aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86ISelDAGToDAG.cpp
blob: 50c42ec0406b0cc06c8cb222d03366553800dd12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the Evan Cheng and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a DAG pattern matching instruction selector for X86,
// converting from a legalized dag to a X86 dag.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "isel"
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86ISelLowering.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/CFG.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include <iostream>
#include <set>
using namespace llvm;

//===----------------------------------------------------------------------===//
//                      Pattern Matcher Implementation
//===----------------------------------------------------------------------===//

namespace {
  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
  /// SDOperand's instead of register numbers for the leaves of the matched
  /// tree.
  struct X86ISelAddressMode {
    enum {
      RegBase,
      FrameIndexBase,
    } BaseType;

    struct {            // This is really a union, discriminated by BaseType!
      SDOperand Reg;
      int FrameIndex;
    } Base;

    unsigned Scale;
    SDOperand IndexReg; 
    unsigned Disp;
    GlobalValue *GV;
    Constant *CP;
    unsigned Align;    // CP alignment.

    X86ISelAddressMode()
      : BaseType(RegBase), Scale(1), IndexReg(), Disp(0), GV(0),
        CP(0), Align(0) {
    }
  };
}

namespace {
  Statistic<>
  NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");

  //===--------------------------------------------------------------------===//
  /// ISel - X86 specific code to select X86 machine instructions for
  /// SelectionDAG operations.
  ///
  class X86DAGToDAGISel : public SelectionDAGISel {
    /// ContainsFPCode - Every instruction we select that uses or defines a FP
    /// register should set this to true.
    bool ContainsFPCode;

    /// X86Lowering - This object fully describes how to lower LLVM code to an
    /// X86-specific SelectionDAG.
    X86TargetLowering X86Lowering;

    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget *Subtarget;

    unsigned GlobalBaseReg;
  public:
    X86DAGToDAGISel(X86TargetMachine &TM)
      : SelectionDAGISel(X86Lowering),
        X86Lowering(*TM.getTargetLowering()) {
      Subtarget = &TM.getSubtarget<X86Subtarget>();
    }

    virtual bool runOnFunction(Function &Fn) {
      // Make sure we re-emit a set of the global base reg if necessary
      GlobalBaseReg = 0;
      return SelectionDAGISel::runOnFunction(Fn);
    }
   
    virtual const char *getPassName() const {
      return "X86 DAG->DAG Instruction Selection";
    }

    /// InstructionSelectBasicBlock - This callback is invoked by
    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);

    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);

// Include the pieces autogenerated from the target description.
#include "X86GenDAGISel.inc"

  private:
    void Select(SDOperand &Result, SDOperand N);

    bool MatchAddress(SDOperand N, X86ISelAddressMode &AM, bool isRoot = true);
    bool SelectAddr(SDOperand N, SDOperand &Base, SDOperand &Scale,
                    SDOperand &Index, SDOperand &Disp);
    bool SelectLEAAddr(SDOperand N, SDOperand &Base, SDOperand &Scale,
                       SDOperand &Index, SDOperand &Disp);
    bool TryFoldLoad(SDOperand P, SDOperand N,
                     SDOperand &Base, SDOperand &Scale,
                     SDOperand &Index, SDOperand &Disp);

    inline void getAddressOperands(X86ISelAddressMode &AM, SDOperand &Base, 
                                   SDOperand &Scale, SDOperand &Index,
                                   SDOperand &Disp) {
      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, MVT::i32) : AM.Base.Reg;
      Scale = getI8Imm(AM.Scale);
      Index = AM.IndexReg;
      Disp  = AM.GV ? CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp)
        : (AM.CP ?
           CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Align, AM.Disp)
           : getI32Imm(AM.Disp));
    }

    /// getI8Imm - Return a target constant with the specified value, of type
    /// i8.
    inline SDOperand getI8Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i8);
    }

    /// getI16Imm - Return a target constant with the specified value, of type
    /// i16.
    inline SDOperand getI16Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i16);
    }

    /// getI32Imm - Return a target constant with the specified value, of type
    /// i32.
    inline SDOperand getI32Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i32);
    }

    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
    /// base register.  Return the virtual register that holds this value.
    SDOperand getGlobalBaseReg();

#ifndef NDEBUG
    unsigned Indent;
#endif
  };
}

/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
/// when it has created a SelectionDAG for us to codegen.
void X86DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
  DEBUG(BB->dump());
  MachineFunction::iterator FirstMBB = BB;

  // Codegen the basic block.
#ifndef NDEBUG
  DEBUG(std::cerr << "===== Instruction selection begins:\n");
  Indent = 0;
#endif
  DAG.setRoot(SelectRoot(DAG.getRoot()));
#ifndef NDEBUG
  DEBUG(std::cerr << "===== Instruction selection ends:\n");
#endif
  CodeGenMap.clear();
  DAG.RemoveDeadNodes();

  // Emit machine code to BB. 
  ScheduleAndEmitDAG(DAG);
  
  // If we are emitting FP stack code, scan the basic block to determine if this
  // block defines any FP values.  If so, put an FP_REG_KILL instruction before
  // the terminator of the block.
  if (!Subtarget->hasSSE2()) {
    // Note that FP stack instructions *are* used in SSE code when returning
    // values, but these are not live out of the basic block, so we don't need
    // an FP_REG_KILL in this case either.
    bool ContainsFPCode = false;
    
    // Scan all of the machine instructions in these MBBs, checking for FP
    // stores.
    MachineFunction::iterator MBBI = FirstMBB;
    do {
      for (MachineBasicBlock::iterator I = MBBI->begin(), E = MBBI->end();
           !ContainsFPCode && I != E; ++I) {
        for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
          if (I->getOperand(op).isRegister() && I->getOperand(op).isDef() &&
              MRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
              RegMap->getRegClass(I->getOperand(0).getReg()) == 
                X86::RFPRegisterClass) {
            ContainsFPCode = true;
            break;
          }
        }
      }
    } while (!ContainsFPCode && &*(MBBI++) != BB);
    
    // Check PHI nodes in successor blocks.  These PHI's will be lowered to have
    // a copy of the input value in this block.
    if (!ContainsFPCode) {
      // Final check, check LLVM BB's that are successors to the LLVM BB
      // corresponding to BB for FP PHI nodes.
      const BasicBlock *LLVMBB = BB->getBasicBlock();
      const PHINode *PN;
      for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
           !ContainsFPCode && SI != E; ++SI) {
        for (BasicBlock::const_iterator II = SI->begin();
             (PN = dyn_cast<PHINode>(II)); ++II) {
          if (PN->getType()->isFloatingPoint()) {
            ContainsFPCode = true;
            break;
          }
        }
      }
    }

    // Finally, if we found any FP code, emit the FP_REG_KILL instruction.
    if (ContainsFPCode) {
      BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
      ++NumFPKill;
    }
  }
}

/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
/// the main function.
static void EmitSpecialCodeForMain(MachineBasicBlock *BB,
                                   MachineFrameInfo *MFI) {
  // Switch the FPU to 64-bit precision mode for better compatibility and speed.
  int CWFrameIdx = MFI->CreateStackObject(2, 2);
  addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);

  // Set the high part to be 64-bit precision.
  addFrameReference(BuildMI(BB, X86::MOV8mi, 5),
                    CWFrameIdx, 1).addImm(2);

  // Reload the modified control word now.
  addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
}

void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
  // If this is main, emit special code for main.
  MachineBasicBlock *BB = MF.begin();
  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
}

/// MatchAddress - Add the specified node to the specified addressing mode,
/// returning true if it cannot be done.  This just pattern matches for the
/// addressing mode
bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM,
                                   bool isRoot) {
  bool Available = false;
  // If N has already been selected, reuse the result unless in some very
  // specific cases.
  std::map<SDOperand, SDOperand>::iterator CGMI= CodeGenMap.find(N.getValue(0));
  if (CGMI != CodeGenMap.end()) {
    Available = true;
  }

  switch (N.getOpcode()) {
  default: break;
  case ISD::Constant:
    AM.Disp += cast<ConstantSDNode>(N)->getValue();
    return false;

  case X86ISD::Wrapper:
    // If both base and index components have been picked, we can't fit
    // the result available in the register in the addressing mode. Duplicate
    // GlobalAddress or ConstantPool as displacement.
    if (!Available || (AM.Base.Reg.Val && AM.IndexReg.Val)) {
      if (ConstantPoolSDNode *CP =
          dyn_cast<ConstantPoolSDNode>(N.getOperand(0))) {
        if (AM.CP == 0) {
          AM.CP = CP->get();
          AM.Align = CP->getAlignment();
          AM.Disp += CP->getOffset();
          return false;
        }
      } else if (GlobalAddressSDNode *G =
                 dyn_cast<GlobalAddressSDNode>(N.getOperand(0))) {
        if (AM.GV == 0) {
          AM.GV = G->getGlobal();
          AM.Disp += G->getOffset();
          return false;
        }
      }
    }
    break;

  case ISD::FrameIndex:
    if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
      return false;
    }
    break;

  case ISD::SHL:
    if (!Available && AM.IndexReg.Val == 0 && AM.Scale == 1)
      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
        unsigned Val = CN->getValue();
        if (Val == 1 || Val == 2 || Val == 3) {
          AM.Scale = 1 << Val;
          SDOperand ShVal = N.Val->getOperand(0);

          // Okay, we know that we have a scale by now.  However, if the scaled
          // value is an add of something and a constant, we can fold the
          // constant into the disp field here.
          if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
              isa<ConstantSDNode>(ShVal.Val->getOperand(1))) {
            AM.IndexReg = ShVal.Val->getOperand(0);
            ConstantSDNode *AddVal =
              cast<ConstantSDNode>(ShVal.Val->getOperand(1));
            AM.Disp += AddVal->getValue() << Val;
          } else {
            AM.IndexReg = ShVal;
          }
          return false;
        }
      }
    break;

  case ISD::MUL:
    // X*[3,5,9] -> X+X*[2,4,8]
    if (!Available &&
        AM.BaseType == X86ISelAddressMode::RegBase &&
        AM.Base.Reg.Val == 0 &&
        AM.IndexReg.Val == 0)
      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1)))
        if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
          AM.Scale = unsigned(CN->getValue())-1;

          SDOperand MulVal = N.Val->getOperand(0);
          SDOperand Reg;

          // Okay, we know that we have a scale by now.  However, if the scaled
          // value is an add of something and a constant, we can fold the
          // constant into the disp field here.
          if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
              isa<ConstantSDNode>(MulVal.Val->getOperand(1))) {
            Reg = MulVal.Val->getOperand(0);
            ConstantSDNode *AddVal =
              cast<ConstantSDNode>(MulVal.Val->getOperand(1));
            AM.Disp += AddVal->getValue() * CN->getValue();
          } else {
            Reg = N.Val->getOperand(0);
          }

          AM.IndexReg = AM.Base.Reg = Reg;
          return false;
        }
    break;

  case ISD::ADD: {
    if (!Available) {
      X86ISelAddressMode Backup = AM;
      if (!MatchAddress(N.Val->getOperand(0), AM, false) &&
          !MatchAddress(N.Val->getOperand(1), AM, false))
        return false;
      AM = Backup;
      if (!MatchAddress(N.Val->getOperand(1), AM, false) &&
          !MatchAddress(N.Val->getOperand(0), AM, false))
        return false;
      AM = Backup;
    }
    break;
  }
  }

  // Is the base register already occupied?
  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
    // If so, check to see if the scale index register is set.
    if (AM.IndexReg.Val == 0) {
      AM.IndexReg = N;
      AM.Scale = 1;
      return false;
    }

    // Otherwise, we cannot select it.
    return true;
  }

  // Default, generate it as a register.
  AM.BaseType = X86ISelAddressMode::RegBase;
  AM.Base.Reg = N;
  return false;
}

/// SelectAddr - returns true if it is able pattern match an addressing mode.
/// It returns the operands which make up the maximal addressing mode it can
/// match by reference.
bool X86DAGToDAGISel::SelectAddr(SDOperand N, SDOperand &Base, SDOperand &Scale,
                                 SDOperand &Index, SDOperand &Disp) {
  X86ISelAddressMode AM;
  if (MatchAddress(N, AM))
    return false;

  if (AM.BaseType == X86ISelAddressMode::RegBase) {
    if (!AM.Base.Reg.Val)
      AM.Base.Reg = CurDAG->getRegister(0, MVT::i32);
  }

  if (!AM.IndexReg.Val)
    AM.IndexReg = CurDAG->getRegister(0, MVT::i32);

  getAddressOperands(AM, Base, Scale, Index, Disp);

  return true;
}

/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
/// mode it matches can be cost effectively emitted as an LEA instruction.
/// For X86, it always is unless it's just a (Reg + const).
bool X86DAGToDAGISel::SelectLEAAddr(SDOperand N, SDOperand &Base,
                                    SDOperand &Scale,
                                    SDOperand &Index, SDOperand &Disp) {
  X86ISelAddressMode AM;
  if (MatchAddress(N, AM))
    return false;

  unsigned Complexity = 0;
  if (AM.BaseType == X86ISelAddressMode::RegBase)
    if (AM.Base.Reg.Val)
      Complexity = 1;
    else
      AM.Base.Reg = CurDAG->getRegister(0, MVT::i32);
  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
    Complexity = 4;

  if (AM.IndexReg.Val)
    Complexity++;
  else
    AM.IndexReg = CurDAG->getRegister(0, MVT::i32);

  if (AM.Scale > 2) 
    Complexity += 2;
  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg
  else if (AM.Scale > 1)
    Complexity++;

  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
  // to a LEA. This is determined with some expermentation but is by no means
  // optimal (especially for code size consideration). LEA is nice because of
  // its three-address nature. Tweak the cost function again when we can run
  // convertToThreeAddress() at register allocation time.
  if (AM.GV || AM.CP)
    Complexity += 2;

  if (AM.Disp && (AM.Base.Reg.Val || AM.IndexReg.Val))
    Complexity++;

  if (Complexity > 2) {
    getAddressOperands(AM, Base, Scale, Index, Disp);
    return true;
  }

  return false;
}

bool X86DAGToDAGISel::TryFoldLoad(SDOperand P, SDOperand N,
                                  SDOperand &Base, SDOperand &Scale,
                                  SDOperand &Index, SDOperand &Disp) {
  if (N.getOpcode() == ISD::LOAD &&
      N.hasOneUse() &&
      !CodeGenMap.count(N.getValue(0)) &&
      (P.getNumOperands() == 1 || !isNonImmUse(P.Val, N.Val)))
    return SelectAddr(N.getOperand(1), Base, Scale, Index, Disp);
  return false;
}

static bool isRegister0(SDOperand Op) {
  if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op))
    return (R->getReg() == 0);
  return false;
}

/// getGlobalBaseReg - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
SDOperand X86DAGToDAGISel::getGlobalBaseReg() {
  if (!GlobalBaseReg) {
    // Insert the set of GlobalBaseReg into the first MBB of the function
    MachineBasicBlock &FirstMBB = BB->getParent()->front();
    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
    // FIXME: when we get to LP64, we will need to create the appropriate
    // type of register here.
    GlobalBaseReg = RegMap->createVirtualRegister(X86::GR32RegisterClass);
    BuildMI(FirstMBB, MBBI, X86::MovePCtoStack, 0);
    BuildMI(FirstMBB, MBBI, X86::POP32r, 1, GlobalBaseReg);
  }
  return CurDAG->getRegister(GlobalBaseReg, MVT::i32);
}

static SDNode *FindCallStartFromCall(SDNode *Node) {
  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
    assert(Node->getOperand(0).getValueType() == MVT::Other &&
         "Node doesn't have a token chain argument!");
  return FindCallStartFromCall(Node->getOperand(0).Val);
}

void X86DAGToDAGISel::Select(SDOperand &Result, SDOperand N) {
  SDNode *Node = N.Val;
  MVT::ValueType NVT = Node->getValueType(0);
  unsigned Opc, MOpc;
  unsigned Opcode = Node->getOpcode();

#ifndef NDEBUG
  DEBUG(std::cerr << std::string(Indent, ' '));
  DEBUG(std::cerr << "Selecting: ");
  DEBUG(Node->dump(CurDAG));
  DEBUG(std::cerr << "\n");
  Indent += 2;
#endif

  if (Opcode >= ISD::BUILTIN_OP_END && Opcode < X86ISD::FIRST_NUMBER) {
    Result = N;
#ifndef NDEBUG
    DEBUG(std::cerr << std::string(Indent-2, ' '));
    DEBUG(std::cerr << "== ");
    DEBUG(Node->dump(CurDAG));
    DEBUG(std::cerr << "\n");
    Indent -= 2;
#endif
    return;   // Already selected.
  }

  std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(N);
  if (CGMI != CodeGenMap.end()) {
    Result = CGMI->second;
#ifndef NDEBUG
    DEBUG(std::cerr << std::string(Indent-2, ' '));
    DEBUG(std::cerr << "== ");
    DEBUG(Result.Val->dump(CurDAG));
    DEBUG(std::cerr << "\n");
    Indent -= 2;
#endif
    return;
  }
  
  switch (Opcode) {
    default: break;
    case X86ISD::GlobalBaseReg: 
      Result = getGlobalBaseReg();
      return;

    case ISD::ADD: {
      // Turn ADD X, c to MOV32ri X+c. This cannot be done with tblgen'd
      // code and is matched first so to prevent it from being turned into
      // LEA32r X+c.
      SDOperand N0 = N.getOperand(0);
      SDOperand N1 = N.getOperand(1);
      if (N.Val->getValueType(0) == MVT::i32 &&
          N0.getOpcode() == X86ISD::Wrapper &&
          N1.getOpcode() == ISD::Constant) {
        unsigned Offset = (unsigned)cast<ConstantSDNode>(N1)->getValue();
        SDOperand C(0, 0);
        // TODO: handle ExternalSymbolSDNode.
        if (GlobalAddressSDNode *G =
            dyn_cast<GlobalAddressSDNode>(N0.getOperand(0))) {
          C = CurDAG->getTargetGlobalAddress(G->getGlobal(), MVT::i32,
                                             G->getOffset() + Offset);
        } else if (ConstantPoolSDNode *CP =
                   dyn_cast<ConstantPoolSDNode>(N0.getOperand(0))) {
          C = CurDAG->getTargetConstantPool(CP->get(), MVT::i32,
                                            CP->getAlignment(),
                                            CP->getOffset()+Offset);
        }

        if (C.Val) {
          if (N.Val->hasOneUse()) {
            Result = CurDAG->SelectNodeTo(N.Val, X86::MOV32ri, MVT::i32, C);
          } else {
            SDNode *ResNode = CurDAG->getTargetNode(X86::MOV32ri, MVT::i32, C);
            Result = CodeGenMap[N] = SDOperand(ResNode, 0);
          }
          return;
        }
      }

      // Other cases are handled by auto-generated code.
      break;
    }

    case ISD::MULHU:
    case ISD::MULHS: {
      if (Opcode == ISD::MULHU)
        switch (NVT) {
        default: assert(0 && "Unsupported VT!");
        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
        }
      else
        switch (NVT) {
        default: assert(0 && "Unsupported VT!");
        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
        }

      unsigned LoReg, HiReg;
      switch (NVT) {
      default: assert(0 && "Unsupported VT!");
      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
      }

      SDOperand N0 = Node->getOperand(0);
      SDOperand N1 = Node->getOperand(1);

      bool foldedLoad = false;
      SDOperand Tmp0, Tmp1, Tmp2, Tmp3;
      foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
      // MULHU and MULHS are commmutative
      if (!foldedLoad) {
        foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
        if (foldedLoad) {
          N0 = Node->getOperand(1);
          N1 = Node->getOperand(0);
        }
      }

      SDOperand Chain;
      if (foldedLoad)
        Select(Chain, N1.getOperand(0));
      else
        Chain = CurDAG->getEntryNode();

      SDOperand InFlag(0, 0);
      Select(N0, N0);
      Chain  = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT),
                                    N0, InFlag);
      InFlag = Chain.getValue(1);

      if (foldedLoad) {
        Select(Tmp0, Tmp0);
        Select(Tmp1, Tmp1);
        Select(Tmp2, Tmp2);
        Select(Tmp3, Tmp3);
        SDNode *CNode =
          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Tmp0, Tmp1,
                                Tmp2, Tmp3, Chain, InFlag);
        Chain  = SDOperand(CNode, 0);
        InFlag = SDOperand(CNode, 1);
      } else {
        Select(N1, N1);
        InFlag =
          SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
      }

      Result = CurDAG->getCopyFromReg(Chain, HiReg, NVT, InFlag);
      CodeGenMap[N.getValue(0)] = Result;
      if (foldedLoad) {
        CodeGenMap[N1.getValue(1)] = Result.getValue(1);
        AddHandleReplacement(N1.Val, 1, Result.Val, 1);
      }

#ifndef NDEBUG
      DEBUG(std::cerr << std::string(Indent-2, ' '));
      DEBUG(std::cerr << "== ");
      DEBUG(Result.Val->dump(CurDAG));
      DEBUG(std::cerr << "\n");
      Indent -= 2;
#endif
      return;
    }
      
    case ISD::SDIV:
    case ISD::UDIV:
    case ISD::SREM:
    case ISD::UREM: {
      bool isSigned = Opcode == ISD::SDIV || Opcode == ISD::SREM;
      bool isDiv    = Opcode == ISD::SDIV || Opcode == ISD::UDIV;
      if (!isSigned)
        switch (NVT) {
        default: assert(0 && "Unsupported VT!");
        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
        }
      else
        switch (NVT) {
        default: assert(0 && "Unsupported VT!");
        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
        }

      unsigned LoReg, HiReg;
      unsigned ClrOpcode, SExtOpcode;
      switch (NVT) {
      default: assert(0 && "Unsupported VT!");
      case MVT::i8:
        LoReg = X86::AL;  HiReg = X86::AH;
        ClrOpcode  = X86::MOV8ri;
        SExtOpcode = X86::CBW;
        break;
      case MVT::i16:
        LoReg = X86::AX;  HiReg = X86::DX;
        ClrOpcode  = X86::MOV16ri;
        SExtOpcode = X86::CWD;
        break;
      case MVT::i32:
        LoReg = X86::EAX; HiReg = X86::EDX;
        ClrOpcode  = X86::MOV32ri;
        SExtOpcode = X86::CDQ;
        break;
      }

      SDOperand N0 = Node->getOperand(0);
      SDOperand N1 = Node->getOperand(1);

      bool foldedLoad = false;
      SDOperand Tmp0, Tmp1, Tmp2, Tmp3;
      foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
      SDOperand Chain;
      if (foldedLoad)
        Select(Chain, N1.getOperand(0));
      else
        Chain = CurDAG->getEntryNode();

      SDOperand InFlag(0, 0);
      Select(N0, N0);
      Chain  = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT),
                                    N0, InFlag);
      InFlag = Chain.getValue(1);

      if (isSigned) {
        // Sign extend the low part into the high part.
        InFlag =
          SDOperand(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0);
      } else {
        // Zero out the high part, effectively zero extending the input.
        SDOperand ClrNode =
          SDOperand(CurDAG->getTargetNode(ClrOpcode, NVT,
                                         CurDAG->getTargetConstant(0, NVT)), 0);
        Chain  = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(HiReg, NVT),
                                      ClrNode, InFlag);
        InFlag = Chain.getValue(1);
      }

      if (foldedLoad) {
        Select(Tmp0, Tmp0);
        Select(Tmp1, Tmp1);
        Select(Tmp2, Tmp2);
        Select(Tmp3, Tmp3);
        SDNode *CNode =
          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Tmp0, Tmp1,
                                Tmp2, Tmp3, Chain, InFlag);
        Chain  = SDOperand(CNode, 0);
        InFlag = SDOperand(CNode, 1);
      } else {
        Select(N1, N1);
        InFlag =
          SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
      }

      Result = CurDAG->getCopyFromReg(Chain, isDiv ? LoReg : HiReg,
                                      NVT, InFlag);
      CodeGenMap[N.getValue(0)] = Result;
      if (foldedLoad) {
        CodeGenMap[N1.getValue(1)] = Result.getValue(1);
        AddHandleReplacement(N1.Val, 1, Result.Val, 1);
      }

#ifndef NDEBUG
      DEBUG(std::cerr << std::string(Indent-2, ' '));
      DEBUG(std::cerr << "== ");
      DEBUG(Result.Val->dump(CurDAG));
      DEBUG(std::cerr << "\n");
      Indent -= 2;
#endif
      return;
    }

    case ISD::TRUNCATE: {
      if (NVT == MVT::i8) {
        unsigned Opc2;
        MVT::ValueType VT;
        switch (Node->getOperand(0).getValueType()) {
        default: assert(0 && "Unknown truncate!");
        case MVT::i16:
          Opc = X86::MOV16to16_;
          VT = MVT::i16;
          Opc2 = X86::TRUNC_GR16_GR8;
          break;
        case MVT::i32:
          Opc = X86::MOV32to32_;
          VT = MVT::i32;
          Opc2 = X86::TRUNC_GR32_GR8;
          break;
        }

        SDOperand Tmp0, Tmp1;
        Select(Tmp0, Node->getOperand(0));
        Tmp1 = SDOperand(CurDAG->getTargetNode(Opc, VT, Tmp0), 0);
        Result = CodeGenMap[N] =
          SDOperand(CurDAG->getTargetNode(Opc2, NVT, Tmp1), 0);
      
#ifndef NDEBUG
        DEBUG(std::cerr << std::string(Indent-2, ' '));
        DEBUG(std::cerr << "== ");
        DEBUG(Result.Val->dump(CurDAG));
        DEBUG(std::cerr << "\n");
        Indent -= 2;
#endif
        return;
      }

      break;
    }
  }

  SelectCode(Result, N);
#ifndef NDEBUG
  DEBUG(std::cerr << std::string(Indent-2, ' '));
  DEBUG(std::cerr << "=> ");
  DEBUG(Result.Val->dump(CurDAG));
  DEBUG(std::cerr << "\n");
  Indent -= 2;
#endif
}

/// createX86ISelDag - This pass converts a legalized DAG into a 
/// X86-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM) {
  return new X86DAGToDAGISel(TM);
}