1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
|
//===-- NaClValueEnumerator.cpp ------------------------------------------===//
// Number values and types for bitcode writer
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the NaClValueEnumerator class.
//
//===----------------------------------------------------------------------===//
#include "NaClValueEnumerator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <set>
using namespace llvm;
static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
return V.first->getType()->isIntOrIntVectorTy();
}
/// NaClValueEnumerator - Enumerate module-level information.
NaClValueEnumerator::NaClValueEnumerator(const Module *M, uint32_t PNaClVersion)
: PNaClVersion(PNaClVersion) {
// Create map for counting frequency of types, and set field
// TypeCountMap accordingly. Note: Pointer field TypeCountMap is
// used to deal with the fact that types are added through various
// method calls in this routine. Rather than pass it as an argument,
// we use a field. The field is a pointer so that the memory
// footprint of count_map can be garbage collected when this
// constructor completes.
TypeCountMapType count_map;
TypeCountMap = &count_map;
IntPtrType = IntegerType::get(M->getContext(), PNaClIntPtrTypeBitSize);
// Enumerate the functions. Note: We do this before global
// variables, so that global variable initializations can refer to
// the functions without a forward reference.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
EnumerateValue(I);
}
// Enumerate the global variables.
FirstGlobalVarID = Values.size();
for (Module::const_global_iterator I = M->global_begin(),
E = M->global_end(); I != E; ++I)
EnumerateValue(I);
NumGlobalVarIDs = Values.size() - FirstGlobalVarID;
// Enumerate the aliases.
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I)
EnumerateValue(I);
// Remember what is the cutoff between globalvalue's and other constants.
unsigned FirstConstant = Values.size();
// Skip global variable initializers since they are handled within
// WriteGlobalVars of file NaClBitcodeWriter.cpp.
// Enumerate the aliasees.
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I)
EnumerateValue(I->getAliasee());
// Insert constants that are named at module level into the slot
// pool so that the module symbol table can refer to them...
EnumerateValueSymbolTable(M->getValueSymbolTable());
// Enumerate types used by function bodies and argument lists.
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I)
EnumerateType(I->getType());
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
// Don't generate types for elided pointer casts!
if (IsElidedCast(I))
continue;
if (const SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
// Handle switch instruction specially, so that we don't
// write out unnecessary vector/array types used to model case
// selectors.
EnumerateOperandType(SI->getCondition());
} else {
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
OI != E; ++OI) {
EnumerateOperandType(*OI);
}
}
EnumerateType(I->getType());
}
}
// Optimized type indicies to put "common" expected types in with small
// indices.
OptimizeTypes(M);
TypeCountMap = NULL;
// Optimize constant ordering.
OptimizeConstants(FirstConstant, Values.size());
}
void NaClValueEnumerator::OptimizeTypes(const Module *M) {
// Sort types by count, so that we can index them based on
// frequency. Use indices of built TypeMap, so that order of
// construction is repeatable.
std::set<unsigned> type_counts;
typedef std::set<unsigned> TypeSetType;
std::map<unsigned, TypeSetType> usage_count_map;
TypeList IdType(Types);
for (TypeCountMapType::iterator iter = TypeCountMap->begin();
iter != TypeCountMap->end(); ++ iter) {
type_counts.insert(iter->second);
usage_count_map[iter->second].insert(TypeMap[iter->first]-1);
}
// Reset type tracking maps, so that we can re-enter based
// on fequency ordering.
TypeCountMap = NULL;
Types.clear();
TypeMap.clear();
// Reinsert types, based on frequency.
for (std::set<unsigned>::reverse_iterator count_iter = type_counts.rbegin();
count_iter != type_counts.rend(); ++count_iter) {
TypeSetType& count_types = usage_count_map[*count_iter];
for (TypeSetType::iterator type_iter = count_types.begin();
type_iter != count_types.end(); ++type_iter)
EnumerateType((IdType[*type_iter]), true);
}
}
unsigned NaClValueEnumerator::getInstructionID(const Instruction *Inst) const {
InstructionMapType::const_iterator I = InstructionMap.find(Inst);
assert(I != InstructionMap.end() && "Instruction is not mapped!");
return I->second;
}
void NaClValueEnumerator::setInstructionID(const Instruction *I) {
InstructionMap[I] = InstructionCount++;
}
unsigned NaClValueEnumerator::getValueID(const Value *V) const {
ValueMapType::const_iterator I = ValueMap.find(V);
assert(I != ValueMap.end() && "Value not in slotcalculator!");
return I->second-1;
}
void NaClValueEnumerator::dump() const {
print(dbgs(), ValueMap, "Default");
dbgs() << '\n';
}
void NaClValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
const char *Name) const {
OS << "Map Name: " << Name << "\n";
OS << "Size: " << Map.size() << "\n";
for (ValueMapType::const_iterator I = Map.begin(),
E = Map.end(); I != E; ++I) {
const Value *V = I->first;
if (V->hasName())
OS << "Value: " << V->getName();
else
OS << "Value: [null]\n";
V->dump();
OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
UI != UE; ++UI) {
if (UI != V->use_begin())
OS << ",";
if((*UI)->hasName())
OS << " " << (*UI)->getName();
else
OS << " [null]";
}
OS << "\n\n";
}
}
// Optimize constant ordering.
namespace {
struct CstSortPredicate {
NaClValueEnumerator &VE;
explicit CstSortPredicate(NaClValueEnumerator &ve) : VE(ve) {}
bool operator()(const std::pair<const Value*, unsigned> &LHS,
const std::pair<const Value*, unsigned> &RHS) {
// Sort by plane.
if (LHS.first->getType() != RHS.first->getType())
return VE.getTypeID(LHS.first->getType()) <
VE.getTypeID(RHS.first->getType());
// Then by frequency.
return LHS.second > RHS.second;
}
};
}
/// OptimizeConstants - Reorder constant pool for denser encoding.
void NaClValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
CstSortPredicate P(*this);
std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
// Ensure that integer and vector of integer constants are at the start of the
// constant pool. This is important so that GEP structure indices come before
// gep constant exprs.
std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
isIntOrIntVectorValue);
// Rebuild the modified portion of ValueMap.
for (; CstStart != CstEnd; ++CstStart)
ValueMap[Values[CstStart].first] = CstStart+1;
}
/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
/// table into the values table.
void NaClValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
VI != VE; ++VI)
EnumerateValue(VI->getValue());
}
void NaClValueEnumerator::EnumerateValue(const Value *VIn) {
// Skip over elided values.
const Value *V = ElideCasts(VIn);
if (V != VIn) return;
assert(!V->getType()->isVoidTy() && "Can't insert void values!");
assert(!isa<MDNode>(V) && !isa<MDString>(V) &&
"EnumerateValue doesn't handle Metadata!");
// Check to see if it's already in!
unsigned &ValueID = ValueMap[V];
if (ValueID) {
// Increment use count.
Values[ValueID-1].second++;
return;
}
// Enumerate the type of this value. Skip global values since no
// types are dumped for global variables.
if (!isa<GlobalVariable>(V))
EnumerateType(V->getType());
if (const Constant *C = dyn_cast<Constant>(V)) {
if (isa<GlobalValue>(C)) {
// Initializers for globals are handled explicitly elsewhere.
} else if (C->getNumOperands()) {
// If a constant has operands, enumerate them. This makes sure that if a
// constant has uses (for example an array of const ints), that they are
// inserted also.
// We prefer to enumerate them with values before we enumerate the user
// itself. This makes it more likely that we can avoid forward references
// in the reader. We know that there can be no cycles in the constants
// graph that don't go through a global variable.
for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
I != E; ++I)
if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
EnumerateValue(*I);
// Finally, add the value. Doing this could make the ValueID reference be
// dangling, don't reuse it.
Values.push_back(std::make_pair(V, 1U));
ValueMap[V] = Values.size();
return;
}
}
// Add the value.
Values.push_back(std::make_pair(V, 1U));
ValueID = Values.size();
}
Type *NaClValueEnumerator::NormalizeType(Type *Ty) const {
if (Ty->isPointerTy())
return IntPtrType;
if (FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
SmallVector<Type *, 8> ArgTypes;
for (unsigned I = 0, E = FTy->getNumParams(); I < E; ++I)
ArgTypes.push_back(NormalizeType(FTy->getParamType(I)));
return FunctionType::get(NormalizeType(FTy->getReturnType()),
ArgTypes, false);
}
return Ty;
}
void NaClValueEnumerator::EnumerateType(Type *Ty, bool InsideOptimizeTypes) {
// Pointer types do not need to be given type IDs.
if (Ty->isPointerTy())
Ty = Ty->getPointerElementType();
Ty = NormalizeType(Ty);
// The label type does not need to be given a type ID.
if (Ty->isLabelTy())
return;
// This function is used to enumerate types referenced by the given
// module. This function is called in two phases, based on the value
// of TypeCountMap. These phases are:
//
// (1) In this phase, InsideOptimizeTypes=false. We are collecting types
// and all corresponding (implicitly) referenced types. In addition,
// we are keeping track of the number of references to each type in
// TypeCountMap. These reference counts will be used by method
// OptimizeTypes to associate the smallest type ID's with the most
// referenced types.
//
// (2) In this phase, InsideOptimizeTypes=true. We are registering types
// based on frequency. To minimize type IDs for frequently used
// types, (unlike the other context) we are inserting the minimal
// (implicitly) referenced types needed for each type.
unsigned *TypeID = &TypeMap[Ty];
if (TypeCountMap) ++((*TypeCountMap)[Ty]);
// We've already seen this type.
if (*TypeID)
return;
// If it is a non-anonymous struct, mark the type as being visited so that we
// don't recursively visit it. This is safe because we allow forward
// references of these in the bitcode reader.
if (StructType *STy = dyn_cast<StructType>(Ty))
if (!STy->isLiteral())
*TypeID = ~0U;
// If in the second phase (i.e. inside optimize types), don't expand
// pointers to structures, since we can just generate a forward
// reference to it. This way, we don't use up unnecessary (small) ID
// values just to define the pointer.
bool EnumerateSubtypes = true;
if (InsideOptimizeTypes)
if (PointerType *PTy = dyn_cast<PointerType>(Ty))
if (StructType *STy = dyn_cast<StructType>(PTy->getElementType()))
if (!STy->isLiteral())
EnumerateSubtypes = false;
// Enumerate all of the subtypes before we enumerate this type. This ensures
// that the type will be enumerated in an order that can be directly built.
if (EnumerateSubtypes) {
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
EnumerateType(*I, InsideOptimizeTypes);
}
// Refresh the TypeID pointer in case the table rehashed.
TypeID = &TypeMap[Ty];
// Check to see if we got the pointer another way. This can happen when
// enumerating recursive types that hit the base case deeper than they start.
//
// If this is actually a struct that we are treating as forward ref'able,
// then emit the definition now that all of its contents are available.
if (*TypeID && *TypeID != ~0U)
return;
// Add this type now that its contents are all happily enumerated.
Types.push_back(Ty);
*TypeID = Types.size();
}
// Enumerate the types for the specified value. If the value is a constant,
// walk through it, enumerating the types of the constant.
void NaClValueEnumerator::EnumerateOperandType(const Value *V) {
// Note: We intentionally don't create a type id for global variables,
// since the type is automatically generated by the reader before any
// use of the global variable.
if (isa<GlobalVariable>(V)) return;
EnumerateType(V->getType());
if (const Constant *C = dyn_cast<Constant>(V)) {
// If this constant is already enumerated, ignore it, we know its type must
// be enumerated.
if (ValueMap.count(V)) return;
// This constant may have operands, make sure to enumerate the types in
// them.
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
const Value *Op = C->getOperand(i);
// Don't enumerate basic blocks here, this happens as operands to
// blockaddress.
if (isa<BasicBlock>(Op)) continue;
EnumerateOperandType(Op);
}
}
}
void NaClValueEnumerator::incorporateFunction(const Function &F) {
InstructionCount = 0;
NumModuleValues = Values.size();
// Make sure no insertions outside of a function.
assert(FnForwardTypeRefs.empty());
// Adding function arguments to the value table.
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
I != E; ++I)
EnumerateValue(I);
FirstFuncConstantID = Values.size();
// Add all function-level constants to the value table.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
if (const SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
// Handle switch instruction specially, so that we don't write
// out unnecessary vector/array constants used to model case selectors.
if (isa<Constant>(SI->getCondition())) {
EnumerateValue(SI->getCondition());
}
} else {
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
OI != E; ++OI) {
if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
isa<InlineAsm>(*OI))
EnumerateValue(*OI);
}
}
}
BasicBlocks.push_back(BB);
ValueMap[BB] = BasicBlocks.size();
}
// Optimize the constant layout.
OptimizeConstants(FirstFuncConstantID, Values.size());
FirstInstID = Values.size();
// Add all of the instructions.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
if (!I->getType()->isVoidTy())
EnumerateValue(I);
}
}
}
void NaClValueEnumerator::purgeFunction() {
/// Remove purged values from the ValueMap.
for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
ValueMap.erase(Values[i].first);
for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
ValueMap.erase(BasicBlocks[i]);
Values.resize(NumModuleValues);
BasicBlocks.clear();
FnForwardTypeRefs.clear();
}
// The normal form required by the PNaCl ABI verifier (documented in
// ReplacePtrsWithInts.cpp) allows us to omit the following pointer
// casts from the bitcode file.
const Value *NaClValueEnumerator::ElideCasts(const Value *V) {
if (const Instruction *I = dyn_cast<Instruction>(V)) {
switch (I->getOpcode()) {
default:
break;
case Instruction::BitCast:
if (I->getType()->isPointerTy()) {
V = I->getOperand(0);
}
break;
case Instruction::IntToPtr:
V = ElideCasts(I->getOperand(0));
break;
case Instruction::PtrToInt:
if (IsIntPtrType(I->getType())) {
V = I->getOperand(0);
}
break;
}
}
return V;
}
|