//===- ExceptionInfoWriter.cpp - Generate C++ exception info for PNaCl-----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The ExceptionInfoWriter class converts the clauses of a // "landingpad" instruction into data tables stored in global // variables. These tables are interpreted by PNaCl's C++ runtime // library (either libsupc++ or libcxxabi), which is linked into a // pexe. // // This is similar to the lowering that the LLVM backend does to // convert landingpad clauses into ".gcc_except_table" sections. The // difference is that ExceptionInfoWriter is an IR-to-IR // transformation that runs on the PNaCl user toolchain side. The // format it produces is not part of PNaCl's stable ABI; the PNaCl // translator and LLVM backend do not know about this format. // // Encoding: // // A landingpad instruction contains a list of clauses. // ExceptionInfoWriter encodes each clause as a 32-bit "clause ID". A // clause is one of the following forms: // // 1) "catch i8* @ExcType" // * This clause means that the landingpad should be entered if // the C++ exception being thrown has type @ExcType (or a // subtype of @ExcType). @ExcType is a pointer to the // std::type_info object (an RTTI object) for the C++ exception // type. // * Clang generates this for a "catch" block in the C++ source. // * @ExcType is NULL for "catch (...)" (catch-all) blocks. // * This is encoded as the "type ID" for @ExcType, defined below, // which is a positive integer. // // 2) "filter [i8* @ExcType1, ..., i8* @ExcTypeN]" // * This clause means that the landingpad should be entered if // the C++ exception being thrown *doesn't* match any of the // types in the list (which are again specified as // std::type_info pointers). // * Clang uses this to implement C++ exception specifications, e.g. // void foo() throw(ExcType1, ..., ExcTypeN) { ... } // * This is encoded as the filter ID, X, where X < 0, and // &__pnacl_eh_filter_table[-X-1] points to a 0-terminated // array of integer "type IDs". // // 3) "cleanup" // * This means that the landingpad should always be entered. // * Clang uses this for calling objects' destructors. // * This is encoded as 0. // * The runtime may treat "cleanup" differently from "catch i8* // null" (a catch-all). In C++, if an unhandled exception // occurs, the language runtime may abort execution without // running any destructors. The runtime may implement this by // searching for a matching non-"cleanup" clause, and aborting // if it does not find one, before entering any landingpad // blocks. // // The "type ID" for a type @ExcType is a 1-based index into the array // __pnacl_eh_type_table[]. That is, the type ID is a value X such // that __pnacl_eh_type_table[X-1] == @ExcType, and X >= 1. // // ExceptionInfoWriter generates the following data structures: // // struct action_table_entry { // int32_t clause_id; // uint32_t next_clause_list_id; // }; // // // Represents singly linked lists of clauses. // extern const struct action_table_entry __pnacl_eh_action_table[]; // // // Allows std::type_infos to be represented using small integer IDs. // extern std::type_info *const __pnacl_eh_type_table[]; // // // Used to represent type arrays for "filter" clauses. // extern const uint32_t __pnacl_eh_filter_table[]; // // A "clause list ID" is either: // * 0, representing the empty list; or // * an index into __pnacl_eh_action_table[] with 1 added, which // specifies a node in the clause list. // // Example: // // std::type_info *const __pnacl_eh_type_table[] = { // // defines type ID 1 == ExcA and clause ID 1 == "catch ExcA" // &typeinfo(ExcA), // // defines type ID 2 == ExcB and clause ID 2 == "catch ExcB" // &typeinfo(ExcB), // // defines type ID 3 == ExcC and clause ID 3 == "catch ExcC" // &typeinfo(ExcC), // }; // // const uint32_t __pnacl_eh_filter_table[] = { // 1, // refers to ExcA; defines clause ID -1 as "filter [ExcA, ExcB]" // 2, // refers to ExcB; defines clause ID -2 as "filter [ExcB]" // 0, // list terminator; defines clause ID -3 as "filter []" // 3, // refers to ExcC; defines clause ID -4 as "filter [ExcC]" // 0, // list terminator; defines clause ID -5 as "filter []" // }; // // const struct action_table_entry __pnacl_eh_action_table[] = { // // defines clause list ID 1: // { // -4, // "filter [ExcC]" // 0, // end of list (no more actions) // }, // // defines clause list ID 2: // { // -1, // "filter [ExcA, ExcB]" // 1, // else go to clause list ID 1 // }, // // defines clause list ID 3: // { // 2, // "catch ExcB" // 2, // else go to clause list ID 2 // }, // // defines clause list ID 4: // { // 1, // "catch ExcA" // 3, // else go to clause list ID 3 // }, // }; // // So if a landingpad contains the clause list: // [catch ExcA, // catch ExcB, // filter [ExcA, ExcB], // filter [ExcC]] // then this can be represented as clause list ID 4 using the tables above. // // The C++ runtime library checks the clauses in order to decide // whether to enter the landingpad. If a clause matches, the // landingpad BasicBlock is passed the clause ID. The landingpad code // can use the clause ID to decide which C++ catch() block (if any) to // execute. // // The purpose of these exception tables is to keep code sizes // relatively small. The landingpad code only needs to check a small // integer clause ID, rather than having to call a function to check // whether the C++ exception matches a type. // // ExceptionInfoWriter's encoding corresponds loosely to the format of // GCC's .gcc_except_table sections. One difference is that // ExceptionInfoWriter writes fixed-width 32-bit integers, whereas // .gcc_except_table uses variable-length LEB128 encodings. We could // switch to LEB128 to save space in the future. // //===----------------------------------------------------------------------===// #include "ExceptionInfoWriter.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; ExceptionInfoWriter::ExceptionInfoWriter(LLVMContext *Context): Context(Context) { Type *I32 = Type::getInt32Ty(*Context); Type *Fields[] = { I32, I32 }; ActionTableEntryTy = StructType::create(Fields, "action_table_entry"); } unsigned ExceptionInfoWriter::getIDForExceptionType(Value *ExcTy) { Constant *ExcTyConst = dyn_cast(ExcTy); if (!ExcTyConst) report_fatal_error("Exception type not a constant"); // Reuse existing ID if one has already been assigned. TypeTableIDMapType::iterator Iter = TypeTableIDMap.find(ExcTyConst); if (Iter != TypeTableIDMap.end()) return Iter->second; unsigned Index = TypeTableData.size() + 1; TypeTableIDMap[ExcTyConst] = Index; TypeTableData.push_back(ExcTyConst); return Index; } unsigned ExceptionInfoWriter::getIDForClauseListNode( unsigned ClauseID, unsigned NextClauseListID) { // Reuse existing ID if one has already been assigned. ActionTableEntry Key(ClauseID, NextClauseListID); ActionTableIDMapType::iterator Iter = ActionTableIDMap.find(Key); if (Iter != ActionTableIDMap.end()) return Iter->second; Type *I32 = Type::getInt32Ty(*Context); Constant *Fields[] = { ConstantInt::get(I32, ClauseID), ConstantInt::get(I32, NextClauseListID) }; Constant *Entry = ConstantStruct::get(ActionTableEntryTy, Fields); // Add 1 so that the empty list can be represented as 0. unsigned ClauseListID = ActionTableData.size() + 1; ActionTableIDMap[Key] = ClauseListID; ActionTableData.push_back(Entry); return ClauseListID; } unsigned ExceptionInfoWriter::getIDForFilterClause(Value *Filter) { unsigned FilterClauseID = -(FilterTableData.size() + 1); Type *I32 = Type::getInt32Ty(*Context); ArrayType *ArrayTy = dyn_cast(Filter->getType()); if (!ArrayTy) report_fatal_error("Landingpad filter clause is not of array type"); unsigned FilterLength = ArrayTy->getNumElements(); // Don't try the dyn_cast if the FilterLength is zero, because Array // could be a zeroinitializer. if (FilterLength > 0) { ConstantArray *Array = dyn_cast(Filter); if (!Array) report_fatal_error("Landingpad filter clause is not a ConstantArray"); for (unsigned I = 0; I < FilterLength; ++I) { unsigned TypeID = getIDForExceptionType(Array->getOperand(I)); assert(TypeID > 0); FilterTableData.push_back(ConstantInt::get(I32, TypeID)); } } // Add array terminator. FilterTableData.push_back(ConstantInt::get(I32, 0)); return FilterClauseID; } unsigned ExceptionInfoWriter::getIDForLandingPadClauseList(LandingPadInst *LP) { unsigned NextClauseListID = 0; // ID for empty list. if (LP->isCleanup()) { // Add cleanup clause at the end of the list. NextClauseListID = getIDForClauseListNode(0, NextClauseListID); } for (int I = (int) LP->getNumClauses() - 1; I >= 0; --I) { unsigned ClauseID; if (LP->isCatch(I)) { ClauseID = getIDForExceptionType(LP->getClause(I)); } else if (LP->isFilter(I)) { ClauseID = getIDForFilterClause(LP->getClause(I)); } else { report_fatal_error("Unknown kind of landingpad clause"); } assert(ClauseID > 0); NextClauseListID = getIDForClauseListNode(ClauseID, NextClauseListID); } return NextClauseListID; } static void defineArray(Module *M, const char *Name, const SmallVectorImpl &Elements, Type *ElementType) { ArrayType *ArrayTy = ArrayType::get(ElementType, Elements.size()); Constant *ArrayData = ConstantArray::get(ArrayTy, Elements); GlobalVariable *OldGlobal = M->getGlobalVariable(Name); if (OldGlobal) { if (OldGlobal->hasInitializer()) { report_fatal_error(std::string("Variable ") + Name + " already has an initializer"); } Constant *NewGlobal = new GlobalVariable( *M, ArrayTy, /* isConstant= */ true, GlobalValue::InternalLinkage, ArrayData); NewGlobal->takeName(OldGlobal); OldGlobal->replaceAllUsesWith(ConstantExpr::getBitCast( NewGlobal, OldGlobal->getType())); OldGlobal->eraseFromParent(); } else { if (Elements.size() > 0) { // This warning could happen for a program that does not link // against the C++ runtime libraries. Such a program might // contain "invoke" instructions but never throw any C++ // exceptions. errs() << "Warning: Variable " << Name << " not referenced\n"; } } } void ExceptionInfoWriter::defineGlobalVariables(Module *M) { defineArray(M, "__pnacl_eh_type_table", TypeTableData, Type::getInt8PtrTy(M->getContext())); defineArray(M, "__pnacl_eh_action_table", ActionTableData, ActionTableEntryTy); defineArray(M, "__pnacl_eh_filter_table", FilterTableData, Type::getInt32Ty(M->getContext())); }