//===- llvm/Transforms/DecomposeArrayRefs.cpp - Lower array refs to 1D -----=// // // DecomposeArrayRefs - // Convert multi-dimensional array references into a sequence of // instructions (using getelementpr and cast) so that each instruction // has at most one array offset. // //===---------------------------------------------------------------------===// #include "llvm/Transforms/DecomposeArrayRefs.h" #include "llvm/iMemory.h" #include "llvm/iOther.h" #include "llvm/BasicBlock.h" #include "llvm/Method.h" #include "llvm/Pass.h" // // This function repeats until we have a one-dim. reference: { // // For an N-dim array ref, where N > 1, insert: // aptr1 = getElementPtr [N-dim array] * lastPtr, uint firstIndex // aptr2 = cast [N-dim-arry] * aptr to [-dim-array] * // } // Then it replaces the original instruction with an equivalent one that // uses the last aptr2 generated in the loop and a single index. // static BasicBlock::reverse_iterator decomposeArrayRef(BasicBlock::reverse_iterator& BBI) { MemAccessInst *memI = cast(*BBI); BasicBlock* BB = memI->getParent(); Value* lastPtr = memI->getPointerOperand(); vector newIvec; MemAccessInst::const_op_iterator OI = memI->idx_begin(); for (MemAccessInst::const_op_iterator OE = memI->idx_end(); OI != OE; ++OI) { if (OI+1 == OE) // skip the last operand break; assert(isa(lastPtr->getType())); vector idxVec(1, *OI); // The first index does not change the type of the pointer // since all pointers are treated as potential arrays (i.e., // int *X is either a scalar X[0] or an array at X[i]). // const Type* nextPtrType; // if (OI == memI->idx_begin()) // nextPtrType = lastPtr->getType(); // else // { const Type* nextArrayType = MemAccessInst::getIndexedType(lastPtr->getType(), idxVec, /*allowCompositeLeaf*/ true); nextPtrType = PointerType::get(cast(nextArrayType) ->getElementType()); // } Instruction* gepInst = new GetElementPtrInst(lastPtr, idxVec, "aptr1"); Instruction* castInst = new CastInst(gepInst, nextPtrType, "aptr2"); lastPtr = castInst; newIvec.push_back(gepInst); newIvec.push_back(castInst); } // Now create a new instruction to replace the original one assert(lastPtr != memI->getPointerOperand() && "the above loop did not execute?"); assert(isa(lastPtr->getType())); vector idxVec(1, *OI); const std::string newInstName = memI->hasName()? memI->getName() : string("oneDimRef"); Instruction* newInst = NULL; switch(memI->getOpcode()) { case Instruction::Load: newInst = new LoadInst(lastPtr, idxVec /*, newInstName */); break; case Instruction::Store: newInst = new StoreInst(memI->getOperand(0), lastPtr, idxVec /*, newInstName */); break; break; case Instruction::GetElementPtr: newInst = new GetElementPtrInst(lastPtr, idxVec /*, newInstName */); break; default: assert(0 && "Unrecognized memory access instruction"); break; } newIvec.push_back(newInst); // Replace all uses of the old instruction with the new memI->replaceAllUsesWith(newInst); // Insert the instructions created in reverse order. insert is destructive // so we always have to use the new pointer returned by insert. BasicBlock::iterator newI = BBI.base(); // gives ptr to instr. after memI --newI; // step back to memI for (int i = newIvec.size()-1; i >= 0; i--) newI = BB->getInstList().insert(newI, newIvec[i]); // Now delete the old instruction and return a pointer to the first new one BB->getInstList().remove(memI); delete memI; BasicBlock::reverse_iterator retI(newI); // reverse ptr to instr before newI return --retI; // reverse pointer to newI } //--------------------------------------------------------------------------- // Entry point for decomposing multi-dimensional array references //--------------------------------------------------------------------------- static bool doDecomposeArrayRefs(Method *M) { bool changed = false; for (Method::iterator BI = M->begin(), BE = M->end(); BI != BE; ++BI) for (BasicBlock::reverse_iterator newI, II=(*BI)->rbegin(); II != (*BI)->rend(); II = ++newI) { newI = II; if (MemAccessInst *memI = dyn_cast(*II)) { // Check for a multi-dimensional array access const PointerType* ptrType = cast(memI->getPointerOperand()->getType()); if (isa(ptrType->getElementType()) && memI->getNumOperands() > 1+ memI->getFirstIndexOperandNumber()) { newI = decomposeArrayRef(II); changed = true; } } } return changed; } namespace { struct DecomposeArrayRefsPass : public MethodPass { virtual bool runOnMethod(Method *M) { return doDecomposeArrayRefs(M); } }; } Pass *createDecomposeArrayRefsPass() { return new DecomposeArrayRefsPass(); }