAG->getRegister(0, VT);

  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
  // a simple shift.
  if (AM.Scale > 1)
    Complexity++;

  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
  // to a LEA. This is determined with some expermentation but is by no means
  // optimal (especially for code size consideration). LEA is nice because of
  // its three-address nature. Tweak the cost function again when we can run
  // convertToThreeAddress() at register allocation time.
  if (AM.hasSymbolicDisplacement()) {
    // For X86-64, we should always use lea to materialize RIP relative
    // addresses.
    if (Subtarget->is64Bit())
      Complexity = 4;
    else
      Complexity += 2;
  }

  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
    Complexity++;

  // If it isn't worth using an LEA, reject it.
  if (Complexity <= 2)
    return false;
  
  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
  return true;
}

/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
bool X86DAGToDAGISel::SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base,
                                        SDValue &Scale, SDValue &Index,
                                        SDValue &Disp, SDValue &Segment) {
  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
    
  X86ISelAddressMode AM;
  AM.GV = GA->getGlobal();
  AM.Disp += GA->getOffset();
  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
  AM.SymbolFlags = GA->getTargetFlags();

  if (N.getValueType() == MVT::i32) {
    AM.Scale = 1;
    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
  } else {
    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
  }
  
  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
  return true;
}


bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
                                  SDValue &Base, SDValue &Scale,
                                  SDValue &Index, SDValue &Disp,
                                  SDValue &Segment) {
  if (!ISD::isNON_EXTLoad(N.getNode()) ||
      !IsProfitableToFold(N, P, P) ||
      !IsLegalToFold(N, P, P, OptLevel))
    return false;
  
  return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
}

/// getGlobalBaseReg - Return an SDNode that returns the value of
/// the global base register. Output instructions required to
/// initialize the global base register, if necessary.
///
SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
}

SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
  SDValue Chain = Node->getOperand(0);
  SDValue In1 = Node->getOperand(1);
  SDValue In2L = Node->getOperand(2);
  SDValue In2H = Node->getOperand(3);
  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
  if (!SelectAddr(In1.getNode(), In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
    return NULL;
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
                                           MVT::i32, MVT::i32, MVT::Other, Ops,
                                           array_lengthof(Ops));
  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
  return ResNode;
}

SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
  if (Node->hasAnyUseOfValue(0))
    return 0;

  // Optimize common patterns for __sync_add_and_fetch and
  // __sync_sub_and_fetch where the result is not used. This allows us
  // to use "lock" version of add, sub, inc, dec instructions.
  // FIXME: Do not use special instructions but instead add the "lock"
  // prefix to the target node somehow. The extra information will then be
  // transferred to machine instruction and it denotes the prefix.
  SDValue Chain = Node->getOperand(0);
  SDValue Ptr = Node->getOperand(1);
  SDValue Val = Node->getOperand(2);
  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
  if (!SelectAddr(Ptr.getNode(), Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
    return 0;

  bool isInc = false, isDec = false, isSub = false, isCN = false;
  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
  if (CN) {
    isCN = true;
    int64_t CNVal = CN->getSExtValue();
    if (CNVal == 1)
      isInc = true;
    else if (CNVal == -1)
      isDec = true;
    else if (CNVal >= 0)
      Val = CurDAG->getTargetConstant(CNVal, NVT);
    else {
      isSub = true;
      Val = CurDAG->getTargetConstant(-CNVal, NVT);
    }
  } else if (Val.hasOneUse() &&
             Val.getOpcode() == ISD::SUB &&
             X86::isZeroNode(Val.getOperand(0))) {
    isSub = true;
    Val = Val.getOperand(1);
  }

  unsigned Opc = 0;
  switch (NVT.getSimpleVT().SimpleTy) {
  default: return 0;
  case MVT::i8:
    if (isInc)
      Opc = X86::LOCK_INC8m;
    else if (isDec)
      Opc = X86::LOCK_DEC8m;
    else if (isSub) {
      if (isCN)
        Opc = X86::LOCK_SUB8mi;
      else
        Opc = X86::LOCK_SUB8mr;
    } else {
      if (isCN)
        Opc = X86::LOCK_ADD8mi;
      else
        Opc = X86::LOCK_ADD8mr;
    }
    break;
  case MVT::i16:
    if (isInc)
      Opc = X86::LOCK_INC16m;
    else if (isDec)
      Opc = X86::LOCK_DEC16m;
    else if (isSub) {
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = X86::LOCK_SUB16mi8;
        else
          Opc = X86::LOCK_SUB16mi;
      } else
        Opc = X86::LOCK_SUB16mr;
    } else {
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = X86::LOCK_ADD16mi8;
        else
          Opc = X86::LOCK_ADD16mi;
      } else
        Opc = X86::LOCK_ADD16mr;
    }
    break;
  case MVT::i32:
    if (isInc)
      Opc = X86::LOCK_INC32m;
    else if (isDec)
      Opc = X86::LOCK_DEC32m;
    else if (isSub) {
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = X86::LOCK_SUB32mi8;
        else
          Opc = X86::LOCK_SUB32mi;
      } else
        Opc = X86::LOCK_SUB32mr;
    } else {
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = X86::LOCK_ADD32mi8;
        else
          Opc = X86::LOCK_ADD32mi;
      } else
        Opc = X86::LOCK_ADD32mr;
    }
    break;
  case MVT::i64:
    if (isInc)
      Opc = X86::LOCK_INC64m;
    else if (isDec)
      Opc = X86::LOCK_DEC64m;
    else if (isSub) {
      Opc = X86::LOCK_SUB64mr;
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = X86::LOCK_SUB64mi8;
        else if (i64immSExt32(Val.getNode()))
          Opc = X86::LOCK_SUB64mi32;
      }
    } else {
      Opc = X86::LOCK_ADD64mr;
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = X86::LOCK_ADD64mi8;
        else if (i64immSExt32(Val.getNode()))
          Opc = X86::LOCK_ADD64mi32;
      }
    }
    break;
  }

  DebugLoc dl = Node->getDebugLoc();
  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
                                                 dl, NVT), 0);
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
  if (isInc || isDec) {
    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
    SDValue RetVals[] = { Undef, Ret };
    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
  } else {
    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
    SDValue RetVals[] = { Undef, Ret };
    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
  }
}

/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
/// any uses which require the SF or OF bits to be accurate.
static bool HasNoSignedComparisonUses(SDNode *N) {
  // Examine each user of the node.
  for (SDNode::use_iterator UI = N->use_begin(),
         UE = N->use_end(); UI != UE; ++UI) {
    // Only examine CopyToReg uses.
    if (UI->getOpcode() != ISD::CopyToReg)
      return false;
    // Only examine CopyToReg uses that copy to EFLAGS.
    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
          X86::EFLAGS)
      return false;
    // Examine each user of the CopyToReg use.
    for (SDNode::use_iterator FlagUI = UI->use_begin(),
           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
      // Only examine the Flag result.
      if (FlagUI.getUse().getResNo() != 1) continue;
      // Anything unusual: assume conservatively.
      if (!FlagUI->isMachineOpcode()) return false;
      // Examine the opcode of the user.
      switch (FlagUI->getMachineOpcode()) {
      // These comparisons don't treat the most significant bit specially.
      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
      case X86::CMOVA16rr: case X86::CMOVA16rm:
      case X86::CMOVA32rr: case X86::CMOVA32rm:
      case X86::CMOVA64rr: case X86::CMOVA64rm:
      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
      case X86::CMOVB16rr: case X86::CMOVB16rm:
      case X86::CMOVB32rr: case X86::CMOVB32rm:
      case X86::CMOVB64rr: case X86::CMOVB64rm:
      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
      case X86::CMOVE16rr: case X86::CMOVE16rm:
      case X86::CMOVE32rr: case X86::CMOVE32rm:
      case X86::CMOVE64rr: case X86::CMOVE64rm:
      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
      case X86::CMOVP16rr: case X86::CMOVP16rm:
      case X86::CMOVP32rr: case X86::CMOVP32rm:
      case X86::CMOVP64rr: case X86::CMOVP64rm:
        continue;
      // Anything else: assume conservatively.
      default: return false;
      }
    }
  }
  return true;
}

SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
  EVT NVT = Node->getValueType(0);
  unsigned Opc, MOpc;
  unsigned Opcode = Node->getOpcode();
  DebugLoc dl = Node->getDebugLoc();
  
  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');

  if (Node->isMachineOpcode()) {
    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
    return NULL;   // Already selected.
  }

  switch (Opcode) {
  default: break;
  case X86ISD::GlobalBaseReg:
    return getGlobalBaseReg();

  case X86ISD::ATOMOR64_DAG:
    return SelectAtomic64(Node, X86::ATOMOR6432);
  case X86ISD::ATOMXOR64_DAG:
    return SelectAtomic64(Node, X86::ATOMXOR6432);
  case X86ISD::ATOMADD64_DAG:
    return SelectAtomic64(Node, X86::ATOMADD6432);
  case X86ISD::ATOMSUB64_DAG:
    return SelectAtomic64(Node, X86::ATOMSUB6432);
  case X86ISD::ATOMNAND64_DAG:
    return SelectAtomic64(Node, X86::ATOMNAND6432);
  case X86ISD::ATOMAND64_DAG:
    return SelectAtomic64(Node, X86::ATOMAND6432);
  case X86ISD::ATOMSWAP64_DAG:
    return SelectAtomic64(Node, X86::ATOMSWAP6432);

  case ISD::ATOMIC_LOAD_ADD: {
    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
    if (RetVal)
      return RetVal;
    break;
  }

  case ISD::SMUL_LOHI:
  case ISD::UMUL_LOHI: {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);

    bool isSigned = Opcode == ISD::SMUL_LOHI;
    if (!isSigned) {
      switch (NVT.getSimpleVT().SimpleTy) {
      default: llvm_unreachable("Unsupported VT!");
      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
      }
    } else {
      switch (NVT.getSimpleVT().SimpleTy) {
      default: llvm_unreachable("Unsupported VT!");
      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
      }
    }

    unsigned LoReg, HiReg;
    switch (NVT.getSimpleVT().SimpleTy) {
    default: llvm_unreachable("Unsupported VT!");
    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
    }

    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
    // Multiply is commmutative.
    if (!foldedLoad) {
      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
      if (foldedLoad)
        std::swap(N0, N1);
    }

    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
                                            N0, SDValue()).getValue(1);

    if (foldedLoad) {
      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
                        InFlag };
      SDNode *CNode =
        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
                               array_lengthof(Ops));
      InFlag = SDValue(CNode, 1);
      // Update the chain.
      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
    } else {
      InFlag =
        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
    }

    // Prevent use of AH in a REX instruction by referencing AX instead.
    if (HiReg == X86::AH && Subtarget->is64Bit() &&
        !SDValue(Node, 1).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                              X86::AX, MVT::i16, InFlag);
      InFlag = Result.getValue(2);
      // Get the low part if needed. Don't use getCopyFromReg for aliasing
      // registers.
      if (!SDValue(Node, 0).use_empty())
        ReplaceUses(SDValue(Node, 1),
          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));

      // Shift AX down 8 bits.
      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
                                              Result,
                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
      // Then truncate it down to i8.
      ReplaceUses(SDValue(Node, 1),
        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
    }
    // Copy the low half of the result, if it is needed.
    if (!SDValue(Node, 0).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                                LoReg, NVT, InFlag);
      InFlag = Result.getValue(2);
      ReplaceUses(SDValue(Node, 0), Result);
      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
    }
    // Copy the high half of the result, if it is needed.
    if (!SDValue(Node, 1).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                              HiReg, NVT, InFlag);
      InFlag = Result.getValue(2);
      ReplaceUses(SDValue(Node, 1), Result);
      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
    }

    return NULL;
  }

  case ISD::SDIVREM:
  case ISD::UDIVREM: {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);

    bool isSigned = Opcode == ISD::SDIVREM;
    if (!isSigned) {
      switch (NVT.getSimpleVT().SimpleTy) {
      default: llvm_unreachable("Unsupported VT!");
      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
      }
    } else {
      switch (NVT.getSimpleVT().SimpleTy) {
      default: llvm_unreachable("Unsupported VT!");
      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
      }
    }

    unsigned LoReg, HiReg, ClrReg;
    unsigned ClrOpcode, SExtOpcode;
    switch (NVT.getSimpleVT().SimpleTy) {
    default: llvm_unreachable("Unsupported VT!");
    case MVT::i8:
      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
      ClrOpcode  = 0;
      SExtOpcode = X86::CBW;
      break;
    case MVT::i16:
      LoReg = X86::AX;  HiReg = X86::DX;
      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
      SExtOpcode = X86::CWD;
      break;
    case MVT::i32:
      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
      ClrOpcode  = X86::MOV32r0;
      SExtOpcode = X86::CDQ;
      break;
    case MVT::i64:
      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
      ClrOpcode  = X86::MOV64r0;
      SExtOpcode = X86::CQO;
      break;
    }

    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
    bool signBitIsZero = CurDAG->SignBitIsZero(N0);

    SDValue InFlag;
    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
      // Special case for div8, just use a move with zero extension to AX to
      // clear the upper 8 bits (AH).
      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
        Move =
          SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
                                         MVT::Other, Ops,
                                         array_lengthof(Ops)), 0);
        Chain = Move.getValue(1);
        ReplaceUses(N0.getValue(1), Chain);
      } else {
        Move =
          SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
        Chain = CurDAG->getEntryNode();
      }
      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
      InFlag = Chain.getValue(1);
    } else {
      InFlag =
        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
                             LoReg, N0, SDValue()).getValue(1);
      if (isSigned && !signBitIsZero) {
        // Sign extend the low part into the high part.
        InFlag =
          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
      } else {
        // Zero out the high part, effectively zero extending the input.
        SDValue ClrNode =
          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
                                      ClrNode, InFlag).getValue(1);
      }
    }

    if (foldedLoad) {
      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
                        InFlag };
      SDNode *CNode =
        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
                               array_lengthof(Ops));
      InFlag = SDValue(CNode, 1);
      // Update the chain.
      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
    } else {
      InFlag =
        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
    }

    // Prevent use of AH in a REX instruction by referencing AX instead.
    // Shift it down 8 bits.
    if (HiReg == X86::AH && Subtarget->is64Bit() &&
        !SDValue(Node, 1).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                              X86::AX, MVT::i16, InFlag);
      InFlag = Result.getValue(2);

      // If we also need AL (the quotient), get it by extracting a subreg from
      // Result. The fast register allocator does not like multiple CopyFromReg
      // nodes using aliasing registers.
      if (!SDValue(Node, 0).use_empty())
        ReplaceUses(SDValue(Node, 0),
          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));

      // Shift AX right by 8 bits instead of using AH.
      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
                                         Result,
                                         CurDAG->getTargetConstant(8, MVT::i8)),
                       0);
      ReplaceUses(SDValue(Node, 1),
        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
    }
    // Copy the division (low) result, if it is needed.
    if (!SDValue(Node, 0).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                                LoReg, NVT, InFlag);
      InFlag = Result.getValue(2);
      ReplaceUses(SDValue(Node, 0), Result);
      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
    }
    // Copy the remainder (high) result, if it is needed.
    if (!SDValue(Node, 1).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                              HiReg, NVT, InFlag);
      InFlag = Result.getValue(2);
      ReplaceUses(SDValue(Node, 1), Result);
      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
    }
    return NULL;
  }

  case X86ISD::CMP: {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);

    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
    // use a smaller encoding.
    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
        HasNoSignedComparisonUses(Node))
      // Look past the truncate if CMP is the only use of it.
      N0 = N0.getOperand(0);
    if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
        N0.getValueType() != MVT::i8 &&
        X86::isZeroNode(N1)) {
      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
      if (!C) break;

      // For example, convert "testl %eax, $8" to "testb %al, $8"
      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
          (!(C->getZExtValue() & 0x80) ||
           HasNoSignedComparisonUses(Node))) {
        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
        SDValue Reg = N0.getNode()->getOperand(0);

        // On x86-32, only the ABCD registers have 8-bit subregisters.
        if (!Subtarget->is64Bit()) {
          TargetRegisterClass *TRC = 0;
          switch (N0.getValueType().getSimpleVT().SimpleTy) {
          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
          default: llvm_unreachable("Unsupported TEST operand type!");
          }
          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
                                               Reg.getValueType(), Reg, RC), 0);
        }

        // Extract the l-register.
        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
                                                        MVT::i8, Reg);

        // Emit a testb.
        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
      }

      // For example, "testl %eax, $2048" to "testb %ah, $8".
      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
          (!(C->getZExtValue() & 0x8000) ||
           HasNoSignedComparisonUses(Node))) {
        // Shift the immediate right by 8 bits.
        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
                                                       MVT::i8);
        SDValue Reg = N0.getNode()->getOperand(0);

        // Put the value in an ABCD register.
        TargetRegisterClass *TRC = 0;
        switch (N0.getValueType().getSimpleVT().SimpleTy) {
        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
        default: llvm_unreachable("Unsupported TEST operand type!");
        }
        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
                                             Reg.getValueType(), Reg, RC), 0);

        // Extract the h-register.
        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
                                                        MVT::i8, Reg);

        // Emit a testb. No special NOREX tricks are needed since there's
        // only one GPR operand!
        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
                                      Subreg, ShiftedImm);
      }

      // For example, "testl %eax, $32776" to "testw %ax, $32776".
      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
          N0.getValueType() != MVT::i16 &&
          (!(C->getZExtValue() & 0x8000) ||
           HasNoSignedComparisonUses(Node))) {
        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
        SDValue Reg = N0.getNode()->getOperand(0);

        // Extract the 16-bit subregister.
        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
                                                        MVT::i16, Reg);

        // Emit a testw.
        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
      }

      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
          N0.getValueType() == MVT::i64 &&
          (!(C->getZExtValue() & 0x80000000) ||
           HasNoSignedComparisonUses(Node))) {
        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
        SDValue Reg = N0.getNode()->getOperand(0);

        // Extract the 32-bit subregister.
        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
                                                        MVT::i32, Reg);

        // Emit a testl.
        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
      }
    }
    break;
  }
  }

  SDNode *ResNode = SelectCode(Node);

  DEBUG(dbgs() << "=> ";
        if (ResNode == NULL || ResNode == Node)
          Node->dump(CurDAG);
        else
          ResNode->dump(CurDAG);
        dbgs() << '\n');

  return ResNode;
}

bool X86DAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
                             std::vector<SDValue> &OutOps) {
  SDValue Op0, Op1, Op2, Op3, Op4;
  switch (ConstraintCode) {
  case 'o':   // offsetable        ??
  case 'v':   // not offsetable    ??
  default: return true;
  case 'm':   // memory
    if (!SelectAddr(Op.getNode(), Op, Op0, Op1, Op2, Op3, Op4))
      return true;
    break;
  }
  
  OutOps.push_back(Op0);
  OutOps.push_back(Op1);
  OutOps.push_back(Op2);
  OutOps.push_back(Op3);
  OutOps.push_back(Op4);
  return false;
}

/// createX86ISelDag - This pass converts a legalized DAG into a 
/// X86-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
                                     llvm::CodeGenOpt::Level OptLevel) {
  return new X86DAGToDAGISel(TM, OptLevel);
}