//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that X86 uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "x86-isel" #include "X86ISelLowering.h" #include "Utils/X86ShuffleDecode.h" #include "X86.h" #include "X86InstrBuilder.h" #include "X86TargetMachine.h" #include "X86TargetObjectFile.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/VariadicFunction.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetOptions.h" #include #include using namespace llvm; STATISTIC(NumTailCalls, "Number of tail calls"); // Forward declarations. static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, SDValue V2); /// Generate a DAG to grab 128-bits from a vector > 128 bits. This /// sets things up to match to an AVX VEXTRACTF128 instruction or a /// simple subregister reference. Idx is an index in the 128 bits we /// want. It need not be aligned to a 128-bit bounday. That makes /// lowering EXTRACT_VECTOR_ELT operations easier. static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, DebugLoc dl) { EVT VT = Vec.getValueType(); assert(VT.is256BitVector() && "Unexpected vector size!"); EVT ElVT = VT.getVectorElementType(); unsigned Factor = VT.getSizeInBits()/128; EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, VT.getVectorNumElements()/Factor); // Extract from UNDEF is UNDEF. if (Vec.getOpcode() == ISD::UNDEF) return DAG.getUNDEF(ResultVT); // Extract the relevant 128 bits. Generate an EXTRACT_SUBVECTOR // we can match to VEXTRACTF128. unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits(); // This is the index of the first element of the 128-bit chunk // we want. unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128) * ElemsPerChunk); // If the input is a buildvector just emit a smaller one. if (Vec.getOpcode() == ISD::BUILD_VECTOR) return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT, Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk); SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal); SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx); return Result; } /// Generate a DAG to put 128-bits into a vector > 128 bits. This /// sets things up to match to an AVX VINSERTF128 instruction or a /// simple superregister reference. Idx is an index in the 128 bits /// we want. It need not be aligned to a 128-bit bounday. That makes /// lowering INSERT_VECTOR_ELT operations easier. static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, DebugLoc dl) { // Inserting UNDEF is Result if (Vec.getOpcode() == ISD::UNDEF) return Result; EVT VT = Vec.getValueType(); assert(VT.is128BitVector() && "Unexpected vector size!"); EVT ElVT = VT.getVectorElementType(); EVT ResultVT = Result.getValueType(); // Insert the relevant 128 bits. unsigned ElemsPerChunk = 128/ElVT.getSizeInBits(); // This is the index of the first element of the 128-bit chunk // we want. unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128) * ElemsPerChunk); SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal); return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx); } /// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128 /// instructions. This is used because creating CONCAT_VECTOR nodes of /// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower /// large BUILD_VECTORS. static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT, unsigned NumElems, SelectionDAG &DAG, DebugLoc dl) { SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); return Insert128BitVector(V, V2, NumElems/2, DAG, dl); } static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) { const X86Subtarget *Subtarget = &TM.getSubtarget(); bool is64Bit = Subtarget->is64Bit(); if (Subtarget->isTargetEnvMacho()) { if (is64Bit) return new X86_64MachoTargetObjectFile(); return new TargetLoweringObjectFileMachO(); } if (Subtarget->isTargetLinux()) return new X86LinuxTargetObjectFile(); // @LOCALMOD-BEGIN if (Subtarget->isTargetNaCl()) return new TargetLoweringObjectFileNaCl(); // @LOCALMOD-END if (Subtarget->isTargetELF()) return new TargetLoweringObjectFileELF(); if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho()) return new TargetLoweringObjectFileCOFF(); llvm_unreachable("unknown subtarget type"); } X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) : TargetLowering(TM, createTLOF(TM)) { Subtarget = &TM.getSubtarget(); X86ScalarSSEf64 = Subtarget->hasSSE2(); X86ScalarSSEf32 = Subtarget->hasSSE1(); // @LOCALMOD-START X86StackPtr = Subtarget->has64BitPointers() ? X86::RSP : X86::ESP; // @LOCALMOD-END RegInfo = TM.getRegisterInfo(); TD = getDataLayout(); resetOperationActions(); } void X86TargetLowering::resetOperationActions() { const TargetMachine &TM = getTargetMachine(); static bool FirstTimeThrough = true; // If none of the target options have changed, then we don't need to reset the // operation actions. if (!FirstTimeThrough && TO == TM.Options) return; if (!FirstTimeThrough) { // Reinitialize the actions. initActions(); FirstTimeThrough = false; } TO = TM.Options; // Set up the TargetLowering object. static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }; // X86 is weird, it always uses i8 for shift amounts and setcc results. setBooleanContents(ZeroOrOneBooleanContent); // X86-SSE is even stranger. It uses -1 or 0 for vector masks. setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); // For 64-bit since we have so many registers use the ILP scheduler, for // 32-bit code use the register pressure specific scheduling. // For Atom, always use ILP scheduling. if (Subtarget->isAtom()) setSchedulingPreference(Sched::ILP); else if (Subtarget->is64Bit()) setSchedulingPreference(Sched::ILP); else setSchedulingPreference(Sched::RegPressure); setStackPointerRegisterToSaveRestore(X86StackPtr); // @LOCALMOD // Bypass expensive divides on Atom when compiling with O2 if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) { addBypassSlowDiv(32, 8); if (Subtarget->is64Bit()) addBypassSlowDiv(64, 16); } if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) { // Setup Windows compiler runtime calls. setLibcallName(RTLIB::SDIV_I64, "_alldiv"); setLibcallName(RTLIB::UDIV_I64, "_aulldiv"); setLibcallName(RTLIB::SREM_I64, "_allrem"); setLibcallName(RTLIB::UREM_I64, "_aullrem"); setLibcallName(RTLIB::MUL_I64, "_allmul"); setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall); setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall); setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall); setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall); setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall); // The _ftol2 runtime function has an unusual calling conv, which // is modeled by a special pseudo-instruction. setLibcallName(RTLIB::FPTOUINT_F64_I64, 0); setLibcallName(RTLIB::FPTOUINT_F32_I64, 0); setLibcallName(RTLIB::FPTOUINT_F64_I32, 0); setLibcallName(RTLIB::FPTOUINT_F32_I32, 0); } if (Subtarget->isTargetDarwin()) { // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. setUseUnderscoreSetJmp(false); setUseUnderscoreLongJmp(false); } else if (Subtarget->isTargetMingw()) { // MS runtime is weird: it exports _setjmp, but longjmp! setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(false); } else { setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(true); } // Set up the register classes. addRegisterClass(MVT::i8, &X86::GR8RegClass); addRegisterClass(MVT::i16, &X86::GR16RegClass); addRegisterClass(MVT::i32, &X86::GR32RegClass); if (Subtarget->is64Bit()) addRegisterClass(MVT::i64, &X86::GR64RegClass); setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); // We don't accept any truncstore of integer registers. setTruncStoreAction(MVT::i64, MVT::i32, Expand); setTruncStoreAction(MVT::i64, MVT::i16, Expand); setTruncStoreAction(MVT::i64, MVT::i8 , Expand); setTruncStoreAction(MVT::i32, MVT::i16, Expand); setTruncStoreAction(MVT::i32, MVT::i8 , Expand); setTruncStoreAction(MVT::i16, MVT::i8, Expand); // SETOEQ and SETUNE require checking two conditions. setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this // operation. setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); if (Subtarget->is64Bit()) { setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); } else if (!TM.Options.UseSoftFloat) { // We have an algorithm for SSE2->double, and we turn this into a // 64-bit FILD followed by conditional FADD for other targets. setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); // We have an algorithm for SSE2, and we turn this into a 64-bit // FILD for other targets. setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); } // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have // this operation. setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); if (!TM.Options.UseSoftFloat) { // SSE has no i16 to fp conversion, only i32 if (X86ScalarSSEf32) { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); // f32 and f64 cases are Legal, f80 case is not setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); } else { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); } } else { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote); } // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 // are Legal, f80 is custom lowered. setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have // this operation. setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); if (X86ScalarSSEf32) { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); // f32 and f64 cases are Legal, f80 case is not setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); } else { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); } // Handle FP_TO_UINT by promoting the destination to a larger signed // conversion. setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); if (Subtarget->is64Bit()) { setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); } else if (!TM.Options.UseSoftFloat) { // Since AVX is a superset of SSE3, only check for SSE here. if (Subtarget->hasSSE1() && !Subtarget->hasSSE3()) // Expand FP_TO_UINT into a select. // FIXME: We would like to use a Custom expander here eventually to do // the optimal thing for SSE vs. the default expansion in the legalizer. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); else // With SSE3 we can use fisttpll to convert to a signed i64; without // SSE, we're stuck with a fistpll. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); } if (isTargetFTOL()) { // Use the _ftol2 runtime function, which has a pseudo-instruction // to handle its weird calling convention. setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom); } // TODO: when we have SSE, these could be more efficient, by using movd/movq. if (!X86ScalarSSEf64) { setOperationAction(ISD::BITCAST , MVT::f32 , Expand); setOperationAction(ISD::BITCAST , MVT::i32 , Expand); if (Subtarget->is64Bit()) { setOperationAction(ISD::BITCAST , MVT::f64 , Expand); // Without SSE, i64->f64 goes through memory. setOperationAction(ISD::BITCAST , MVT::i64 , Expand); } } // Scalar integer divide and remainder are lowered to use operations that // produce two results, to match the available instructions. This exposes // the two-result form to trivial CSE, which is able to combine x/y and x%y // into a single instruction. // // Scalar integer multiply-high is also lowered to use two-result // operations, to match the available instructions. However, plain multiply // (low) operations are left as Legal, as there are single-result // instructions for this in x86. Using the two-result multiply instructions // when both high and low results are needed must be arranged by dagcombine. for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) { MVT VT = IntVTs[i]; setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences. setOperationAction(ISD::ADDC, VT, Custom); setOperationAction(ISD::ADDE, VT, Custom); setOperationAction(ISD::SUBC, VT, Custom); setOperationAction(ISD::SUBE, VT, Custom); } setOperationAction(ISD::BR_JT , MVT::Other, Expand); setOperationAction(ISD::BRCOND , MVT::Other, Custom); setOperationAction(ISD::BR_CC , MVT::f32, Expand); setOperationAction(ISD::BR_CC , MVT::f64, Expand); setOperationAction(ISD::BR_CC , MVT::f80, Expand); setOperationAction(ISD::BR_CC , MVT::i8, Expand); setOperationAction(ISD::BR_CC , MVT::i16, Expand); setOperationAction(ISD::BR_CC , MVT::i32, Expand); setOperationAction(ISD::BR_CC , MVT::i64, Expand); setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); setOperationAction(ISD::FREM , MVT::f32 , Expand); setOperationAction(ISD::FREM , MVT::f64 , Expand); setOperationAction(ISD::FREM , MVT::f80 , Expand); setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); // Promote the i8 variants and force them on up to i32 which has a shorter // encoding. setOperationAction(ISD::CTTZ , MVT::i8 , Promote); AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32); setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote); AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32); if (Subtarget->hasBMI()) { setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); } else { setOperationAction(ISD::CTTZ , MVT::i16 , Custom); setOperationAction(ISD::CTTZ , MVT::i32 , Custom); if (Subtarget->is64Bit()) setOperationAction(ISD::CTTZ , MVT::i64 , Custom); } if (Subtarget->hasLZCNT()) { // When promoting the i8 variants, force them to i32 for a shorter // encoding. setOperationAction(ISD::CTLZ , MVT::i8 , Promote); AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote); AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); } else { setOperationAction(ISD::CTLZ , MVT::i8 , Custom); setOperationAction(ISD::CTLZ , MVT::i16 , Custom); setOperationAction(ISD::CTLZ , MVT::i32 , Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::CTLZ , MVT::i64 , Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); } } if (Subtarget->hasPOPCNT()) { setOperationAction(ISD::CTPOP , MVT::i8 , Promote); } else { setOperationAction(ISD::CTPOP , MVT::i8 , Expand); setOperationAction(ISD::CTPOP , MVT::i16 , Expand); setOperationAction(ISD::CTPOP , MVT::i32 , Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::CTPOP , MVT::i64 , Expand); } setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); setOperationAction(ISD::BSWAP , MVT::i16 , Expand); // These should be promoted to a larger select which is supported. setOperationAction(ISD::SELECT , MVT::i1 , Promote); // X86 wants to expand cmov itself. setOperationAction(ISD::SELECT , MVT::i8 , Custom); setOperationAction(ISD::SELECT , MVT::i16 , Custom); setOperationAction(ISD::SELECT , MVT::i32 , Custom); setOperationAction(ISD::SELECT , MVT::f32 , Custom); setOperationAction(ISD::SELECT , MVT::f64 , Custom); setOperationAction(ISD::SELECT , MVT::f80 , Custom); setOperationAction(ISD::SETCC , MVT::i8 , Custom); setOperationAction(ISD::SETCC , MVT::i16 , Custom); setOperationAction(ISD::SETCC , MVT::i32 , Custom); setOperationAction(ISD::SETCC , MVT::f32 , Custom); setOperationAction(ISD::SETCC , MVT::f64 , Custom); setOperationAction(ISD::SETCC , MVT::f80 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::SELECT , MVT::i64 , Custom); setOperationAction(ISD::SETCC , MVT::i64 , Custom); } setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support // SjLj exception handling but a light-weight setjmp/longjmp replacement to // support continuation, user-level threading, and etc.. As a result, no // other SjLj exception interfaces are implemented and please don't build // your own exception handling based on them. // LLVM/Clang supports zero-cost DWARF exception handling. setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); // Darwin ABI issue. setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); setOperationAction(ISD::JumpTable , MVT::i32 , Custom); setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); if (Subtarget->is64Bit()) setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); setOperationAction(ISD::BlockAddress , MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); setOperationAction(ISD::JumpTable , MVT::i64 , Custom); setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); setOperationAction(ISD::BlockAddress , MVT::i64 , Custom); } // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); } if (Subtarget->hasSSE1()) setOperationAction(ISD::PREFETCH , MVT::Other, Legal); setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom); // Expand certain atomics for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) { MVT VT = IntVTs[i]; setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); setOperationAction(ISD::ATOMIC_STORE, VT, Custom); } if (!Subtarget->is64Bit()) { setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom); } if (Subtarget->hasCmpxchg16b()) { setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); } // FIXME - use subtarget debug flags if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() && !Subtarget->isTargetCygMing()) { setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); } setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); if (Subtarget->has64BitPointers()) { // @LOCALMOD setExceptionPointerRegister(X86::RAX); setExceptionSelectorRegister(X86::RDX); } else { setExceptionPointerRegister(X86::EAX); setExceptionSelectorRegister(X86::EDX); } setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); setOperationAction(ISD::TRAP, MVT::Other, Legal); setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); // VASTART needs to be custom lowered to use the VarArgsFrameIndex setOperationAction(ISD::VASTART , MVT::Other, Custom); setOperationAction(ISD::VAEND , MVT::Other, Expand); if (Subtarget->is64Bit()) { setOperationAction(ISD::VAARG , MVT::Other, Custom); setOperationAction(ISD::VACOPY , MVT::Other, Custom); } else { setOperationAction(ISD::VAARG , MVT::Other, Expand); setOperationAction(ISD::VACOPY , MVT::Other, Expand); } setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho()) setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->has64BitPointers() ? // @LOCALMOD MVT::i64 : MVT::i32, Custom); else if (TM.Options.EnableSegmentedStacks) setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->has64BitPointers() ? // @LOCALMOD MVT::i64 : MVT::i32, Custom); else setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->has64BitPointers() ? // @LOCALMOD MVT::i64 : MVT::i32, Expand); if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) { // f32 and f64 use SSE. // Set up the FP register classes. addRegisterClass(MVT::f32, &X86::FR32RegClass); addRegisterClass(MVT::f64, &X86::FR64RegClass); // Use ANDPD to simulate FABS. setOperationAction(ISD::FABS , MVT::f64, Custom); setOperationAction(ISD::FABS , MVT::f32, Custom); // Use XORP to simulate FNEG. setOperationAction(ISD::FNEG , MVT::f64, Custom); setOperationAction(ISD::FNEG , MVT::f32, Custom); // Use ANDPD and ORPD to simulate FCOPYSIGN. setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); // Lower this to FGETSIGNx86 plus an AND. setOperationAction(ISD::FGETSIGN, MVT::i64, Custom); setOperationAction(ISD::FGETSIGN, MVT::i32, Custom); // We don't support sin/cos/fmod setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); // Expand FP immediates into loads from the stack, except for the special // cases we handle. addLegalFPImmediate(APFloat(+0.0)); // xorpd addLegalFPImmediate(APFloat(+0.0f)); // xorps } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) { // Use SSE for f32, x87 for f64. // Set up the FP register classes. addRegisterClass(MVT::f32, &X86::FR32RegClass); addRegisterClass(MVT::f64, &X86::RFP64RegClass); // Use ANDPS to simulate FABS. setOperationAction(ISD::FABS , MVT::f32, Custom); // Use XORP to simulate FNEG. setOperationAction(ISD::FNEG , MVT::f32, Custom); setOperationAction(ISD::UNDEF, MVT::f64, Expand); // Use ANDPS and ORPS to simulate FCOPYSIGN. setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); // We don't support sin/cos/fmod setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); // Special cases we handle for FP constants. addLegalFPImmediate(APFloat(+0.0f)); // xorps addLegalFPImmediate(APFloat(+0.0)); // FLD0 addLegalFPImmediate(APFloat(+1.0)); // FLD1 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS if (!TM.Options.UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); } } else if (!TM.Options.UseSoftFloat) { // f32 and f64 in x87. // Set up the FP register classes. addRegisterClass(MVT::f64, &X86::RFP64RegClass); addRegisterClass(MVT::f32, &X86::RFP32RegClass); setOperationAction(ISD::UNDEF, MVT::f64, Expand); setOperationAction(ISD::UNDEF, MVT::f32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); if (!TM.Options.UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); } addLegalFPImmediate(APFloat(+0.0)); // FLD0 addLegalFPImmediate(APFloat(+1.0)); // FLD1 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS addLegalFPImmediate(APFloat(+0.0f)); // FLD0 addLegalFPImmediate(APFloat(+1.0f)); // FLD1 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS } // We don't support FMA. setOperationAction(ISD::FMA, MVT::f64, Expand); setOperationAction(ISD::FMA, MVT::f32, Expand); // Long double always uses X87. if (!TM.Options.UseSoftFloat) { addRegisterClass(MVT::f80, &X86::RFP80RegClass); setOperationAction(ISD::UNDEF, MVT::f80, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); { APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended); addLegalFPImmediate(TmpFlt); // FLD0 TmpFlt.changeSign(); addLegalFPImmediate(TmpFlt); // FLD0/FCHS bool ignored; APFloat TmpFlt2(+1.0); TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, &ignored); addLegalFPImmediate(TmpFlt2); // FLD1 TmpFlt2.changeSign(); addLegalFPImmediate(TmpFlt2); // FLD1/FCHS } if (!TM.Options.UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f80, Expand); setOperationAction(ISD::FCOS , MVT::f80, Expand); setOperationAction(ISD::FSINCOS, MVT::f80, Expand); } setOperationAction(ISD::FFLOOR, MVT::f80, Expand); setOperationAction(ISD::FCEIL, MVT::f80, Expand); setOperationAction(ISD::FTRUNC, MVT::f80, Expand); setOperationAction(ISD::FRINT, MVT::f80, Expand); setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand); setOperationAction(ISD::FMA, MVT::f80, Expand); } // Always use a library call for pow. setOperationAction(ISD::FPOW , MVT::f32 , Expand); setOperationAction(ISD::FPOW , MVT::f64 , Expand); setOperationAction(ISD::FPOW , MVT::f80 , Expand); setOperationAction(ISD::FLOG, MVT::f80, Expand); setOperationAction(ISD::FLOG2, MVT::f80, Expand); setOperationAction(ISD::FLOG10, MVT::f80, Expand); setOperationAction(ISD::FEXP, MVT::f80, Expand); setOperationAction(ISD::FEXP2, MVT::f80, Expand); // First set operation action for all vector types to either promote // (for widening) or expand (for scalarization). Then we will selectively // turn on ones that can be effectively codegen'd. for (int i = MVT::FIRST_VECTOR_VALUETYPE; i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { MVT VT = (MVT::SimpleValueType)i; setOperationAction(ISD::ADD , VT, Expand); setOperationAction(ISD::SUB , VT, Expand); setOperationAction(ISD::FADD, VT, Expand); setOperationAction(ISD::FNEG, VT, Expand); setOperationAction(ISD::FSUB, VT, Expand); setOperationAction(ISD::MUL , VT, Expand); setOperationAction(ISD::FMUL, VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::FDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::LOAD, VT, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand); setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand); setOperationAction(ISD::FABS, VT, Expand); setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FSINCOS, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FSINCOS, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); setOperationAction(ISD::FMA, VT, Expand); setOperationAction(ISD::FPOWI, VT, Expand); setOperationAction(ISD::FSQRT, VT, Expand); setOperationAction(ISD::FCOPYSIGN, VT, Expand); setOperationAction(ISD::FFLOOR, VT, Expand); setOperationAction(ISD::FCEIL, VT, Expand); setOperationAction(ISD::FTRUNC, VT, Expand); setOperationAction(ISD::FRINT, VT, Expand); setOperationAction(ISD::FNEARBYINT, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Expand); setOperationAction(ISD::UDIVREM, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); setOperationAction(ISD::CTPOP, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::CTLZ, VT, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::SHL, VT, Expand); setOperationAction(ISD::SRA, VT, Expand); setOperationAction(ISD::SRL, VT, Expand); setOperationAction(ISD::ROTL, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); setOperationAction(ISD::BSWAP, VT, Expand); setOperationAction(ISD::SETCC, VT, Expand); setOperationAction(ISD::FLOG, VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FLOG10, VT, Expand); setOperationAction(ISD::FEXP, VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); setOperationAction(ISD::FP_TO_UINT, VT, Expand); setOperationAction(ISD::FP_TO_SINT, VT, Expand); setOperationAction(ISD::UINT_TO_FP, VT, Expand); setOperationAction(ISD::SINT_TO_FP, VT, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand); setOperationAction(ISD::TRUNCATE, VT, Expand); setOperationAction(ISD::SIGN_EXTEND, VT, Expand); setOperationAction(ISD::ZERO_EXTEND, VT, Expand); setOperationAction(ISD::ANY_EXTEND, VT, Expand); setOperationAction(ISD::VSELECT, VT, Expand); for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE; InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) setTruncStoreAction(VT, (MVT::SimpleValueType)InnerVT, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, Expand); setLoadExtAction(ISD::EXTLOAD, VT, Expand); } // FIXME: In order to prevent SSE instructions being expanded to MMX ones // with -msoft-float, disable use of MMX as well. if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) { addRegisterClass(MVT::x86mmx, &X86::VR64RegClass); // No operations on x86mmx supported, everything uses intrinsics. } // MMX-sized vectors (other than x86mmx) are expected to be expanded // into smaller operations. setOperationAction(ISD::MULHS, MVT::v8i8, Expand); setOperationAction(ISD::MULHS, MVT::v4i16, Expand); setOperationAction(ISD::MULHS, MVT::v2i32, Expand); setOperationAction(ISD::MULHS, MVT::v1i64, Expand); setOperationAction(ISD::AND, MVT::v8i8, Expand); setOperationAction(ISD::AND, MVT::v4i16, Expand); setOperationAction(ISD::AND, MVT::v2i32, Expand); setOperationAction(ISD::AND, MVT::v1i64, Expand); setOperationAction(ISD::OR, MVT::v8i8, Expand); setOperationAction(ISD::OR, MVT::v4i16, Expand); setOperationAction(ISD::OR, MVT::v2i32, Expand); setOperationAction(ISD::OR, MVT::v1i64, Expand); setOperationAction(ISD::XOR, MVT::v8i8, Expand); setOperationAction(ISD::XOR, MVT::v4i16, Expand); setOperationAction(ISD::XOR, MVT::v2i32, Expand); setOperationAction(ISD::XOR, MVT::v1i64, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand); setOperationAction(ISD::SELECT, MVT::v8i8, Expand); setOperationAction(ISD::SELECT, MVT::v4i16, Expand); setOperationAction(ISD::SELECT, MVT::v2i32, Expand); setOperationAction(ISD::SELECT, MVT::v1i64, Expand); setOperationAction(ISD::BITCAST, MVT::v8i8, Expand); setOperationAction(ISD::BITCAST, MVT::v4i16, Expand); setOperationAction(ISD::BITCAST, MVT::v2i32, Expand); setOperationAction(ISD::BITCAST, MVT::v1i64, Expand); if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) { addRegisterClass(MVT::v4f32, &X86::VR128RegClass); setOperationAction(ISD::FADD, MVT::v4f32, Legal); setOperationAction(ISD::FSUB, MVT::v4f32, Legal); setOperationAction(ISD::FMUL, MVT::v4f32, Legal); setOperationAction(ISD::FDIV, MVT::v4f32, Legal); setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); setOperationAction(ISD::FNEG, MVT::v4f32, Custom); setOperationAction(ISD::FABS, MVT::v4f32, Custom); setOperationAction(ISD::LOAD, MVT::v4f32, Legal); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::SELECT, MVT::v4f32, Custom); } if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) { addRegisterClass(MVT::v2f64, &X86::VR128RegClass); // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM // registers cannot be used even for integer operations. addRegisterClass(MVT::v16i8, &X86::VR128RegClass); addRegisterClass(MVT::v8i16, &X86::VR128RegClass); addRegisterClass(MVT::v4i32, &X86::VR128RegClass); addRegisterClass(MVT::v2i64, &X86::VR128RegClass); setOperationAction(ISD::ADD, MVT::v16i8, Legal); setOperationAction(ISD::ADD, MVT::v8i16, Legal); setOperationAction(ISD::ADD, MVT::v4i32, Legal); setOperationAction(ISD::ADD, MVT::v2i64, Legal); setOperationAction(ISD::MUL, MVT::v4i32, Custom); setOperationAction(ISD::MUL, MVT::v2i64, Custom); setOperationAction(ISD::SUB, MVT::v16i8, Legal); setOperationAction(ISD::SUB, MVT::v8i16, Legal); setOperationAction(ISD::SUB, MVT::v4i32, Legal); setOperationAction(ISD::SUB, MVT::v2i64, Legal); setOperationAction(ISD::MUL, MVT::v8i16, Legal); setOperationAction(ISD::FADD, MVT::v2f64, Legal); setOperationAction(ISD::FSUB, MVT::v2f64, Legal); setOperationAction(ISD::FMUL, MVT::v2f64, Legal); setOperationAction(ISD::FDIV, MVT::v2f64, Legal); setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); setOperationAction(ISD::FNEG, MVT::v2f64, Custom); setOperationAction(ISD::FABS, MVT::v2f64, Custom); setOperationAction(ISD::SETCC, MVT::v2i64, Custom); setOperationAction(ISD::SETCC, MVT::v16i8, Custom); setOperationAction(ISD::SETCC, MVT::v8i16, Custom); setOperationAction(ISD::SETCC, MVT::v4i32, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); // Custom lower build_vector, vector_shuffle, and extract_vector_elt. for (int i = MVT::v16i8; i != MVT::v2i64; ++i) { MVT VT = (MVT::SimpleValueType)i; // Do not attempt to custom lower non-power-of-2 vectors if (!isPowerOf2_32(VT.getVectorNumElements())) continue; // Do not attempt to custom lower non-128-bit vectors if (!VT.is128BitVector()) continue; setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); } setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); } // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. for (int i = MVT::v16i8; i != MVT::v2i64; ++i) { MVT VT = (MVT::SimpleValueType)i; // Do not attempt to promote non-128-bit vectors if (!VT.is128BitVector()) continue; setOperationAction(ISD::AND, VT, Promote); AddPromotedToType (ISD::AND, VT, MVT::v2i64); setOperationAction(ISD::OR, VT, Promote); AddPromotedToType (ISD::OR, VT, MVT::v2i64); setOperationAction(ISD::XOR, VT, Promote); AddPromotedToType (ISD::XOR, VT, MVT::v2i64); setOperationAction(ISD::LOAD, VT, Promote); AddPromotedToType (ISD::LOAD, VT, MVT::v2i64); setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType (ISD::SELECT, VT, MVT::v2i64); } setTruncStoreAction(MVT::f64, MVT::f32, Expand); // Custom lower v2i64 and v2f64 selects. setOperationAction(ISD::LOAD, MVT::v2f64, Legal); setOperationAction(ISD::LOAD, MVT::v2i64, Legal); setOperationAction(ISD::SELECT, MVT::v2f64, Custom); setOperationAction(ISD::SELECT, MVT::v2i64, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); // As there is no 64-bit GPR available, we need build a special custom // sequence to convert from v2i32 to v2f32. if (!Subtarget->is64Bit()) setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom); setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom); setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, Legal); } if (Subtarget->hasSSE41()) { setOperationAction(ISD::FFLOOR, MVT::f32, Legal); setOperationAction(ISD::FCEIL, MVT::f32, Legal); setOperationAction(ISD::FTRUNC, MVT::f32, Legal); setOperationAction(ISD::FRINT, MVT::f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); setOperationAction(ISD::FFLOOR, MVT::f64, Legal); setOperationAction(ISD::FCEIL, MVT::f64, Legal); setOperationAction(ISD::FTRUNC, MVT::f64, Legal); setOperationAction(ISD::FRINT, MVT::f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); setOperationAction(ISD::FRINT, MVT::v4f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); setOperationAction(ISD::FRINT, MVT::v2f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); // FIXME: Do we need to handle scalar-to-vector here? setOperationAction(ISD::MUL, MVT::v4i32, Legal); setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); setOperationAction(ISD::VSELECT, MVT::v2i64, Legal); setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); // i8 and i16 vectors are custom , because the source register and source // source memory operand types are not the same width. f32 vectors are // custom since the immediate controlling the insert encodes additional // information. setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); // FIXME: these should be Legal but thats only for the case where // the index is constant. For now custom expand to deal with that. if (Subtarget->is64Bit()) { setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); } } if (Subtarget->hasSSE2()) { setOperationAction(ISD::SRL, MVT::v8i16, Custom); setOperationAction(ISD::SRL, MVT::v16i8, Custom); setOperationAction(ISD::SHL, MVT::v8i16, Custom); setOperationAction(ISD::SHL, MVT::v16i8, Custom); setOperationAction(ISD::SRA, MVT::v8i16, Custom); setOperationAction(ISD::SRA, MVT::v16i8, Custom); // In the customized shift lowering, the legal cases in AVX2 will be // recognized. setOperationAction(ISD::SRL, MVT::v2i64, Custom); setOperationAction(ISD::SRL, MVT::v4i32, Custom); setOperationAction(ISD::SHL, MVT::v2i64, Custom); setOperationAction(ISD::SHL, MVT::v4i32, Custom); setOperationAction(ISD::SRA, MVT::v4i32, Custom); setOperationAction(ISD::SDIV, MVT::v8i16, Custom); setOperationAction(ISD::SDIV, MVT::v4i32, Custom); } if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) { addRegisterClass(MVT::v32i8, &X86::VR256RegClass); addRegisterClass(MVT::v16i16, &X86::VR256RegClass); addRegisterClass(MVT::v8i32, &X86::VR256RegClass); addRegisterClass(MVT::v8f32, &X86::VR256RegClass); addRegisterClass(MVT::v4i64, &X86::VR256RegClass); addRegisterClass(MVT::v4f64, &X86::VR256RegClass); setOperationAction(ISD::LOAD, MVT::v8f32, Legal); setOperationAction(ISD::LOAD, MVT::v4f64, Legal); setOperationAction(ISD::LOAD, MVT::v4i64, Legal); setOperationAction(ISD::FADD, MVT::v8f32, Legal); setOperationAction(ISD::FSUB, MVT::v8f32, Legal); setOperationAction(ISD::FMUL, MVT::v8f32, Legal); setOperationAction(ISD::FDIV, MVT::v8f32, Legal); setOperationAction(ISD::FSQRT, MVT::v8f32, Legal); setOperationAction(ISD::FFLOOR, MVT::v8f32, Legal); setOperationAction(ISD::FCEIL, MVT::v8f32, Legal); setOperationAction(ISD::FTRUNC, MVT::v8f32, Legal); setOperationAction(ISD::FRINT, MVT::v8f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v8f32, Legal); setOperationAction(ISD::FNEG, MVT::v8f32, Custom); setOperationAction(ISD::FABS, MVT::v8f32, Custom); setOperationAction(ISD::FADD, MVT::v4f64, Legal); setOperationAction(ISD::FSUB, MVT::v4f64, Legal); setOperationAction(ISD::FMUL, MVT::v4f64, Legal); setOperationAction(ISD::FDIV, MVT::v4f64, Legal); setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); setOperationAction(ISD::FRINT, MVT::v4f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Legal); setOperationAction(ISD::FNEG, MVT::v4f64, Custom); setOperationAction(ISD::FABS, MVT::v4f64, Custom); setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom); setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal); setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal); setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom); setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, Legal); setOperationAction(ISD::SRL, MVT::v16i16, Custom); setOperationAction(ISD::SRL, MVT::v32i8, Custom); setOperationAction(ISD::SHL, MVT::v16i16, Custom); setOperationAction(ISD::SHL, MVT::v32i8, Custom); setOperationAction(ISD::SRA, MVT::v16i16, Custom); setOperationAction(ISD::SRA, MVT::v32i8, Custom); setOperationAction(ISD::SDIV, MVT::v16i16, Custom); setOperationAction(ISD::SETCC, MVT::v32i8, Custom); setOperationAction(ISD::SETCC, MVT::v16i16, Custom); setOperationAction(ISD::SETCC, MVT::v8i32, Custom); setOperationAction(ISD::SETCC, MVT::v4i64, Custom); setOperationAction(ISD::SELECT, MVT::v4f64, Custom); setOperationAction(ISD::SELECT, MVT::v4i64, Custom); setOperationAction(ISD::SELECT, MVT::v8f32, Custom); setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); setOperationAction(ISD::VSELECT, MVT::v4i64, Legal); setOperationAction(ISD::VSELECT, MVT::v8i32, Legal); setOperationAction(ISD::VSELECT, MVT::v8f32, Legal); setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom); setOperationAction(ISD::ANY_EXTEND, MVT::v4i64, Custom); setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Custom); if (Subtarget->hasFMA() || Subtarget->hasFMA4()) { setOperationAction(ISD::FMA, MVT::v8f32, Legal); setOperationAction(ISD::FMA, MVT::v4f64, Legal); setOperationAction(ISD::FMA, MVT::v4f32, Legal); setOperationAction(ISD::FMA, MVT::v2f64, Legal); setOperationAction(ISD::FMA, MVT::f32, Legal); setOperationAction(ISD::FMA, MVT::f64, Legal); } if (Subtarget->hasInt256()) { setOperationAction(ISD::ADD, MVT::v4i64, Legal); setOperationAction(ISD::ADD, MVT::v8i32, Legal); setOperationAction(ISD::ADD, MVT::v16i16, Legal); setOperationAction(ISD::ADD, MVT::v32i8, Legal); setOperationAction(ISD::SUB, MVT::v4i64, Legal); setOperationAction(ISD::SUB, MVT::v8i32, Legal); setOperationAction(ISD::SUB, MVT::v16i16, Legal); setOperationAction(ISD::SUB, MVT::v32i8, Legal); setOperationAction(ISD::MUL, MVT::v4i64, Custom); setOperationAction(ISD::MUL, MVT::v8i32, Legal); setOperationAction(ISD::MUL, MVT::v16i16, Legal); // Don't lower v32i8 because there is no 128-bit byte mul setOperationAction(ISD::VSELECT, MVT::v32i8, Legal); setOperationAction(ISD::SDIV, MVT::v8i32, Custom); } else { setOperationAction(ISD::ADD, MVT::v4i64, Custom); setOperationAction(ISD::ADD, MVT::v8i32, Custom); setOperationAction(ISD::ADD, MVT::v16i16, Custom); setOperationAction(ISD::ADD, MVT::v32i8, Custom); setOperationAction(ISD::SUB, MVT::v4i64, Custom); setOperationAction(ISD::SUB, MVT::v8i32, Custom); setOperationAction(ISD::SUB, MVT::v16i16, Custom); setOperationAction(ISD::SUB, MVT::v32i8, Custom); setOperationAction(ISD::MUL, MVT::v4i64, Custom); setOperationAction(ISD::MUL, MVT::v8i32, Custom); setOperationAction(ISD::MUL, MVT::v16i16, Custom); // Don't lower v32i8 because there is no 128-bit byte mul } // In the customized shift lowering, the legal cases in AVX2 will be // recognized. setOperationAction(ISD::SRL, MVT::v4i64, Custom); setOperationAction(ISD::SRL, MVT::v8i32, Custom); setOperationAction(ISD::SHL, MVT::v4i64, Custom); setOperationAction(ISD::SHL, MVT::v8i32, Custom); setOperationAction(ISD::SRA, MVT::v8i32, Custom); // Custom lower several nodes for 256-bit types. for (int i = MVT::FIRST_VECTOR_VALUETYPE; i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { MVT VT = (MVT::SimpleValueType)i; // Extract subvector is special because the value type // (result) is 128-bit but the source is 256-bit wide. if (VT.is128BitVector()) setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); // Do not attempt to custom lower other non-256-bit vectors if (!VT.is256BitVector()) continue; setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); } // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64. for (int i = MVT::v32i8; i != MVT::v4i64; ++i) { MVT VT = (MVT::SimpleValueType)i; // Do not attempt to promote non-256-bit vectors if (!VT.is256BitVector()) continue; setOperationAction(ISD::AND, VT, Promote); AddPromotedToType (ISD::AND, VT, MVT::v4i64); setOperationAction(ISD::OR, VT, Promote); AddPromotedToType (ISD::OR, VT, MVT::v4i64); setOperationAction(ISD::XOR, VT, Promote); AddPromotedToType (ISD::XOR, VT, MVT::v4i64); setOperationAction(ISD::LOAD, VT, Promote); AddPromotedToType (ISD::LOAD, VT, MVT::v4i64); setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType (ISD::SELECT, VT, MVT::v4i64); } } // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion // of this type with custom code. for (int VT = MVT::FIRST_VECTOR_VALUETYPE; VT != MVT::LAST_VECTOR_VALUETYPE; VT++) { setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom); } // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't // handle type legalization for these operations here. // // FIXME: We really should do custom legalization for addition and // subtraction on x86-32 once PR3203 is fixed. We really can't do much better // than generic legalization for 64-bit multiplication-with-overflow, though. for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) { // Add/Sub/Mul with overflow operations are custom lowered. MVT VT = IntVTs[i]; setOperationAction(ISD::SADDO, VT, Custom); setOperationAction(ISD::UADDO, VT, Custom); setOperationAction(ISD::SSUBO, VT, Custom); setOperationAction(ISD::USUBO, VT, Custom); setOperationAction(ISD::SMULO, VT, Custom); setOperationAction(ISD::UMULO, VT, Custom); } // There are no 8-bit 3-address imul/mul instructions setOperationAction(ISD::SMULO, MVT::i8, Expand); setOperationAction(ISD::UMULO, MVT::i8, Expand); if (!Subtarget->is64Bit()) { // These libcalls are not available in 32-bit. setLibcallName(RTLIB::SHL_I128, 0); setLibcallName(RTLIB::SRL_I128, 0); setLibcallName(RTLIB::SRA_I128, 0); } // Combine sin / cos into one node or libcall if possible. if (Subtarget->hasSinCos()) { setLibcallName(RTLIB::SINCOS_F32, "sincosf"); setLibcallName(RTLIB::SINCOS_F64, "sincos"); if (Subtarget->isTargetDarwin()) { // For MacOSX, we don't want to the normal expansion of a libcall to // sincos. We want to issue a libcall to __sincos_stret to avoid memory // traffic. setOperationAction(ISD::FSINCOS, MVT::f64, Custom); setOperationAction(ISD::FSINCOS, MVT::f32, Custom); } } // We have target-specific dag combine patterns for the following nodes: setTargetDAGCombine(ISD::VECTOR_SHUFFLE); setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); setTargetDAGCombine(ISD::VSELECT); setTargetDAGCombine(ISD::SELECT); setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::FADD); setTargetDAGCombine(ISD::FSUB); setTargetDAGCombine(ISD::FMA); setTargetDAGCombine(ISD::SUB); setTargetDAGCombine(ISD::LOAD); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::ZERO_EXTEND); setTargetDAGCombine(ISD::ANY_EXTEND); setTargetDAGCombine(ISD::SIGN_EXTEND); setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); setTargetDAGCombine(ISD::TRUNCATE); setTargetDAGCombine(ISD::SINT_TO_FP); setTargetDAGCombine(ISD::SETCC); if (Subtarget->is64Bit()) setTargetDAGCombine(ISD::MUL); setTargetDAGCombine(ISD::XOR); // @LOCALMOD-BEGIN if (Subtarget->isTargetNaCl()) { setOperationAction(ISD::NACL_TP_TLS_OFFSET, MVT::i32, Custom); setOperationAction(ISD::NACL_TP_TDB_OFFSET, MVT::i32, Custom); setOperationAction(ISD::NACL_TARGET_ARCH, MVT::i32, Custom); } // @LOCALMOD-END computeRegisterProperties(); // On Darwin, -Os means optimize for size without hurting performance, // do not reduce the limit. MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8; MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4; MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4; setPrefLoopAlignment(4); // 2^4 bytes. // Predictable cmov don't hurt on atom because it's in-order. PredictableSelectIsExpensive = !Subtarget->isAtom(); setPrefFunctionAlignment(4); // 2^4 bytes. } EVT X86TargetLowering::getSetCCResultType(EVT VT) const { if (!VT.isVector()) return MVT::i8; return VT.changeVectorElementTypeToInteger(); } /// getMaxByValAlign - Helper for getByValTypeAlignment to determine /// the desired ByVal argument alignment. static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) { if (MaxAlign == 16) return; if (VectorType *VTy = dyn_cast(Ty)) { if (VTy->getBitWidth() == 128) MaxAlign = 16; } else if (ArrayType *ATy = dyn_cast(Ty)) { unsigned EltAlign = 0; getMaxByValAlign(ATy->getElementType(), EltAlign); if (EltAlign > MaxAlign) MaxAlign = EltAlign; } else if (StructType *STy = dyn_cast(Ty)) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { unsigned EltAlign = 0; getMaxByValAlign(STy->getElementType(i), EltAlign); if (EltAlign > MaxAlign) MaxAlign = EltAlign; if (MaxAlign == 16) break; } } } /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. For X86, aggregates /// that contain SSE vectors are placed at 16-byte boundaries while the rest /// are at 4-byte boundaries. unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const { if (Subtarget->is64Bit()) { // Max of 8 and alignment of type. unsigned TyAlign = TD->getABITypeAlignment(Ty); if (TyAlign > 8) return TyAlign; return 8; } unsigned Align = 4; if (Subtarget->hasSSE1()) getMaxByValAlign(Ty, Align); return Align; } /// getOptimalMemOpType - Returns the target specific optimal type for load /// and store operations as a result of memset, memcpy, and memmove /// lowering. If DstAlign is zero that means it's safe to destination /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it /// means there isn't a need to check it against alignment requirement, /// probably because the source does not need to be loaded. If 'IsMemset' is /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy /// source is constant so it does not need to be loaded. /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. EVT X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const { const Function *F = MF.getFunction(); if ((!IsMemset || ZeroMemset) && !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat)) { if (Size >= 16 && (Subtarget->isUnalignedMemAccessFast() || ((DstAlign == 0 || DstAlign >= 16) && (SrcAlign == 0 || SrcAlign >= 16)))) { if (Size >= 32) { if (Subtarget->hasInt256()) return MVT::v8i32; if (Subtarget->hasFp256()) return MVT::v8f32; } if (Subtarget->hasSSE2()) return MVT::v4i32; if (Subtarget->hasSSE1()) return MVT::v4f32; } else if (!MemcpyStrSrc && Size >= 8 && !Subtarget->is64Bit() && Subtarget->hasSSE2()) { // Do not use f64 to lower memcpy if source is string constant. It's // better to use i32 to avoid the loads. return MVT::f64; } } if (Subtarget->is64Bit() && Size >= 8) return MVT::i64; return MVT::i32; } bool X86TargetLowering::isSafeMemOpType(MVT VT) const { if (VT == MVT::f32) return X86ScalarSSEf32; else if (VT == MVT::f64) return X86ScalarSSEf64; return true; } bool X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const { if (Fast) *Fast = Subtarget->isUnalignedMemAccessFast(); return true; } /// getJumpTableEncoding - Return the entry encoding for a jump table in the /// current function. The returned value is a member of the /// MachineJumpTableInfo::JTEntryKind enum. unsigned X86TargetLowering::getJumpTableEncoding() const { // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF // symbol. if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && Subtarget->isPICStyleGOT()) return MachineJumpTableInfo::EK_Custom32; // Otherwise, use the normal jump table encoding heuristics. return TargetLowering::getJumpTableEncoding(); } const MCExpr * X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned uid,MCContext &Ctx) const{ assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ && Subtarget->isPICStyleGOT()); // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF // entries. return MCSymbolRefExpr::Create(MBB->getSymbol(), MCSymbolRefExpr::VK_GOTOFF, Ctx); } /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC /// jumptable. SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const { if (!Subtarget->is64Bit()) // This doesn't have DebugLoc associated with it, but is not really the // same as a Register. return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy()); return Table; } /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an /// MCExpr. const MCExpr *X86TargetLowering:: getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const { // X86-64 uses RIP relative addressing based on the jump table label. if (Subtarget->isPICStyleRIPRel()) return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); // Otherwise, the reference is relative to the PIC base. return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx); } // FIXME: Why this routine is here? Move to RegInfo! std::pair X86TargetLowering::findRepresentativeClass(MVT VT) const{ const TargetRegisterClass *RRC = 0; uint8_t Cost = 1; switch (VT.SimpleTy) { default: return TargetLowering::findRepresentativeClass(VT); case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: RRC = Subtarget->is64Bit() ? (const TargetRegisterClass*)&X86::GR64RegClass : (const TargetRegisterClass*)&X86::GR32RegClass; break; case MVT::x86mmx: RRC = &X86::VR64RegClass; break; case MVT::f32: case MVT::f64: case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32: case MVT::v4f64: RRC = &X86::VR128RegClass; break; } return std::make_pair(RRC, Cost); } bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const { if (!Subtarget->isTargetLinux()) return false; if (Subtarget->is64Bit()) { // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs: Offset = 0x28; if (getTargetMachine().getCodeModel() == CodeModel::Kernel) AddressSpace = 256; else AddressSpace = 257; } else { // %gs:0x14 on i386 Offset = 0x14; AddressSpace = 256; } return true; } //===----------------------------------------------------------------------===// // Return Value Calling Convention Implementation //===----------------------------------------------------------------------===// #include "X86GenCallingConv.inc" bool X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context); return CCInfo.CheckReturn(Outs, RetCC_X86); } SDValue X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, DebugLoc dl, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo(); SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeReturn(Outs, RetCC_X86); SDValue Flag; SmallVector RetOps; RetOps.push_back(Chain); // Operand #0 = Chain (updated below) // Operand #1 = Bytes To Pop RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), MVT::i16)); // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue ValToCopy = OutVals[i]; EVT ValVT = ValToCopy.getValueType(); // Promote values to the appropriate types if (VA.getLocInfo() == CCValAssign::SExt) ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy); else if (VA.getLocInfo() == CCValAssign::ZExt) ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy); else if (VA.getLocInfo() == CCValAssign::AExt) ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy); else if (VA.getLocInfo() == CCValAssign::BCvt) ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy); // If this is x86-64, and we disabled SSE, we can't return FP values, // or SSE or MMX vectors. if ((ValVT == MVT::f32 || ValVT == MVT::f64 || VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) && (Subtarget->is64Bit() && !Subtarget->hasSSE1())) { report_fatal_error("SSE register return with SSE disabled"); } // Likewise we can't return F64 values with SSE1 only. gcc does so, but // llvm-gcc has never done it right and no one has noticed, so this // should be OK for now. if (ValVT == MVT::f64 && (Subtarget->is64Bit() && !Subtarget->hasSSE2())) report_fatal_error("SSE2 register return with SSE2 disabled"); // Returns in ST0/ST1 are handled specially: these are pushed as operands to // the RET instruction and handled by the FP Stackifier. if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) { // If this is a copy from an xmm register to ST(0), use an FPExtend to // change the value to the FP stack register class. if (isScalarFPTypeInSSEReg(VA.getValVT())) ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); RetOps.push_back(ValToCopy); // Don't emit a copytoreg. continue; } // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 // which is returned in RAX / RDX. if (Subtarget->is64Bit()) { if (ValVT == MVT::x86mmx) { if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy); ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy); // If we don't have SSE2 available, convert to v4f32 so the generated // register is legal. if (!Subtarget->hasSSE2()) ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy); } } } Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } // The x86-64 ABIs require that for returning structs by value we copy // the sret argument into %rax/%eax (depending on ABI) for the return. // Win32 requires us to put the sret argument to %eax as well. // We saved the argument into a virtual register in the entry block, // so now we copy the value out and into %rax/%eax. if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() && (Subtarget->is64Bit() || Subtarget->isTargetWindows())) { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo(); unsigned Reg = FuncInfo->getSRetReturnReg(); assert(Reg && "SRetReturnReg should have been set in LowerFormalArguments()."); SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); unsigned RetValReg = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ? X86::RAX : X86::EAX; // @LOCALMOD-BEGIN if (Subtarget->isTargetNaCl()) { RetValReg = Subtarget->isTarget64BitILP32() ? X86::EAX : X86::RAX; // NaCl 64 uses 32-bit pointers, so there might be some zero-ext needed. SDValue Zext = DAG.getZExtOrTrunc(Val, dl, MVT::i64); Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Zext, Flag); } else { Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag); } // @LOCALMOD-END Flag = Chain.getValue(1); // RAX/EAX now acts like a return value. RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy())); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); return DAG.getNode(X86ISD::RET_FLAG, dl, MVT::Other, &RetOps[0], RetOps.size()); } bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { if (N->getNumValues() != 1) return false; if (!N->hasNUsesOfValue(1, 0)) return false; SDValue TCChain = Chain; SDNode *Copy = *N->use_begin(); if (Copy->getOpcode() == ISD::CopyToReg) { // If the copy has a glue operand, we conservatively assume it isn't safe to // perform a tail call. if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) return false; TCChain = Copy->getOperand(0); } else if (Copy->getOpcode() != ISD::FP_EXTEND) return false; bool HasRet = false; for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); UI != UE; ++UI) { if (UI->getOpcode() != X86ISD::RET_FLAG) return false; HasRet = true; } if (!HasRet) return false; Chain = TCChain; return true; } MVT X86TargetLowering::getTypeForExtArgOrReturn(MVT VT, ISD::NodeType ExtendKind) const { MVT ReturnMVT; // TODO: Is this also valid on 32-bit? if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND) ReturnMVT = MVT::i8; else ReturnMVT = MVT::i32; MVT MinVT = getRegisterType(ReturnMVT); return VT.bitsLT(MinVT) ? MinVT : VT; } /// LowerCallResult - Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. /// SDValue X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { // Assign locations to each value returned by this call. SmallVector RVLocs; bool Is64Bit = Subtarget->is64Bit(); CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC_X86); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; EVT CopyVT = VA.getValVT(); // If this is x86-64, and we disabled SSE, we can't return FP values if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { report_fatal_error("SSE register return with SSE disabled"); } SDValue Val; // If this is a call to a function that returns an fp value on the floating // point stack, we must guarantee the value is popped from the stack, so // a CopyFromReg is not good enough - the copy instruction may be eliminated // if the return value is not used. We use the FpPOP_RETVAL instruction // instead. if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) { // If we prefer to use the value in xmm registers, copy it out as f80 and // use a truncate to move it from fp stack reg to xmm reg. if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80; SDValue Ops[] = { Chain, InFlag }; Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT, MVT::Other, MVT::Glue, Ops), 1); Val = Chain.getValue(0); // Round the f80 to the right size, which also moves it to the appropriate // xmm register. if (CopyVT != VA.getValVT()) Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, // This truncation won't change the value. DAG.getIntPtrConstant(1)); } else { Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), CopyVT, InFlag).getValue(1); Val = Chain.getValue(0); } InFlag = Chain.getValue(2); InVals.push_back(Val); } return Chain; } //===----------------------------------------------------------------------===// // C & StdCall & Fast Calling Convention implementation //===----------------------------------------------------------------------===// // StdCall calling convention seems to be standard for many Windows' API // routines and around. It differs from C calling convention just a little: // callee should clean up the stack, not caller. Symbols should be also // decorated in some fancy way :) It doesn't support any vector arguments. // For info on fast calling convention see Fast Calling Convention (tail call) // implementation LowerX86_32FastCCCallTo. /// CallIsStructReturn - Determines whether a call uses struct return /// semantics. enum StructReturnType { NotStructReturn, RegStructReturn, StackStructReturn }; static StructReturnType callIsStructReturn(const SmallVectorImpl &Outs) { if (Outs.empty()) return NotStructReturn; const ISD::ArgFlagsTy &Flags = Outs[0].Flags; if (!Flags.isSRet()) return NotStructReturn; if (Flags.isInReg()) return RegStructReturn; return StackStructReturn; } /// ArgsAreStructReturn - Determines whether a function uses struct /// return semantics. static StructReturnType argsAreStructReturn(const SmallVectorImpl &Ins) { if (Ins.empty()) return NotStructReturn; const ISD::ArgFlagsTy &Flags = Ins[0].Flags; if (!Flags.isSRet()) return NotStructReturn; if (Flags.isInReg()) return RegStructReturn; return StackStructReturn; } /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified /// by "Src" to address "Dst" with size and alignment information specified by /// the specific parameter attribute. The copy will be passed as a byval /// function parameter. static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, DebugLoc dl) { SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), /*isVolatile*/false, /*AlwaysInline=*/true, MachinePointerInfo(), MachinePointerInfo()); } /// IsTailCallConvention - Return true if the calling convention is one that /// supports tail call optimization. static bool IsTailCallConvention(CallingConv::ID CC) { return (CC == CallingConv::Fast || CC == CallingConv::GHC || CC == CallingConv::HiPE); } bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls) return false; CallSite CS(CI); CallingConv::ID CalleeCC = CS.getCallingConv(); if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) return false; return true; } /// FuncIsMadeTailCallSafe - Return true if the function is being made into /// a tailcall target by changing its ABI. static bool FuncIsMadeTailCallSafe(CallingConv::ID CC, bool GuaranteedTailCallOpt) { return GuaranteedTailCallOpt && IsTailCallConvention(CC); } SDValue X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, const CCValAssign &VA, MachineFrameInfo *MFI, unsigned i) const { // Create the nodes corresponding to a load from this parameter slot. ISD::ArgFlagsTy Flags = Ins[i].Flags; bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv, getTargetMachine().Options.GuaranteedTailCallOpt); bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); EVT ValVT; // If value is passed by pointer we have address passed instead of the value // itself. if (VA.getLocInfo() == CCValAssign::Indirect) ValVT = VA.getLocVT(); else ValVT = VA.getValVT(); // FIXME: For now, all byval parameter objects are marked mutable. This can be // changed with more analysis. // In case of tail call optimization mark all arguments mutable. Since they // could be overwritten by lowering of arguments in case of a tail call. if (Flags.isByVal()) { unsigned Bytes = Flags.getByValSize(); if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable); return DAG.getFrameIndex(FI, getPointerTy()); } else { int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, VA.getLocMemOffset(), isImmutable); SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); return DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo::getFixedStack(FI), false, false, false, 0); } } SDValue X86TargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo(); const Function* Fn = MF.getFunction(); if (Fn->hasExternalLinkage() && Subtarget->isTargetCygMing() && Fn->getName() == "main") FuncInfo->setForceFramePointer(true); MachineFrameInfo *MFI = MF.getFrameInfo(); bool Is64Bit = Subtarget->is64Bit(); bool IsWindows = Subtarget->isTargetWindows(); bool IsWin64 = Subtarget->isTargetWin64(); assert(!(isVarArg && IsTailCallConvention(CallConv)) && "Var args not supported with calling convention fastcc, ghc or hipe"); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), ArgLocs, *DAG.getContext()); // Allocate shadow area for Win64 if (IsWin64) { CCInfo.AllocateStack(32, 8); } CCInfo.AnalyzeFormalArguments(Ins, CC_X86); unsigned LastVal = ~0U; SDValue ArgValue; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; // TODO: If an arg is passed in two places (e.g. reg and stack), skip later // places. assert(VA.getValNo() != LastVal && "Don't support value assigned to multiple locs yet"); (void)LastVal; LastVal = VA.getValNo(); if (VA.isRegLoc()) { EVT RegVT = VA.getLocVT(); const TargetRegisterClass *RC; if (RegVT == MVT::i32) RC = &X86::GR32RegClass; else if (Is64Bit && RegVT == MVT::i64) RC = &X86::GR64RegClass; else if (RegVT == MVT::f32) RC = &X86::FR32RegClass; else if (RegVT == MVT::f64) RC = &X86::FR64RegClass; else if (RegVT.is256BitVector()) RC = &X86::VR256RegClass; else if (RegVT.is128BitVector()) RC = &X86::VR128RegClass; else if (RegVT == MVT::x86mmx) RC = &X86::VR64RegClass; else llvm_unreachable("Unknown argument type!"); unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); // If this is an 8 or 16-bit value, it is really passed promoted to 32 // bits. Insert an assert[sz]ext to capture this, then truncate to the // right size. if (VA.getLocInfo() == CCValAssign::SExt) ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::BCvt) ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); if (VA.isExtInLoc()) { // Handle MMX values passed in XMM regs. if (RegVT.isVector()) ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue); else ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); } } else { assert(VA.isMemLoc()); ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i); } // If value is passed via pointer - do a load. if (VA.getLocInfo() == CCValAssign::Indirect) ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, MachinePointerInfo(), false, false, false, 0); InVals.push_back(ArgValue); } // The x86-64 ABIs require that for returning structs by value we copy // the sret argument into %rax/%eax (depending on ABI) for the return. // Win32 requires us to put the sret argument to %eax as well. // Save the argument into a virtual register so that we can access it // from the return points. if (MF.getFunction()->hasStructRetAttr() && (Subtarget->is64Bit() || Subtarget->isTargetWindows())) { X86MachineFunctionInfo *FuncInfo = MF.getInfo(); unsigned Reg = FuncInfo->getSRetReturnReg(); if (!Reg) { MVT PtrTy = getPointerTy(); Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); FuncInfo->setSRetReturnReg(Reg); } SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); } unsigned StackSize = CCInfo.getNextStackOffset(); // Align stack specially for tail calls. if (FuncIsMadeTailCallSafe(CallConv, MF.getTarget().Options.GuaranteedTailCallOpt)) StackSize = GetAlignedArgumentStackSize(StackSize, DAG); // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (isVarArg) { if (Is64Bit || (CallConv != CallingConv::X86_FastCall && CallConv != CallingConv::X86_ThisCall)) { FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true)); } if (Is64Bit) { unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; // FIXME: We should really autogenerate these arrays static const uint16_t GPR64ArgRegsWin64[] = { X86::RCX, X86::RDX, X86::R8, X86::R9 }; static const uint16_t GPR64ArgRegs64Bit[] = { X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 }; static const uint16_t XMMArgRegs64Bit[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; const uint16_t *GPR64ArgRegs; unsigned NumXMMRegs = 0; if (IsWin64) { // The XMM registers which might contain var arg parameters are shadowed // in their paired GPR. So we only need to save the GPR to their home // slots. TotalNumIntRegs = 4; GPR64ArgRegs = GPR64ArgRegsWin64; } else { TotalNumIntRegs = 6; TotalNumXMMRegs = 8; GPR64ArgRegs = GPR64ArgRegs64Bit; NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs); } unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, TotalNumIntRegs); bool NoImplicitFloatOps = Fn->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat); assert(!(NumXMMRegs && !Subtarget->hasSSE1()) && "SSE register cannot be used when SSE is disabled!"); assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat && NoImplicitFloatOps) && "SSE register cannot be used when SSE is disabled!"); if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1()) // Kernel mode asks for SSE to be disabled, so don't push them // on the stack. TotalNumXMMRegs = 0; if (IsWin64) { const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering(); // Get to the caller-allocated home save location. Add 8 to account // for the return address. int HomeOffset = TFI.getOffsetOfLocalArea() + 8; FuncInfo->setRegSaveFrameIndex( MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false)); // Fixup to set vararg frame on shadow area (4 x i64). if (NumIntRegs < 4) FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); } else { // For X86-64, if there are vararg parameters that are passed via // registers, then we must store them to their spots on the stack so // they may be loaded by deferencing the result of va_next. FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16); FuncInfo->setRegSaveFrameIndex( MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16, false)); } // Store the integer parameter registers. SmallVector MemOps; SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), getPointerTy()); unsigned Offset = FuncInfo->getVarArgsGPOffset(); for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, DAG.getIntPtrConstant(Offset)); unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs], &X86::GR64RegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo::getFixedStack( FuncInfo->getRegSaveFrameIndex(), Offset), false, false, 0); MemOps.push_back(Store); Offset += 8; } if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) { // Now store the XMM (fp + vector) parameter registers. SmallVector SaveXMMOps; SaveXMMOps.push_back(Chain); unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass); SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8); SaveXMMOps.push_back(ALVal); SaveXMMOps.push_back(DAG.getIntPtrConstant( FuncInfo->getRegSaveFrameIndex())); SaveXMMOps.push_back(DAG.getIntPtrConstant( FuncInfo->getVarArgsFPOffset())); for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs], &X86::VR128RegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32); SaveXMMOps.push_back(Val); } MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, MVT::Other, &SaveXMMOps[0], SaveXMMOps.size())); } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0], MemOps.size()); } } // Some CCs need callee pop. if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, MF.getTarget().Options.GuaranteedTailCallOpt)) { FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. } else { FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. // If this is an sret function, the return should pop the hidden pointer. if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows && argsAreStructReturn(Ins) == StackStructReturn) FuncInfo->setBytesToPopOnReturn(4); } if (!Is64Bit) { // RegSaveFrameIndex is X86-64 only. FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); if (CallConv == CallingConv::X86_FastCall || CallConv == CallingConv::X86_ThisCall) // fastcc functions can't have varargs. FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); } FuncInfo->setArgumentStackSize(StackSize); return Chain; } SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, DebugLoc dl, SelectionDAG &DAG, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { unsigned LocMemOffset = VA.getLocMemOffset(); SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); if (Flags.isByVal()) return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); return DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo::getStack(LocMemOffset), false, false, 0); } /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call /// optimization is performed and it is required. SDValue X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall, bool Is64Bit, int FPDiff, DebugLoc dl) const { // Adjust the Return address stack slot. EVT VT = getPointerTy(); OutRetAddr = getReturnAddressFrameIndex(DAG); // Load the "old" Return address. OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(), false, false, false, 0); return SDValue(OutRetAddr.getNode(), 1); } /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call /// optimization is performed and it is required (FPDiff!=0). static SDValue EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT, unsigned SlotSize, int FPDiff, DebugLoc dl) { // Store the return address to the appropriate stack slot. if (!FPDiff) return Chain; // Calculate the new stack slot for the return address. int NewReturnAddrFI = MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false); SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT); Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, MachinePointerInfo::getFixedStack(NewReturnAddrFI), false, false, 0); return Chain; } SDValue X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; DebugLoc &dl = CLI.DL; SmallVector &Outs = CLI.Outs; SmallVector &OutVals = CLI.OutVals; SmallVector &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; CallingConv::ID CallConv = CLI.CallConv; bool &isTailCall = CLI.IsTailCall; bool isVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); bool Is64Bit = Subtarget->is64Bit(); bool IsWin64 = Subtarget->isTargetWin64(); bool IsWindows = Subtarget->isTargetWindows(); StructReturnType SR = callIsStructReturn(Outs); bool IsSibcall = false; if (MF.getTarget().Options.DisableTailCalls) isTailCall = false; if (isTailCall) { // Check if it's really possible to do a tail call. isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, SR != NotStructReturn, MF.getFunction()->hasStructRetAttr(), CLI.RetTy, Outs, OutVals, Ins, DAG); // Sibcalls are automatically detected tailcalls which do not require // ABI changes. if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall) IsSibcall = true; if (isTailCall) ++NumTailCalls; } assert(!(isVarArg && IsTailCallConvention(CallConv)) && "Var args not supported with calling convention fastcc, ghc or hipe"); // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), ArgLocs, *DAG.getContext()); // Allocate shadow area for Win64 if (IsWin64) { CCInfo.AllocateStack(32, 8); } CCInfo.AnalyzeCallOperands(Outs, CC_X86); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); if (IsSibcall) // This is a sibcall. The memory operands are available in caller's // own caller's stack. NumBytes = 0; else if (getTargetMachine().Options.GuaranteedTailCallOpt && IsTailCallConvention(CallConv)) NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); int FPDiff = 0; if (isTailCall && !IsSibcall) { // Lower arguments at fp - stackoffset + fpdiff. X86MachineFunctionInfo *X86Info = MF.getInfo(); unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn(); FPDiff = NumBytesCallerPushed - NumBytes; // Set the delta of movement of the returnaddr stackslot. // But only set if delta is greater than previous delta. if (FPDiff < X86Info->getTCReturnAddrDelta()) X86Info->setTCReturnAddrDelta(FPDiff); } if (!IsSibcall) Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); SDValue RetAddrFrIdx; // Load return address for tail calls. if (isTailCall && FPDiff) Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit, FPDiff, dl); SmallVector, 8> RegsToPass; SmallVector MemOpChains; SDValue StackPtr; // Walk the register/memloc assignments, inserting copies/loads. In the case // of tail call optimization arguments are handle later. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; EVT RegVT = VA.getLocVT(); SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; bool isByVal = Flags.isByVal(); // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); break; case CCValAssign::AExt: if (RegVT.is128BitVector()) { // Special case: passing MMX values in XMM registers. Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); } else Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg); break; case CCValAssign::Indirect: { // Store the argument. SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); int FI = cast(SpillSlot)->getIndex(); Chain = DAG.getStore(Chain, dl, Arg, SpillSlot, MachinePointerInfo::getFixedStack(FI), false, false, 0); Arg = SpillSlot; break; } } if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); if (isVarArg && IsWin64) { // Win64 ABI requires argument XMM reg to be copied to the corresponding // shadow reg if callee is a varargs function. unsigned ShadowReg = 0; switch (VA.getLocReg()) { case X86::XMM0: ShadowReg = X86::RCX; break; case X86::XMM1: ShadowReg = X86::RDX; break; case X86::XMM2: ShadowReg = X86::R8; break; case X86::XMM3: ShadowReg = X86::R9; break; } if (ShadowReg) RegsToPass.push_back(std::make_pair(ShadowReg, Arg)); } } else if (!IsSibcall && (!isTailCall || isByVal)) { assert(VA.isMemLoc()); if (StackPtr.getNode() == 0) StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, // @LOCALMOD getPointerTy()); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, dl, DAG, VA, Flags)); } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); if (Subtarget->isPICStyleGOT()) { // ELF / PIC requires GOT in the EBX register before function calls via PLT // GOT pointer. if (!isTailCall) { RegsToPass.push_back(std::make_pair(unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy()))); } else { // If we are tail calling and generating PIC/GOT style code load the // address of the callee into ECX. The value in ecx is used as target of // the tail jump. This is done to circumvent the ebx/callee-saved problem // for tail calls on PIC/GOT architectures. Normally we would just put the // address of GOT into ebx and then call target@PLT. But for tail calls // ebx would be restored (since ebx is callee saved) before jumping to the // target@PLT. // Note: The actual moving to ECX is done further down. GlobalAddressSDNode *G = dyn_cast(Callee); if (G && !G->getGlobal()->hasHiddenVisibility() && !G->getGlobal()->hasProtectedVisibility()) Callee = LowerGlobalAddress(Callee, DAG); else if (isa(Callee)) Callee = LowerExternalSymbol(Callee, DAG); } } if (Is64Bit && isVarArg && !IsWin64) { // From AMD64 ABI document: // For calls that may call functions that use varargs or stdargs // (prototype-less calls or calls to functions containing ellipsis (...) in // the declaration) %al is used as hidden argument to specify the number // of SSE registers used. The contents of %al do not need to match exactly // the number of registers, but must be an ubound on the number of SSE // registers used and is in the range 0 - 8 inclusive. // Count the number of XMM registers allocated. static const uint16_t XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); assert((Subtarget->hasSSE1() || !NumXMMRegs) && "SSE registers cannot be used when SSE is disabled"); RegsToPass.push_back(std::make_pair(unsigned(X86::AL), DAG.getConstant(NumXMMRegs, MVT::i8))); } // For tail calls lower the arguments to the 'real' stack slot. if (isTailCall) { // Force all the incoming stack arguments to be loaded from the stack // before any new outgoing arguments are stored to the stack, because the // outgoing stack slots may alias the incoming argument stack slots, and // the alias isn't otherwise explicit. This is slightly more conservative // than necessary, because it means that each store effectively depends // on every argument instead of just those arguments it would clobber. SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); SmallVector MemOpChains2; SDValue FIN; int FI = 0; if (getTargetMachine().Options.GuaranteedTailCallOpt) { for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (VA.isRegLoc()) continue; assert(VA.isMemLoc()); SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; // Create frame index. int32_t Offset = VA.getLocMemOffset()+FPDiff; uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); FIN = DAG.getFrameIndex(FI, getPointerTy()); if (Flags.isByVal()) { // Copy relative to framepointer. SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); if (StackPtr.getNode() == 0) StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, // @LOCALMOD getPointerTy()); Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source); MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, ArgChain, Flags, DAG, dl)); } else { // Store relative to framepointer. MemOpChains2.push_back( DAG.getStore(ArgChain, dl, Arg, FIN, MachinePointerInfo::getFixedStack(FI), false, false, 0)); } } } if (!MemOpChains2.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains2[0], MemOpChains2.size()); // Store the return address to the appropriate stack slot. Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, getPointerTy(), RegInfo->getSlotSize(), FPDiff, dl); } // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into registers. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } if (getTargetMachine().getCodeModel() == CodeModel::Large) { assert(Is64Bit && "Large code model is only legal in 64-bit mode."); // In the 64-bit large code model, we have to make all calls // through a register, since the call instruction's 32-bit // pc-relative offset may not be large enough to hold the whole // address. } else if (GlobalAddressSDNode *G = dyn_cast(Callee)) { // If the callee is a GlobalAddress node (quite common, every direct call // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack // it. // We should use extra load for direct calls to dllimported functions in // non-JIT mode. const GlobalValue *GV = G->getGlobal(); if (!GV->hasDLLImportLinkage()) { unsigned char OpFlags = 0; bool ExtraLoad = false; unsigned WrapperKind = ISD::DELETED_NODE; // On ELF targets, in both X86-64 and X86-32 mode, direct calls to // external symbols most go through the PLT in PIC mode. If the symbol // has hidden or protected visibility, or if it is static or local, then // we don't need to use the PLT - we can directly call it. if (Subtarget->isTargetELF() && getTargetMachine().getRelocationModel() == Reloc::PIC_ && GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { OpFlags = X86II::MO_PLT; } else if (Subtarget->isPICStyleStubAny() && (GV->isDeclaration() || GV->isWeakForLinker()) && (!Subtarget->getTargetTriple().isMacOSX() || Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. OpFlags = X86II::MO_DARWIN_STUB; } else if (Subtarget->isPICStyleRIPRel() && isa(GV) && cast(GV)->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::NonLazyBind)) { // If the function is marked as non-lazy, generate an indirect call // which loads from the GOT directly. This avoids runtime overhead // at the cost of eager binding (and one extra byte of encoding). OpFlags = X86II::MO_GOTPCREL; WrapperKind = X86ISD::WrapperRIP; ExtraLoad = true; } Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), G->getOffset(), OpFlags); // Add a wrapper if needed. if (WrapperKind != ISD::DELETED_NODE) Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee); // Add extra indirection if needed. if (ExtraLoad) Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee, MachinePointerInfo::getGOT(), false, false, false, 0); } } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) { unsigned char OpFlags = 0; // On ELF targets, in either X86-64 or X86-32 mode, direct calls to // external symbols should go through the PLT. if (Subtarget->isTargetELF() && getTargetMachine().getRelocationModel() == Reloc::PIC_) { OpFlags = X86II::MO_PLT; } else if (Subtarget->isPICStyleStubAny() && (!Subtarget->getTargetTriple().isMacOSX() || Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. OpFlags = X86II::MO_DARWIN_STUB; } Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), OpFlags); } // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector Ops; if (!IsSibcall && isTailCall) { Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(0, true), InFlag); InFlag = Chain.getValue(1); } Ops.push_back(Chain); Ops.push_back(Callee); if (isTailCall) Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // Add a register mask operand representing the call-preserved registers. const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (InFlag.getNode()) Ops.push_back(InFlag); if (isTailCall) { // We used to do: //// If this is the first return lowered for this function, add the regs //// to the liveout set for the function. // This isn't right, although it's probably harmless on x86; liveouts // should be computed from returns not tail calls. Consider a void // function making a tail call to a function returning int. return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); } Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. unsigned NumBytesForCalleeToPush; if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, getTargetMachine().Options.GuaranteedTailCallOpt)) NumBytesForCalleeToPush = NumBytes; // Callee pops everything else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows && SR == StackStructReturn) // If this is a call to a struct-return function, the callee // pops the hidden struct pointer, so we have to push it back. // This is common for Darwin/X86, Linux & Mingw32 targets. // For MSVC Win32 targets, the caller pops the hidden struct pointer. NumBytesForCalleeToPush = 4; else NumBytesForCalleeToPush = 0; // Callee pops nothing. // Returns a flag for retval copy to use. if (!IsSibcall) { Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(NumBytesForCalleeToPush, true), InFlag); InFlag = Chain.getValue(1); } // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals); } //===----------------------------------------------------------------------===// // Fast Calling Convention (tail call) implementation //===----------------------------------------------------------------------===// // Like std call, callee cleans arguments, convention except that ECX is // reserved for storing the tail called function address. Only 2 registers are // free for argument passing (inreg). Tail call optimization is performed // provided: // * tailcallopt is enabled // * caller/callee are fastcc // On X86_64 architecture with GOT-style position independent code only local // (within module) calls are supported at the moment. // To keep the stack aligned according to platform abi the function // GetAlignedArgumentStackSize ensures that argument delta is always multiples // of stack alignment. (Dynamic linkers need this - darwin's dyld for example) // If a tail called function callee has more arguments than the caller the // caller needs to make sure that there is room to move the RETADDR to. This is // achieved by reserving an area the size of the argument delta right after the // original REtADDR, but before the saved framepointer or the spilled registers // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) // stack layout: // arg1 // arg2 // RETADDR // [ new RETADDR // move area ] // (possible EBP) // ESI // EDI // local1 .. /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned /// for a 16 byte align requirement. unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG) const { MachineFunction &MF = DAG.getMachineFunction(); const TargetMachine &TM = MF.getTarget(); const TargetFrameLowering &TFI = *TM.getFrameLowering(); unsigned StackAlignment = TFI.getStackAlignment(); uint64_t AlignMask = StackAlignment - 1; int64_t Offset = StackSize; unsigned SlotSize = RegInfo->getSlotSize(); if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { // Number smaller than 12 so just add the difference. Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); } else { // Mask out lower bits, add stackalignment once plus the 12 bytes. Offset = ((~AlignMask) & Offset) + StackAlignment + (StackAlignment-SlotSize); } return Offset; } /// MatchingStackOffset - Return true if the given stack call argument is /// already available in the same position (relatively) of the caller's /// incoming argument stack. static bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, const X86InstrInfo *TII) { unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; int FI = INT_MAX; if (Arg.getOpcode() == ISD::CopyFromReg) { unsigned VR = cast(Arg.getOperand(1))->getReg(); if (!TargetRegisterInfo::isVirtualRegister(VR)) return false; MachineInstr *Def = MRI->getVRegDef(VR); if (!Def) return false; if (!Flags.isByVal()) { if (!TII->isLoadFromStackSlot(Def, FI)) return false; } else { unsigned Opcode = Def->getOpcode(); if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) && Def->getOperand(1).isFI()) { FI = Def->getOperand(1).getIndex(); Bytes = Flags.getByValSize(); } else return false; } } else if (LoadSDNode *Ld = dyn_cast(Arg)) { if (Flags.isByVal()) // ByVal argument is passed in as a pointer but it's now being // dereferenced. e.g. // define @foo(%struct.X* %A) { // tail call @bar(%struct.X* byval %A) // } return false; SDValue Ptr = Ld->getBasePtr(); FrameIndexSDNode *FINode = dyn_cast(Ptr); if (!FINode) return false; FI = FINode->getIndex(); } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) { FrameIndexSDNode *FINode = cast(Arg); FI = FINode->getIndex(); Bytes = Flags.getByValSize(); } else return false; assert(FI != INT_MAX); if (!MFI->isFixedObjectIndex(FI)) return false; return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG &DAG) const { if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) return false; // If -tailcallopt is specified, make fastcc functions tail-callable. const MachineFunction &MF = DAG.getMachineFunction(); const Function *CallerF = DAG.getMachineFunction().getFunction(); // If the function return type is x86_fp80 and the callee return type is not, // then the FP_EXTEND of the call result is not a nop. It's not safe to // perform a tailcall optimization here. if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty()) return false; CallingConv::ID CallerCC = CallerF->getCallingConv(); bool CCMatch = CallerCC == CalleeCC; if (getTargetMachine().Options.GuaranteedTailCallOpt) { if (IsTailCallConvention(CalleeCC) && CCMatch) return true; return false; } // Look for obvious safe cases to perform tail call optimization that do not // require ABI changes. This is what gcc calls sibcall. // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to // emit a special epilogue. if (RegInfo->needsStackRealignment(MF)) return false; // Also avoid sibcall optimization if either caller or callee uses struct // return semantics. if (isCalleeStructRet || isCallerStructRet) return false; // An stdcall caller is expected to clean up its arguments; the callee // isn't going to do that. if (!CCMatch && CallerCC == CallingConv::X86_StdCall) return false; // Do not sibcall optimize vararg calls unless all arguments are passed via // registers. if (isVarArg && !Outs.empty()) { // Optimizing for varargs on Win64 is unlikely to be safe without // additional testing. if (Subtarget->isTargetWin64()) return false; SmallVector ArgLocs; CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CC_X86); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) if (!ArgLocs[i].isRegLoc()) return false; } // If the call result is in ST0 / ST1, it needs to be popped off the x87 // stack. Therefore, if it's not used by the call it is not safe to optimize // this into a sibcall. bool Unused = false; for (unsigned i = 0, e = Ins.size(); i != e; ++i) { if (!Ins[i].Used) { Unused = true; break; } } if (Unused) { SmallVector RVLocs; CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC_X86); for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) return false; } } // If the calling conventions do not match, then we'd better make sure the // results are returned in the same way as what the caller expects. if (!CCMatch) { SmallVector RVLocs1; CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), getTargetMachine(), RVLocs1, *DAG.getContext()); CCInfo1.AnalyzeCallResult(Ins, RetCC_X86); SmallVector RVLocs2; CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), getTargetMachine(), RVLocs2, *DAG.getContext()); CCInfo2.AnalyzeCallResult(Ins, RetCC_X86); if (RVLocs1.size() != RVLocs2.size()) return false; for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) return false; if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) return false; if (RVLocs1[i].isRegLoc()) { if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) return false; } else { if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) return false; } } } // If the callee takes no arguments then go on to check the results of the // call. if (!Outs.empty()) { // Check if stack adjustment is needed. For now, do not do this if any // argument is passed on the stack. SmallVector ArgLocs; CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); // Allocate shadow area for Win64 if (Subtarget->isTargetWin64()) { CCInfo.AllocateStack(32, 8); } CCInfo.AnalyzeCallOperands(Outs, CC_X86); if (CCInfo.getNextStackOffset()) { MachineFunction &MF = DAG.getMachineFunction(); if (MF.getInfo()->getBytesToPopOnReturn()) return false; // Check if the arguments are already laid out in the right way as // the caller's fixed stack objects. MachineFrameInfo *MFI = MF.getFrameInfo(); const MachineRegisterInfo *MRI = &MF.getRegInfo(); const X86InstrInfo *TII = ((const X86TargetMachine&)getTargetMachine()).getInstrInfo(); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; if (VA.getLocInfo() == CCValAssign::Indirect) return false; if (!VA.isRegLoc()) { if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, MFI, MRI, TII)) return false; } } } // If the tailcall address may be in a register, then make sure it's // possible to register allocate for it. In 32-bit, the call address can // only target EAX, EDX, or ECX since the tail call must be scheduled after // callee-saved registers are restored. These happen to be the same // registers used to pass 'inreg' arguments so watch out for those. if (!Subtarget->is64Bit() && ((!isa(Callee) && !isa(Callee)) || getTargetMachine().getRelocationModel() == Reloc::PIC_)) { unsigned NumInRegs = 0; // In PIC we need an extra register to formulate the address computation // for the callee. unsigned MaxInRegs = (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (!VA.isRegLoc()) continue; unsigned Reg = VA.getLocReg(); switch (Reg) { default: break; case X86::EAX: case X86::EDX: case X86::ECX: if (++NumInRegs == MaxInRegs) return false; break; } } } } return true; } FastISel * X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const { return X86::createFastISel(funcInfo, libInfo); } //===----------------------------------------------------------------------===// // Other Lowering Hooks //===----------------------------------------------------------------------===// static bool MayFoldLoad(SDValue Op) { return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode()); } static bool MayFoldIntoStore(SDValue Op) { return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin()); } static bool isTargetShuffle(unsigned Opcode) { switch(Opcode) { default: return false; case X86ISD::PSHUFD: case X86ISD::PSHUFHW: case X86ISD::PSHUFLW: case X86ISD::SHUFP: case X86ISD::PALIGNR: case X86ISD::MOVLHPS: case X86ISD::MOVLHPD: case X86ISD::MOVHLPS: case X86ISD::MOVLPS: case X86ISD::MOVLPD: case X86ISD::MOVSHDUP: case X86ISD::MOVSLDUP: case X86ISD::MOVDDUP: case X86ISD::MOVSS: case X86ISD::MOVSD: case X86ISD::UNPCKL: case X86ISD::UNPCKH: case X86ISD::VPERMILP: case X86ISD::VPERM2X128: case X86ISD::VPERMI: return true; } } static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, SDValue V1, SelectionDAG &DAG) { switch(Opc) { default: llvm_unreachable("Unknown x86 shuffle node"); case X86ISD::MOVSHDUP: case X86ISD::MOVSLDUP: case X86ISD::MOVDDUP: return DAG.getNode(Opc, dl, VT, V1); } } static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, SDValue V1, unsigned TargetMask, SelectionDAG &DAG) { switch(Opc) { default: llvm_unreachable("Unknown x86 shuffle node"); case X86ISD::PSHUFD: case X86ISD::PSHUFHW: case X86ISD::PSHUFLW: case X86ISD::VPERMILP: case X86ISD::VPERMI: return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8)); } } static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) { switch(Opc) { default: llvm_unreachable("Unknown x86 shuffle node"); case X86ISD::PALIGNR: case X86ISD::SHUFP: case X86ISD::VPERM2X128: return DAG.getNode(Opc, dl, VT, V1, V2, DAG.getConstant(TargetMask, MVT::i8)); } } static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG) { switch(Opc) { default: llvm_unreachable("Unknown x86 shuffle node"); case X86ISD::MOVLHPS: case X86ISD::MOVLHPD: case X86ISD::MOVHLPS: case X86ISD::MOVLPS: case X86ISD::MOVLPD: case X86ISD::MOVSS: case X86ISD::MOVSD: case X86ISD::UNPCKL: case X86ISD::UNPCKH: return DAG.getNode(Opc, dl, VT, V1, V2); } } SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo(); int ReturnAddrIndex = FuncInfo->getRAIndex(); if (ReturnAddrIndex == 0) { // Set up a frame object for the return address. unsigned SlotSize = RegInfo->getSlotSize(); ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, false); FuncInfo->setRAIndex(ReturnAddrIndex); } return DAG.getFrameIndex(ReturnAddrIndex, // @LOCALMOD Subtarget->is64Bit() ? MVT::i64 : MVT::i32); } bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, bool hasSymbolicDisplacement) { // Offset should fit into 32 bit immediate field. if (!isInt<32>(Offset)) return false; // If we don't have a symbolic displacement - we don't have any extra // restrictions. if (!hasSymbolicDisplacement) return true; // FIXME: Some tweaks might be needed for medium code model. if (M != CodeModel::Small && M != CodeModel::Kernel) return false; // For small code model we assume that latest object is 16MB before end of 31 // bits boundary. We may also accept pretty large negative constants knowing // that all objects are in the positive half of address space. if (M == CodeModel::Small && Offset < 16*1024*1024) return true; // For kernel code model we know that all object resist in the negative half // of 32bits address space. We may not accept negative offsets, since they may // be just off and we may accept pretty large positive ones. if (M == CodeModel::Kernel && Offset > 0) return true; return false; } /// isCalleePop - Determines whether the callee is required to pop its /// own arguments. Callee pop is necessary to support tail calls. bool X86::isCalleePop(CallingConv::ID CallingConv, bool is64Bit, bool IsVarArg, bool TailCallOpt) { if (IsVarArg) return false; switch (CallingConv) { default: return false; case CallingConv::X86_StdCall: return !is64Bit; case CallingConv::X86_FastCall: return !is64Bit; case CallingConv::X86_ThisCall: return !is64Bit; case CallingConv::Fast: return TailCallOpt; case CallingConv::GHC: return TailCallOpt; case CallingConv::HiPE: return TailCallOpt; } } /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86 /// specific condition code, returning the condition code and the LHS/RHS of the /// comparison to make. static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP, SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { if (!isFP) { if (ConstantSDNode *RHSC = dyn_cast(RHS)) { if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { // X > -1 -> X == 0, jump !sign. RHS = DAG.getConstant(0, RHS.getValueType()); return X86::COND_NS; } if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { // X < 0 -> X == 0, jump on sign. return X86::COND_S; } if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { // X < 1 -> X <= 0 RHS = DAG.getConstant(0, RHS.getValueType()); return X86::COND_LE; } } switch (SetCCOpcode) { default: llvm_unreachable("Invalid integer condition!"); case ISD::SETEQ: return X86::COND_E; case ISD::SETGT: return X86::COND_G; case ISD::SETGE: return X86::COND_GE; case ISD::SETLT: return X86::COND_L; case ISD::SETLE: return X86::COND_LE; case ISD::SETNE: return X86::COND_NE; case ISD::SETULT: return X86::COND_B; case ISD::SETUGT: return X86::COND_A; case ISD::SETULE: return X86::COND_BE; case ISD::SETUGE: return X86::COND_AE; } } // First determine if it is required or is profitable to flip the operands. // If LHS is a foldable load, but RHS is not, flip the condition. if (ISD::isNON_EXTLoad(LHS.getNode()) && !ISD::isNON_EXTLoad(RHS.getNode())) { SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); std::swap(LHS, RHS); } switch (SetCCOpcode) { default: break; case ISD::SETOLT: case ISD::SETOLE: case ISD::SETUGT: case ISD::SETUGE: std::swap(LHS, RHS); break; } // On a floating point condition, the flags are set as follows: // ZF PF CF op // 0 | 0 | 0 | X > Y // 0 | 0 | 1 | X < Y // 1 | 0 | 0 | X == Y // 1 | 1 | 1 | unordered switch (SetCCOpcode) { default: llvm_unreachable("Condcode should be pre-legalized away"); case ISD::SETUEQ: case ISD::SETEQ: return X86::COND_E; case ISD::SETOLT: // flipped case ISD::SETOGT: case ISD::SETGT: return X86::COND_A; case ISD::SETOLE: // flipped case ISD::SETOGE: case ISD::SETGE: return X86::COND_AE; case ISD::SETUGT: // flipped case ISD::SETULT: case ISD::SETLT: return X86::COND_B; case ISD::SETUGE: // flipped case ISD::SETULE: case ISD::SETLE: return X86::COND_BE; case ISD::SETONE: case ISD::SETNE: return X86::COND_NE; case ISD::SETUO: return X86::COND_P; case ISD::SETO: return X86::COND_NP; case ISD::SETOEQ: case ISD::SETUNE: return X86::COND_INVALID; } } /// hasFPCMov - is there a floating point cmov for the specific X86 condition /// code. Current x86 isa includes the following FP cmov instructions: /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. static bool hasFPCMov(unsigned X86CC) { switch (X86CC) { default: return false; case X86::COND_B: case X86::COND_BE: case X86::COND_E: case X86::COND_P: case X86::COND_A: case X86::COND_AE: case X86::COND_NE: case X86::COND_NP: return true; } } /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) return true; } return false; } /// isUndefOrInRange - Return true if Val is undef or if its value falls within /// the specified range (L, H]. static bool isUndefOrInRange(int Val, int Low, int Hi) { return (Val < 0) || (Val >= Low && Val < Hi); } /// isUndefOrEqual - Val is either less than zero (undef) or equal to the /// specified value. static bool isUndefOrEqual(int Val, int CmpVal) { return (Val < 0 || Val == CmpVal); } /// isSequentialOrUndefInRange - Return true if every element in Mask, beginning /// from position Pos and ending in Pos+Size, falls within the specified /// sequential range (L, L+Pos]. or is undef. static bool isSequentialOrUndefInRange(ArrayRef Mask, unsigned Pos, unsigned Size, int Low) { for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) if (!isUndefOrEqual(Mask[i], Low)) return false; return true; } /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference /// the second operand. static bool isPSHUFDMask(ArrayRef Mask, EVT VT) { if (VT == MVT::v4f32 || VT == MVT::v4i32 ) return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4); if (VT == MVT::v2f64 || VT == MVT::v2i64) return (Mask[0] < 2 && Mask[1] < 2); return false; } /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that /// is suitable for input to PSHUFHW. static bool isPSHUFHWMask(ArrayRef Mask, EVT VT, bool HasInt256) { if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16)) return false; // Lower quadword copied in order or undef. if (!isSequentialOrUndefInRange(Mask, 0, 4, 0)) return false; // Upper quadword shuffled. for (unsigned i = 4; i != 8; ++i) if (!isUndefOrInRange(Mask[i], 4, 8)) return false; if (VT == MVT::v16i16) { // Lower quadword copied in order or undef. if (!isSequentialOrUndefInRange(Mask, 8, 4, 8)) return false; // Upper quadword shuffled. for (unsigned i = 12; i != 16; ++i) if (!isUndefOrInRange(Mask[i], 12, 16)) return false; } return true; } /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that /// is suitable for input to PSHUFLW. static bool isPSHUFLWMask(ArrayRef Mask, EVT VT, bool HasInt256) { if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16)) return false; // Upper quadword copied in order. if (!isSequentialOrUndefInRange(Mask, 4, 4, 4)) return false; // Lower quadword shuffled. for (unsigned i = 0; i != 4; ++i) if (!isUndefOrInRange(Mask[i], 0, 4)) return false; if (VT == MVT::v16i16) { // Upper quadword copied in order. if (!isSequentialOrUndefInRange(Mask, 12, 4, 12)) return false; // Lower quadword shuffled. for (unsigned i = 8; i != 12; ++i) if (!isUndefOrInRange(Mask[i], 8, 12)) return false; } return true; } /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that /// is suitable for input to PALIGNR. static bool isPALIGNRMask(ArrayRef Mask, EVT VT, const X86Subtarget *Subtarget) { if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) || (VT.is256BitVector() && !Subtarget->hasInt256())) return false; unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; // Do not handle 64-bit element shuffles with palignr. if (NumLaneElts == 2) return false; for (unsigned l = 0; l != NumElts; l+=NumLaneElts) { unsigned i; for (i = 0; i != NumLaneElts; ++i) { if (Mask[i+l] >= 0) break; } // Lane is all undef, go to next lane if (i == NumLaneElts) continue; int Start = Mask[i+l]; // Make sure its in this lane in one of the sources if (!isUndefOrInRange(Start, l, l+NumLaneElts) && !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts)) return false; // If not lane 0, then we must match lane 0 if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l)) return false; // Correct second source to be contiguous with first source if (Start >= (int)NumElts) Start -= NumElts - NumLaneElts; // Make sure we're shifting in the right direction. if (Start <= (int)(i+l)) return false; Start -= i; // Check the rest of the elements to see if they are consecutive. for (++i; i != NumLaneElts; ++i) { int Idx = Mask[i+l]; // Make sure its in this lane if (!isUndefOrInRange(Idx, l, l+NumLaneElts) && !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts)) return false; // If not lane 0, then we must match lane 0 if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l)) return false; if (Idx >= (int)NumElts) Idx -= NumElts - NumLaneElts; if (!isUndefOrEqual(Idx, Start+i)) return false; } } return true; } /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming /// the two vector operands have swapped position. static void CommuteVectorShuffleMask(SmallVectorImpl &Mask, unsigned NumElems) { for (unsigned i = 0; i != NumElems; ++i) { int idx = Mask[i]; if (idx < 0) continue; else if (idx < (int)NumElems) Mask[i] = idx + NumElems; else Mask[i] = idx - NumElems; } } /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to 128/256-bit /// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be /// reverse of what x86 shuffles want. static bool isSHUFPMask(ArrayRef Mask, EVT VT, bool HasFp256, bool Commuted = false) { if (!HasFp256 && VT.is256BitVector()) return false; unsigned NumElems = VT.getVectorNumElements(); unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElems = NumElems/NumLanes; if (NumLaneElems != 2 && NumLaneElems != 4) return false; // VSHUFPSY divides the resulting vector into 4 chunks. // The sources are also splitted into 4 chunks, and each destination // chunk must come from a different source chunk. // // SRC1 => X7 X6 X5 X4 X3 X2 X1 X0 // SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9 // // DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4, // Y3..Y0, Y3..Y0, X3..X0, X3..X0 // // VSHUFPDY divides the resulting vector into 4 chunks. // The sources are also splitted into 4 chunks, and each destination // chunk must come from a different source chunk. // // SRC1 => X3 X2 X1 X0 // SRC2 => Y3 Y2 Y1 Y0 // // DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0 // unsigned HalfLaneElems = NumLaneElems/2; for (unsigned l = 0; l != NumElems; l += NumLaneElems) { for (unsigned i = 0; i != NumLaneElems; ++i) { int Idx = Mask[i+l]; unsigned RngStart = l + ((Commuted == (i Mask, EVT VT) { if (!VT.is128BitVector()) return false; unsigned NumElems = VT.getVectorNumElements(); if (NumElems != 4) return false; // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 return isUndefOrEqual(Mask[0], 6) && isUndefOrEqual(Mask[1], 7) && isUndefOrEqual(Mask[2], 2) && isUndefOrEqual(Mask[3], 3); } /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, /// <2, 3, 2, 3> static bool isMOVHLPS_v_undef_Mask(ArrayRef Mask, EVT VT) { if (!VT.is128BitVector()) return false; unsigned NumElems = VT.getVectorNumElements(); if (NumElems != 4) return false; return isUndefOrEqual(Mask[0], 2) && isUndefOrEqual(Mask[1], 3) && isUndefOrEqual(Mask[2], 2) && isUndefOrEqual(Mask[3], 3); } /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. static bool isMOVLPMask(ArrayRef Mask, EVT VT) { if (!VT.is128BitVector()) return false; unsigned NumElems = VT.getVectorNumElements(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0, e = NumElems/2; i != e; ++i) if (!isUndefOrEqual(Mask[i], i + NumElems)) return false; for (unsigned i = NumElems/2, e = NumElems; i != e; ++i) if (!isUndefOrEqual(Mask[i], i)) return false; return true; } /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVLHPS. static bool isMOVLHPSMask(ArrayRef Mask, EVT VT) { if (!VT.is128BitVector()) return false; unsigned NumElems = VT.getVectorNumElements(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0, e = NumElems/2; i != e; ++i) if (!isUndefOrEqual(Mask[i], i)) return false; for (unsigned i = 0, e = NumElems/2; i != e; ++i) if (!isUndefOrEqual(Mask[i + e], i + NumElems)) return false; return true; } // // Some special combinations that can be optimized. // static SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { MVT VT = SVOp->getValueType(0).getSimpleVT(); DebugLoc dl = SVOp->getDebugLoc(); if (VT != MVT::v8i32 && VT != MVT::v8f32) return SDValue(); ArrayRef Mask = SVOp->getMask(); // These are the special masks that may be optimized. static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14}; static const int MaskToOptimizeOdd[] = {1, 9, 3, 11, 5, 13, 7, 15}; bool MatchEvenMask = true; bool MatchOddMask = true; for (int i=0; i<8; ++i) { if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i])) MatchEvenMask = false; if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i])) MatchOddMask = false; } if (!MatchEvenMask && !MatchOddMask) return SDValue(); SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT); SDValue Op0 = SVOp->getOperand(0); SDValue Op1 = SVOp->getOperand(1); if (MatchEvenMask) { // Shift the second operand right to 32 bits. static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 }; Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask); } else { // Shift the first operand left to 32 bits. static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 }; Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask); } static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15}; return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask); } /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKL. static bool isUNPCKLMask(ArrayRef Mask, EVT VT, bool HasInt256, bool V2IsSplat = false) { unsigned NumElts = VT.getVectorNumElements(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for unpckh"); if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 && (!HasInt256 || (NumElts != 16 && NumElts != 32))) return false; // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate // independently on 128-bit lanes. unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; for (unsigned l = 0; l != NumLanes; ++l) { for (unsigned i = l*NumLaneElts, j = l*NumLaneElts; i != (l+1)*NumLaneElts; i += 2, ++j) { int BitI = Mask[i]; int BitI1 = Mask[i+1]; if (!isUndefOrEqual(BitI, j)) return false; if (V2IsSplat) { if (!isUndefOrEqual(BitI1, NumElts)) return false; } else { if (!isUndefOrEqual(BitI1, j + NumElts)) return false; } } } return true; } /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKH. static bool isUNPCKHMask(ArrayRef Mask, EVT VT, bool HasInt256, bool V2IsSplat = false) { unsigned NumElts = VT.getVectorNumElements(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for unpckh"); if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 && (!HasInt256 || (NumElts != 16 && NumElts != 32))) return false; // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate // independently on 128-bit lanes. unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; for (unsigned l = 0; l != NumLanes; ++l) { for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2; i != (l+1)*NumLaneElts; i += 2, ++j) { int BitI = Mask[i]; int BitI1 = Mask[i+1]; if (!isUndefOrEqual(BitI, j)) return false; if (V2IsSplat) { if (isUndefOrEqual(BitI1, NumElts)) return false; } else { if (!isUndefOrEqual(BitI1, j+NumElts)) return false; } } } return true; } /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, /// <0, 0, 1, 1> static bool isUNPCKL_v_undef_Mask(ArrayRef Mask, EVT VT, bool HasInt256) { unsigned NumElts = VT.getVectorNumElements(); bool Is256BitVec = VT.is256BitVector(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for unpckh"); if (Is256BitVec && NumElts != 4 && NumElts != 8 && (!HasInt256 || (NumElts != 16 && NumElts != 32))) return false; // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern // FIXME: Need a better way to get rid of this, there's no latency difference // between UNPCKLPD and MOVDDUP, the later should always be checked first and // the former later. We should also remove the "_undef" special mask. if (NumElts == 4 && Is256BitVec) return false; // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate // independently on 128-bit lanes. unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; for (unsigned l = 0; l != NumLanes; ++l) { for (unsigned i = l*NumLaneElts, j = l*NumLaneElts; i != (l+1)*NumLaneElts; i += 2, ++j) { int BitI = Mask[i]; int BitI1 = Mask[i+1]; if (!isUndefOrEqual(BitI, j)) return false; if (!isUndefOrEqual(BitI1, j)) return false; } } return true; } /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, /// <2, 2, 3, 3> static bool isUNPCKH_v_undef_Mask(ArrayRef Mask, EVT VT, bool HasInt256) { unsigned NumElts = VT.getVectorNumElements(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for unpckh"); if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 && (!HasInt256 || (NumElts != 16 && NumElts != 32))) return false; // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate // independently on 128-bit lanes. unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; for (unsigned l = 0; l != NumLanes; ++l) { for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2; i != (l+1)*NumLaneElts; i += 2, ++j) { int BitI = Mask[i]; int BitI1 = Mask[i+1]; if (!isUndefOrEqual(BitI, j)) return false; if (!isUndefOrEqual(BitI1, j)) return false; } } return true; } /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSS, /// MOVSD, and MOVD, i.e. setting the lowest element. static bool isMOVLMask(ArrayRef Mask, EVT VT) { if (VT.getVectorElementType().getSizeInBits() < 32) return false; if (!VT.is128BitVector()) return false; unsigned NumElts = VT.getVectorNumElements(); if (!isUndefOrEqual(Mask[0], NumElts)) return false; for (unsigned i = 1; i != NumElts; ++i) if (!isUndefOrEqual(Mask[i], i)) return false; return true; } /// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered /// as permutations between 128-bit chunks or halves. As an example: this /// shuffle bellow: /// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15> /// The first half comes from the second half of V1 and the second half from the /// the second half of V2. static bool isVPERM2X128Mask(ArrayRef Mask, EVT VT, bool HasFp256) { if (!HasFp256 || !VT.is256BitVector()) return false; // The shuffle result is divided into half A and half B. In total the two // sources have 4 halves, namely: C, D, E, F. The final values of A and // B must come from C, D, E or F. unsigned HalfSize = VT.getVectorNumElements()/2; bool MatchA = false, MatchB = false; // Check if A comes from one of C, D, E, F. for (unsigned Half = 0; Half != 4; ++Half) { if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) { MatchA = true; break; } } // Check if B comes from one of C, D, E, F. for (unsigned Half = 0; Half != 4; ++Half) { if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) { MatchB = true; break; } } return MatchA && MatchB; } /// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle /// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions. static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) { MVT VT = SVOp->getValueType(0).getSimpleVT(); unsigned HalfSize = VT.getVectorNumElements()/2; unsigned FstHalf = 0, SndHalf = 0; for (unsigned i = 0; i < HalfSize; ++i) { if (SVOp->getMaskElt(i) > 0) { FstHalf = SVOp->getMaskElt(i)/HalfSize; break; } } for (unsigned i = HalfSize; i < HalfSize*2; ++i) { if (SVOp->getMaskElt(i) > 0) { SndHalf = SVOp->getMaskElt(i)/HalfSize; break; } } return (FstHalf | (SndHalf << 4)); } /// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to VPERMILPD*. /// Note that VPERMIL mask matching is different depending whether theunderlying /// type is 32 or 64. In the VPERMILPS the high half of the mask should point /// to the same elements of the low, but to the higher half of the source. /// In VPERMILPD the two lanes could be shuffled independently of each other /// with the same restriction that lanes can't be crossed. Also handles PSHUFDY. static bool isVPERMILPMask(ArrayRef Mask, EVT VT, bool HasFp256) { if (!HasFp256) return false; unsigned NumElts = VT.getVectorNumElements(); // Only match 256-bit with 32/64-bit types if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8)) return false; unsigned NumLanes = VT.getSizeInBits()/128; unsigned LaneSize = NumElts/NumLanes; for (unsigned l = 0; l != NumElts; l += LaneSize) { for (unsigned i = 0; i != LaneSize; ++i) { if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize)) return false; if (NumElts != 8 || l == 0) continue; // VPERMILPS handling if (Mask[i] < 0) continue; if (!isUndefOrEqual(Mask[i+l], Mask[i]+l)) return false; } } return true; } /// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse /// of what x86 movss want. X86 movs requires the lowest element to be lowest /// element of vector 2 and the other elements to come from vector 1 in order. static bool isCommutedMOVLMask(ArrayRef Mask, EVT VT, bool V2IsSplat = false, bool V2IsUndef = false) { if (!VT.is128BitVector()) return false; unsigned NumOps = VT.getVectorNumElements(); if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) return false; if (!isUndefOrEqual(Mask[0], 0)) return false; for (unsigned i = 1; i != NumOps; ++i) if (!(isUndefOrEqual(Mask[i], i+NumOps) || (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) || (V2IsSplat && isUndefOrEqual(Mask[i], NumOps)))) return false; return true; } /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7> static bool isMOVSHDUPMask(ArrayRef Mask, EVT VT, const X86Subtarget *Subtarget) { if (!Subtarget->hasSSE3()) return false; unsigned NumElems = VT.getVectorNumElements(); if ((VT.is128BitVector() && NumElems != 4) || (VT.is256BitVector() && NumElems != 8)) return false; // "i+1" is the value the indexed mask element must have for (unsigned i = 0; i != NumElems; i += 2) if (!isUndefOrEqual(Mask[i], i+1) || !isUndefOrEqual(Mask[i+1], i+1)) return false; return true; } /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6> static bool isMOVSLDUPMask(ArrayRef Mask, EVT VT, const X86Subtarget *Subtarget) { if (!Subtarget->hasSSE3()) return false; unsigned NumElems = VT.getVectorNumElements(); if ((VT.is128BitVector() && NumElems != 4) || (VT.is256BitVector() && NumElems != 8)) return false; // "i" is the value the indexed mask element must have for (unsigned i = 0; i != NumElems; i += 2) if (!isUndefOrEqual(Mask[i], i) || !isUndefOrEqual(Mask[i+1], i)) return false; return true; } /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to 256-bit /// version of MOVDDUP. static bool isMOVDDUPYMask(ArrayRef Mask, EVT VT, bool HasFp256) { if (!HasFp256 || !VT.is256BitVector()) return false; unsigned NumElts = VT.getVectorNumElements(); if (NumElts != 4) return false; for (unsigned i = 0; i != NumElts/2; ++i) if (!isUndefOrEqual(Mask[i], 0)) return false; for (unsigned i = NumElts/2; i != NumElts; ++i) if (!isUndefOrEqual(Mask[i], NumElts/2)) return false; return true; } /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to 128-bit /// version of MOVDDUP. static bool isMOVDDUPMask(ArrayRef Mask, EVT VT) { if (!VT.is128BitVector()) return false; unsigned e = VT.getVectorNumElements() / 2; for (unsigned i = 0; i != e; ++i) if (!isUndefOrEqual(Mask[i], i)) return false; for (unsigned i = 0; i != e; ++i) if (!isUndefOrEqual(Mask[e+i], i)) return false; return true; } /// isVEXTRACTF128Index - Return true if the specified /// EXTRACT_SUBVECTOR operand specifies a vector extract that is /// suitable for input to VEXTRACTF128. bool X86::isVEXTRACTF128Index(SDNode *N) { if (!isa(N->getOperand(1).getNode())) return false; // The index should be aligned on a 128-bit boundary. uint64_t Index = cast(N->getOperand(1).getNode())->getZExtValue(); MVT VT = N->getValueType(0).getSimpleVT(); unsigned ElSize = VT.getVectorElementType().getSizeInBits(); bool Result = (Index * ElSize) % 128 == 0; return Result; } /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR /// operand specifies a subvector insert that is suitable for input to /// VINSERTF128. bool X86::isVINSERTF128Index(SDNode *N) { if (!isa(N->getOperand(2).getNode())) return false; // The index should be aligned on a 128-bit boundary. uint64_t Index = cast(N->getOperand(2).getNode())->getZExtValue(); MVT VT = N->getValueType(0).getSimpleVT(); unsigned ElSize = VT.getVectorElementType().getSizeInBits(); bool Result = (Index * ElSize) % 128 == 0; return Result; } /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions. /// Handles 128-bit and 256-bit. static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) { MVT VT = N->getValueType(0).getSimpleVT(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for PSHUF/SHUFP"); // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate // independently on 128-bit lanes. unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; assert((NumLaneElts == 2 || NumLaneElts == 4) && "Only supports 2 or 4 elements per lane"); unsigned Shift = (NumLaneElts == 4) ? 1 : 0; unsigned Mask = 0; for (unsigned i = 0; i != NumElts; ++i) { int Elt = N->getMaskElt(i); if (Elt < 0) continue; Elt &= NumLaneElts - 1; unsigned ShAmt = (i << Shift) % 8; Mask |= Elt << ShAmt; } return Mask; } /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction. static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) { MVT VT = N->getValueType(0).getSimpleVT(); assert((VT == MVT::v8i16 || VT == MVT::v16i16) && "Unsupported vector type for PSHUFHW"); unsigned NumElts = VT.getVectorNumElements(); unsigned Mask = 0; for (unsigned l = 0; l != NumElts; l += 8) { // 8 nodes per lane, but we only care about the last 4. for (unsigned i = 0; i < 4; ++i) { int Elt = N->getMaskElt(l+i+4); if (Elt < 0) continue; Elt &= 0x3; // only 2-bits. Mask |= Elt << (i * 2); } } return Mask; } /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction. static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) { MVT VT = N->getValueType(0).getSimpleVT(); assert((VT == MVT::v8i16 || VT == MVT::v16i16) && "Unsupported vector type for PSHUFHW"); unsigned NumElts = VT.getVectorNumElements(); unsigned Mask = 0; for (unsigned l = 0; l != NumElts; l += 8) { // 8 nodes per lane, but we only care about the first 4. for (unsigned i = 0; i < 4; ++i) { int Elt = N->getMaskElt(l+i); if (Elt < 0) continue; Elt &= 0x3; // only 2-bits Mask |= Elt << (i * 2); } } return Mask; } /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction. static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) { MVT VT = SVOp->getValueType(0).getSimpleVT(); unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3; unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; int Val = 0; unsigned i; for (i = 0; i != NumElts; ++i) { Val = SVOp->getMaskElt(i); if (Val >= 0) break; } if (Val >= (int)NumElts) Val -= NumElts - NumLaneElts; assert(Val - i > 0 && "PALIGNR imm should be positive"); return (Val - i) * EltSize; } /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128 /// instructions. unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) { if (!isa(N->getOperand(1).getNode())) llvm_unreachable("Illegal extract subvector for VEXTRACTF128"); uint64_t Index = cast(N->getOperand(1).getNode())->getZExtValue(); MVT VecVT = N->getOperand(0).getValueType().getSimpleVT(); MVT ElVT = VecVT.getVectorElementType(); unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits(); return Index / NumElemsPerChunk; } /// getInsertVINSERTF128Immediate - Return the appropriate immediate /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128 /// instructions. unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) { if (!isa(N->getOperand(2).getNode())) llvm_unreachable("Illegal insert subvector for VINSERTF128"); uint64_t Index = cast(N->getOperand(2).getNode())->getZExtValue(); MVT VecVT = N->getValueType(0).getSimpleVT(); MVT ElVT = VecVT.getVectorElementType(); unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits(); return Index / NumElemsPerChunk; } /// getShuffleCLImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions. /// Handles 256-bit. static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) { MVT VT = N->getValueType(0).getSimpleVT(); unsigned NumElts = VT.getVectorNumElements(); assert((VT.is256BitVector() && NumElts == 4) && "Unsupported vector type for VPERMQ/VPERMPD"); unsigned Mask = 0; for (unsigned i = 0; i != NumElts; ++i) { int Elt = N->getMaskElt(i); if (Elt < 0) continue; Mask |= Elt << (i*2); } return Mask; } /// isZeroNode - Returns true if Elt is a constant zero or a floating point /// constant +0.0. bool X86::isZeroNode(SDValue Elt) { if (ConstantSDNode *CN = dyn_cast(Elt)) return CN->isNullValue(); if (ConstantFPSDNode *CFP = dyn_cast(Elt)) return CFP->getValueAPF().isPosZero(); return false; } /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in /// their permute mask. static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { MVT VT = SVOp->getValueType(0).getSimpleVT(); unsigned NumElems = VT.getVectorNumElements(); SmallVector MaskVec; for (unsigned i = 0; i != NumElems; ++i) { int Idx = SVOp->getMaskElt(i); if (Idx >= 0) { if (Idx < (int)NumElems) Idx += NumElems; else Idx -= NumElems; } MaskVec.push_back(Idx); } return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1), SVOp->getOperand(0), &MaskVec[0]); } /// ShouldXformToMOVHLPS - Return true if the node should be transformed to /// match movhlps. The lower half elements should come from upper half of /// V1 (and in order), and the upper half elements should come from the upper /// half of V2 (and in order). static bool ShouldXformToMOVHLPS(ArrayRef Mask, EVT VT) { if (!VT.is128BitVector()) return false; if (VT.getVectorNumElements() != 4) return false; for (unsigned i = 0, e = 2; i != e; ++i) if (!isUndefOrEqual(Mask[i], i+2)) return false; for (unsigned i = 2; i != 4; ++i) if (!isUndefOrEqual(Mask[i], i+4)) return false; return true; } /// isScalarLoadToVector - Returns true if the node is a scalar load that /// is promoted to a vector. It also returns the LoadSDNode by reference if /// required. static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) { if (N->getOpcode() != ISD::SCALAR_TO_VECTOR) return false; N = N->getOperand(0).getNode(); if (!ISD::isNON_EXTLoad(N)) return false; if (LD) *LD = cast(N); return true; } // Test whether the given value is a vector value which will be legalized // into a load. static bool WillBeConstantPoolLoad(SDNode *N) { if (N->getOpcode() != ISD::BUILD_VECTOR) return false; // Check for any non-constant elements. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) switch (N->getOperand(i).getNode()->getOpcode()) { case ISD::UNDEF: case ISD::ConstantFP: case ISD::Constant: break; default: return false; } // Vectors of all-zeros and all-ones are materialized with special // instructions rather than being loaded. return !ISD::isBuildVectorAllZeros(N) && !ISD::isBuildVectorAllOnes(N); } /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to /// match movlp{s|d}. The lower half elements should come from lower half of /// V1 (and in order), and the upper half elements should come from the upper /// half of V2 (and in order). And since V1 will become the source of the /// MOVLP, it must be either a vector load or a scalar load to vector. static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, ArrayRef Mask, EVT VT) { if (!VT.is128BitVector()) return false; if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) return false; // Is V2 is a vector load, don't do this transformation. We will try to use // load folding shufps op. if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2)) return false; unsigned NumElems = VT.getVectorNumElements(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0, e = NumElems/2; i != e; ++i) if (!isUndefOrEqual(Mask[i], i)) return false; for (unsigned i = NumElems/2, e = NumElems; i != e; ++i) if (!isUndefOrEqual(Mask[i], i+NumElems)) return false; return true; } /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are /// all the same. static bool isSplatVector(SDNode *N) { if (N->getOpcode() != ISD::BUILD_VECTOR) return false; SDValue SplatValue = N->getOperand(0); for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) if (N->getOperand(i) != SplatValue) return false; return true; } /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved /// to an zero vector. /// FIXME: move to dag combiner / method on ShuffleVectorSDNode static bool isZeroShuffle(ShuffleVectorSDNode *N) { SDValue V1 = N->getOperand(0); SDValue V2 = N->getOperand(1); unsigned NumElems = N->getValueType(0).getVectorNumElements(); for (unsigned i = 0; i != NumElems; ++i) { int Idx = N->getMaskElt(i); if (Idx >= (int)NumElems) { unsigned Opc = V2.getOpcode(); if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) continue; if (Opc != ISD::BUILD_VECTOR || !X86::isZeroNode(V2.getOperand(Idx-NumElems))) return false; } else if (Idx >= 0) { unsigned Opc = V1.getOpcode(); if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode())) continue; if (Opc != ISD::BUILD_VECTOR || !X86::isZeroNode(V1.getOperand(Idx))) return false; } } return true; } /// getZeroVector - Returns a vector of specified type with all zero elements. /// static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget, SelectionDAG &DAG, DebugLoc dl) { assert(VT.isVector() && "Expected a vector type"); // Always build SSE zero vectors as <4 x i32> bitcasted // to their dest type. This ensures they get CSE'd. SDValue Vec; if (VT.is128BitVector()) { // SSE if (Subtarget->hasSSE2()) { // SSE2 SDValue Cst = DAG.getTargetConstant(0, MVT::i32); Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); } else { // SSE1 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); } } else if (VT.is256BitVector()) { // AVX if (Subtarget->hasInt256()) { // AVX2 SDValue Cst = DAG.getTargetConstant(0, MVT::i32); SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, array_lengthof(Ops)); } else { // 256-bit logic and arithmetic instructions in AVX are all // floating-point, no support for integer ops. Emit fp zeroed vectors. SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, array_lengthof(Ops)); } } else llvm_unreachable("Unexpected vector type"); return DAG.getNode(ISD::BITCAST, dl, VT, Vec); } /// getOnesVector - Returns a vector of specified type with all bits set. /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately. /// Then bitcast to their original type, ensuring they get CSE'd. static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG, DebugLoc dl) { assert(VT.isVector() && "Expected a vector type"); SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); SDValue Vec; if (VT.is256BitVector()) { if (HasInt256) { // AVX2 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, array_lengthof(Ops)); } else { // AVX Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl); } } else if (VT.is128BitVector()) { Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); } else llvm_unreachable("Unexpected vector type"); return DAG.getNode(ISD::BITCAST, dl, VT, Vec); } /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements /// that point to V2 points to its first element. static void NormalizeMask(SmallVectorImpl &Mask, unsigned NumElems) { for (unsigned i = 0; i != NumElems; ++i) { if (Mask[i] > (int)NumElems) { Mask[i] = NumElems; } } } /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd /// operation of specified width. static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, SDValue V2) { unsigned NumElems = VT.getVectorNumElements(); SmallVector Mask; Mask.push_back(NumElems); for (unsigned i = 1; i != NumElems; ++i) Mask.push_back(i); return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); } /// getUnpackl - Returns a vector_shuffle node for an unpackl operation. static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, SDValue V2) { unsigned NumElems = VT.getVectorNumElements(); SmallVector Mask; for (unsigned i = 0, e = NumElems/2; i != e; ++i) { Mask.push_back(i); Mask.push_back(i + NumElems); } return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); } /// getUnpackh - Returns a vector_shuffle node for an unpackh operation. static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, SDValue V2) { unsigned NumElems = VT.getVectorNumElements(); SmallVector Mask; for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) { Mask.push_back(i + Half); Mask.push_back(i + NumElems + Half); } return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); } // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by // a generic shuffle instruction because the target has no such instructions. // Generate shuffles which repeat i16 and i8 several times until they can be // represented by v4f32 and then be manipulated by target suported shuffles. static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) { EVT VT = V.getValueType(); int NumElems = VT.getVectorNumElements(); DebugLoc dl = V.getDebugLoc(); while (NumElems > 4) { if (EltNo < NumElems/2) { V = getUnpackl(DAG, dl, VT, V, V); } else { V = getUnpackh(DAG, dl, VT, V, V); EltNo -= NumElems/2; } NumElems >>= 1; } return V; } /// getLegalSplat - Generate a legal splat with supported x86 shuffles static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) { EVT VT = V.getValueType(); DebugLoc dl = V.getDebugLoc(); if (VT.is128BitVector()) { V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V); int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo }; V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32), &SplatMask[0]); } else if (VT.is256BitVector()) { // To use VPERMILPS to splat scalars, the second half of indicies must // refer to the higher part, which is a duplication of the lower one, // because VPERMILPS can only handle in-lane permutations. int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo, EltNo+4, EltNo+4, EltNo+4, EltNo+4 }; V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V); V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32), &SplatMask[0]); } else llvm_unreachable("Vector size not supported"); return DAG.getNode(ISD::BITCAST, dl, VT, V); } /// PromoteSplat - Splat is promoted to target supported vector shuffles. static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) { EVT SrcVT = SV->getValueType(0); SDValue V1 = SV->getOperand(0); DebugLoc dl = SV->getDebugLoc(); int EltNo = SV->getSplatIndex(); int NumElems = SrcVT.getVectorNumElements(); bool Is256BitVec = SrcVT.is256BitVector(); assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) && "Unknown how to promote splat for type"); // Extract the 128-bit part containing the splat element and update // the splat element index when it refers to the higher register. if (Is256BitVec) { V1 = Extract128BitVector(V1, EltNo, DAG, dl); if (EltNo >= NumElems/2) EltNo -= NumElems/2; } // All i16 and i8 vector types can't be used directly by a generic shuffle // instruction because the target has no such instruction. Generate shuffles // which repeat i16 and i8 several times until they fit in i32, and then can // be manipulated by target suported shuffles. EVT EltVT = SrcVT.getVectorElementType(); if (EltVT == MVT::i8 || EltVT == MVT::i16) V1 = PromoteSplati8i16(V1, DAG, EltNo); // Recreate the 256-bit vector and place the same 128-bit vector // into the low and high part. This is necessary because we want // to use VPERM* to shuffle the vectors if (Is256BitVec) { V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1); } return getLegalSplat(DAG, V1, EltNo); } /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified /// vector of zero or undef vector. This produces a shuffle where the low /// element of V2 is swizzled into the zero/undef vector, landing at element /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, bool IsZero, const X86Subtarget *Subtarget, SelectionDAG &DAG) { EVT VT = V2.getValueType(); SDValue V1 = IsZero ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT); unsigned NumElems = VT.getVectorNumElements(); SmallVector MaskVec; for (unsigned i = 0; i != NumElems; ++i) // If this is the insertion idx, put the low elt of V2 here. MaskVec.push_back(i == Idx ? NumElems : i); return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]); } /// getTargetShuffleMask - Calculates the shuffle mask corresponding to the /// target specific opcode. Returns true if the Mask could be calculated. /// Sets IsUnary to true if only uses one source. static bool getTargetShuffleMask(SDNode *N, MVT VT, SmallVectorImpl &Mask, bool &IsUnary) { unsigned NumElems = VT.getVectorNumElements(); SDValue ImmN; IsUnary = false; switch(N->getOpcode()) { case X86ISD::SHUFP: ImmN = N->getOperand(N->getNumOperands()-1); DecodeSHUFPMask(VT, cast(ImmN)->getZExtValue(), Mask); break; case X86ISD::UNPCKH: DecodeUNPCKHMask(VT, Mask); break; case X86ISD::UNPCKL: DecodeUNPCKLMask(VT, Mask); break; case X86ISD::MOVHLPS: DecodeMOVHLPSMask(NumElems, Mask); break; case X86ISD::MOVLHPS: DecodeMOVLHPSMask(NumElems, Mask); break; case X86ISD::PALIGNR: ImmN = N->getOperand(N->getNumOperands()-1); DecodePALIGNRMask(VT, cast(ImmN)->getZExtValue(), Mask); break; case X86ISD::PSHUFD: case X86ISD::VPERMILP: ImmN = N->getOperand(N->getNumOperands()-1); DecodePSHUFMask(VT, cast(ImmN)->getZExtValue(), Mask); IsUnary = true; break; case X86ISD::PSHUFHW: ImmN = N->getOperand(N->getNumOperands()-1); DecodePSHUFHWMask(VT, cast(ImmN)->getZExtValue(), Mask); IsUnary = true; break; case X86ISD::PSHUFLW: ImmN = N->getOperand(N->getNumOperands()-1); DecodePSHUFLWMask(VT, cast(ImmN)->getZExtValue(), Mask); IsUnary = true; break; case X86ISD::VPERMI: ImmN = N->getOperand(N->getNumOperands()-1); DecodeVPERMMask(cast(ImmN)->getZExtValue(), Mask); IsUnary = true; break; case X86ISD::MOVSS: case X86ISD::MOVSD: { // The index 0 always comes from the first element of the second source, // this is why MOVSS and MOVSD are used in the first place. The other // elements come from the other positions of the first source vector Mask.push_back(NumElems); for (unsigned i = 1; i != NumElems; ++i) { Mask.push_back(i); } break; } case X86ISD::VPERM2X128: ImmN = N->getOperand(N->getNumOperands()-1); DecodeVPERM2X128Mask(VT, cast(ImmN)->getZExtValue(), Mask); if (Mask.empty()) return false; break; case X86ISD::MOVDDUP: case X86ISD::MOVLHPD: case X86ISD::MOVLPD: case X86ISD::MOVLPS: case X86ISD::MOVSHDUP: case X86ISD::MOVSLDUP: // Not yet implemented return false; default: llvm_unreachable("unknown target shuffle node"); } return true; } /// getShuffleScalarElt - Returns the scalar element that will make up the ith /// element of the result of the vector shuffle. static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG, unsigned Depth) { if (Depth == 6) return SDValue(); // Limit search depth. SDValue V = SDValue(N, 0); EVT VT = V.getValueType(); unsigned Opcode = V.getOpcode(); // Recurse into ISD::VECTOR_SHUFFLE node to find scalars. if (const ShuffleVectorSDNode *SV = dyn_cast(N)) { int Elt = SV->getMaskElt(Index); if (Elt < 0) return DAG.getUNDEF(VT.getVectorElementType()); unsigned NumElems = VT.getVectorNumElements(); SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0) : SV->getOperand(1); return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1); } // Recurse into target specific vector shuffles to find scalars. if (isTargetShuffle(Opcode)) { MVT ShufVT = V.getValueType().getSimpleVT(); unsigned NumElems = ShufVT.getVectorNumElements(); SmallVector ShuffleMask; bool IsUnary; if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary)) return SDValue(); int Elt = ShuffleMask[Index]; if (Elt < 0) return DAG.getUNDEF(ShufVT.getVectorElementType()); SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0) : N->getOperand(1); return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1); } // Actual nodes that may contain scalar elements if (Opcode == ISD::BITCAST) { V = V.getOperand(0); EVT SrcVT = V.getValueType(); unsigned NumElems = VT.getVectorNumElements(); if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems) return SDValue(); } if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) return (Index == 0) ? V.getOperand(0) : DAG.getUNDEF(VT.getVectorElementType()); if (V.getOpcode() == ISD::BUILD_VECTOR) return V.getOperand(Index); return SDValue(); } /// getNumOfConsecutiveZeros - Return the number of elements of a vector /// shuffle operation which come from a consecutively from a zero. The /// search can start in two different directions, from left or right. static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems, bool ZerosFromLeft, SelectionDAG &DAG) { unsigned i; for (i = 0; i != NumElems; ++i) { unsigned Index = ZerosFromLeft ? i : NumElems-i-1; SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0); if (!(Elt.getNode() && (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt)))) break; } return i; } /// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE) /// correspond consecutively to elements from one of the vector operands, /// starting from its index OpIdx. Also tell OpNum which source vector operand. static bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, unsigned MaskI, unsigned MaskE, unsigned OpIdx, unsigned NumElems, unsigned &OpNum) { bool SeenV1 = false; bool SeenV2 = false; for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) { int Idx = SVOp->getMaskElt(i); // Ignore undef indicies if (Idx < 0) continue; if (Idx < (int)NumElems) SeenV1 = true; else SeenV2 = true; // Only accept consecutive elements from the same vector if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2)) return false; } OpNum = SeenV1 ? 0 : 1; return true; } /// isVectorShiftRight - Returns true if the shuffle can be implemented as a /// logical left shift of a vector. static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { unsigned NumElems = SVOp->getValueType(0).getVectorNumElements(); unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false /* check zeros from right */, DAG); unsigned OpSrc; if (!NumZeros) return false; // Considering the elements in the mask that are not consecutive zeros, // check if they consecutively come from only one of the source vectors. // // V1 = {X, A, B, C} 0 // \ \ \ / // vector_shuffle V1, V2 <1, 2, 3, X> // if (!isShuffleMaskConsecutive(SVOp, 0, // Mask Start Index NumElems-NumZeros, // Mask End Index(exclusive) NumZeros, // Where to start looking in the src vector NumElems, // Number of elements in vector OpSrc)) // Which source operand ? return false; isLeft = false; ShAmt = NumZeros; ShVal = SVOp->getOperand(OpSrc); return true; } /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a /// logical left shift of a vector. static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { unsigned NumElems = SVOp->getValueType(0).getVectorNumElements(); unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true /* check zeros from left */, DAG); unsigned OpSrc; if (!NumZeros) return false; // Considering the elements in the mask that are not consecutive zeros, // check if they consecutively come from only one of the source vectors. // // 0 { A, B, X, X } = V2 // / \ / / // vector_shuffle V1, V2 // if (!isShuffleMaskConsecutive(SVOp, NumZeros, // Mask Start Index NumElems, // Mask End Index(exclusive) 0, // Where to start looking in the src vector NumElems, // Number of elements in vector OpSrc)) // Which source operand ? return false; isLeft = true; ShAmt = NumZeros; ShVal = SVOp->getOperand(OpSrc); return true; } /// isVectorShift - Returns true if the shuffle can be implemented as a /// logical left or right shift of a vector. static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { // Although the logic below support any bitwidth size, there are no // shift instructions which handle more than 128-bit vectors. if (!SVOp->getValueType(0).is128BitVector()) return false; if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) || isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt)) return true; return false; } /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. /// static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, unsigned NumNonZero, unsigned NumZero, SelectionDAG &DAG, const X86Subtarget* Subtarget, const TargetLowering &TLI) { if (NumNonZero > 8) return SDValue(); DebugLoc dl = Op.getDebugLoc(); SDValue V(0, 0); bool First = true; for (unsigned i = 0; i < 16; ++i) { bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; if (ThisIsNonZero && First) { if (NumZero) V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); else V = DAG.getUNDEF(MVT::v8i16); First = false; } if ((i & 1) != 0) { SDValue ThisElt(0, 0), LastElt(0, 0); bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; if (LastIsNonZero) { LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i-1)); } if (ThisIsNonZero) { ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, ThisElt, DAG.getConstant(8, MVT::i8)); if (LastIsNonZero) ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); } else ThisElt = LastElt; if (ThisElt.getNode()) V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, DAG.getIntPtrConstant(i/2)); } } return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V); } /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. /// static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, unsigned NumNonZero, unsigned NumZero, SelectionDAG &DAG, const X86Subtarget* Subtarget, const TargetLowering &TLI) { if (NumNonZero > 4) return SDValue(); DebugLoc dl = Op.getDebugLoc(); SDValue V(0, 0); bool First = true; for (unsigned i = 0; i < 8; ++i) { bool isNonZero = (NonZeros & (1 << i)) != 0; if (isNonZero) { if (First) { if (NumZero) V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); else V = DAG.getUNDEF(MVT::v8i16); First = false; } V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, Op.getOperand(i), DAG.getIntPtrConstant(i)); } } return V; } /// getVShift - Return a vector logical shift node. /// static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, unsigned NumBits, SelectionDAG &DAG, const TargetLowering &TLI, DebugLoc dl) { assert(VT.is128BitVector() && "Unknown type for VShift"); EVT ShVT = MVT::v2i64; unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ; SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp); return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(Opc, dl, ShVT, SrcOp, DAG.getConstant(NumBits, TLI.getScalarShiftAmountTy(SrcOp.getValueType())))); } SDValue X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl, SelectionDAG &DAG) const { // Check if the scalar load can be widened into a vector load. And if // the address is "base + cst" see if the cst can be "absorbed" into // the shuffle mask. if (LoadSDNode *LD = dyn_cast(SrcOp)) { SDValue Ptr = LD->getBasePtr(); if (!ISD::isNormalLoad(LD) || LD->isVolatile()) return SDValue(); EVT PVT = LD->getValueType(0); if (PVT != MVT::i32 && PVT != MVT::f32) return SDValue(); int FI = -1; int64_t Offset = 0; if (FrameIndexSDNode *FINode = dyn_cast(Ptr)) { FI = FINode->getIndex(); Offset = 0; } else if (DAG.isBaseWithConstantOffset(Ptr) && isa(Ptr.getOperand(0))) { FI = cast(Ptr.getOperand(0))->getIndex(); Offset = Ptr.getConstantOperandVal(1); Ptr = Ptr.getOperand(0); } else { return SDValue(); } // FIXME: 256-bit vector instructions don't require a strict alignment, // improve this code to support it better. unsigned RequiredAlign = VT.getSizeInBits()/8; SDValue Chain = LD->getChain(); // Make sure the stack object alignment is at least 16 or 32. MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) { if (MFI->isFixedObjectIndex(FI)) { // Can't change the alignment. FIXME: It's possible to compute // the exact stack offset and reference FI + adjust offset instead. // If someone *really* cares about this. That's the way to implement it. return SDValue(); } else { MFI->setObjectAlignment(FI, RequiredAlign); } } // (Offset % 16 or 32) must be multiple of 4. Then address is then // Ptr + (Offset & ~15). if (Offset < 0) return SDValue(); if ((Offset % RequiredAlign) & 3) return SDValue(); int64_t StartOffset = Offset & ~(RequiredAlign-1); if (StartOffset) Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(), Ptr,DAG.getConstant(StartOffset, Ptr.getValueType())); int EltNo = (Offset - StartOffset) >> 2; unsigned NumElems = VT.getVectorNumElements(); EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems); SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(StartOffset), false, false, false, 0); SmallVector Mask; for (unsigned i = 0; i != NumElems; ++i) Mask.push_back(EltNo); return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]); } return SDValue(); } /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a /// vector of type 'VT', see if the elements can be replaced by a single large /// load which has the same value as a build_vector whose operands are 'elts'. /// /// Example: -> zextload a /// /// FIXME: we'd also like to handle the case where the last elements are zero /// rather than undef via VZEXT_LOAD, but we do not detect that case today. /// There's even a handy isZeroNode for that purpose. static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl &Elts, DebugLoc &DL, SelectionDAG &DAG) { EVT EltVT = VT.getVectorElementType(); unsigned NumElems = Elts.size(); LoadSDNode *LDBase = NULL; unsigned LastLoadedElt = -1U; // For each element in the initializer, see if we've found a load or an undef. // If we don't find an initial load element, or later load elements are // non-consecutive, bail out. for (unsigned i = 0; i < NumElems; ++i) { SDValue Elt = Elts[i]; if (!Elt.getNode() || (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) return SDValue(); if (!LDBase) { if (Elt.getNode()->getOpcode() == ISD::UNDEF) return SDValue(); LDBase = cast(Elt.getNode()); LastLoadedElt = i; continue; } if (Elt.getOpcode() == ISD::UNDEF) continue; LoadSDNode *LD = cast(Elt); if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i)) return SDValue(); LastLoadedElt = i; } // If we have found an entire vector of loads and undefs, then return a large // load of the entire vector width starting at the base pointer. If we found // consecutive loads for the low half, generate a vzext_load node. if (LastLoadedElt == NumElems - 1) { if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16) return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), LDBase->getPointerInfo(), LDBase->isVolatile(), LDBase->isNonTemporal(), LDBase->isInvariant(), 0); return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), LDBase->getPointerInfo(), LDBase->isVolatile(), LDBase->isNonTemporal(), LDBase->isInvariant(), LDBase->getAlignment()); } if (NumElems == 4 && LastLoadedElt == 1 && DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) { SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() }; SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, array_lengthof(Ops), MVT::i64, LDBase->getPointerInfo(), LDBase->getAlignment(), false/*isVolatile*/, true/*ReadMem*/, false/*WriteMem*/); // Make sure the newly-created LOAD is in the same position as LDBase in // terms of dependency. We create a TokenFactor for LDBase and ResNode, and // update uses of LDBase's output chain to use the TokenFactor. if (LDBase->hasAnyUseOfValue(1)) { SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1)); DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain); DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1)); } return DAG.getNode(ISD::BITCAST, DL, VT, ResNode); } return SDValue(); } /// LowerVectorBroadcast - Attempt to use the vbroadcast instruction /// to generate a splat value for the following cases: /// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant. /// 2. A splat shuffle which uses a scalar_to_vector node which comes from /// a scalar load, or a constant. /// The VBROADCAST node is returned when a pattern is found, /// or SDValue() otherwise. SDValue X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const { if (!Subtarget->hasFp256()) return SDValue(); MVT VT = Op.getValueType().getSimpleVT(); DebugLoc dl = Op.getDebugLoc(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for broadcast."); SDValue Ld; bool ConstSplatVal; switch (Op.getOpcode()) { default: // Unknown pattern found. return SDValue(); case ISD::BUILD_VECTOR: { // The BUILD_VECTOR node must be a splat. if (!isSplatVector(Op.getNode())) return SDValue(); Ld = Op.getOperand(0); ConstSplatVal = (Ld.getOpcode() == ISD::Constant || Ld.getOpcode() == ISD::ConstantFP); // The suspected load node has several users. Make sure that all // of its users are from the BUILD_VECTOR node. // Constants may have multiple users. if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0)) return SDValue(); break; } case ISD::VECTOR_SHUFFLE: { ShuffleVectorSDNode *SVOp = cast(Op); // Shuffles must have a splat mask where the first element is // broadcasted. if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0) return SDValue(); SDValue Sc = Op.getOperand(0); if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR && Sc.getOpcode() != ISD::BUILD_VECTOR) { if (!Subtarget->hasInt256()) return SDValue(); // Use the register form of the broadcast instruction available on AVX2. if (VT.is256BitVector()) Sc = Extract128BitVector(Sc, 0, DAG, dl); return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc); } Ld = Sc.getOperand(0); ConstSplatVal = (Ld.getOpcode() == ISD::Constant || Ld.getOpcode() == ISD::ConstantFP); // The scalar_to_vector node and the suspected // load node must have exactly one user. // Constants may have multiple users. if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse())) return SDValue(); break; } } bool Is256 = VT.is256BitVector(); // Handle the broadcasting a single constant scalar from the constant pool // into a vector. On Sandybridge it is still better to load a constant vector // from the constant pool and not to broadcast it from a scalar. if (ConstSplatVal && Subtarget->hasInt256()) { EVT CVT = Ld.getValueType(); assert(!CVT.isVector() && "Must not broadcast a vector type"); unsigned ScalarSize = CVT.getSizeInBits(); if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) { const Constant *C = 0; if (ConstantSDNode *CI = dyn_cast(Ld)) C = CI->getConstantIntValue(); else if (ConstantFPSDNode *CF = dyn_cast(Ld)) C = CF->getConstantFPValue(); assert(C && "Invalid constant type"); SDValue CP = DAG.getConstantPool(C, getPointerTy()); unsigned Alignment = cast(CP)->getAlignment(); Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP, MachinePointerInfo::getConstantPool(), false, false, false, Alignment); return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); } } bool IsLoad = ISD::isNormalLoad(Ld.getNode()); unsigned ScalarSize = Ld.getValueType().getSizeInBits(); // Handle AVX2 in-register broadcasts. if (!IsLoad && Subtarget->hasInt256() && (ScalarSize == 32 || (Is256 && ScalarSize == 64))) return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); // The scalar source must be a normal load. if (!IsLoad) return SDValue(); if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); // The integer check is needed for the 64-bit into 128-bit so it doesn't match // double since there is no vbroadcastsd xmm if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) { if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64) return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); } // Unsupported broadcast. return SDValue(); } SDValue X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); // Skip if insert_vec_elt is not supported. if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT)) return SDValue(); DebugLoc DL = Op.getDebugLoc(); unsigned NumElems = Op.getNumOperands(); SDValue VecIn1; SDValue VecIn2; SmallVector InsertIndices; SmallVector Mask(NumElems, -1); for (unsigned i = 0; i != NumElems; ++i) { unsigned Opc = Op.getOperand(i).getOpcode(); if (Opc == ISD::UNDEF) continue; if (Opc != ISD::EXTRACT_VECTOR_ELT) { // Quit if more than 1 elements need inserting. if (InsertIndices.size() > 1) return SDValue(); InsertIndices.push_back(i); continue; } SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0); SDValue ExtIdx = Op.getOperand(i).getOperand(1); // Quit if extracted from vector of different type. if (ExtractedFromVec.getValueType() != VT) return SDValue(); // Quit if non-constant index. if (!isa(ExtIdx)) return SDValue(); if (VecIn1.getNode() == 0) VecIn1 = ExtractedFromVec; else if (VecIn1 != ExtractedFromVec) { if (VecIn2.getNode() == 0) VecIn2 = ExtractedFromVec; else if (VecIn2 != ExtractedFromVec) // Quit if more than 2 vectors to shuffle return SDValue(); } unsigned Idx = cast(ExtIdx)->getZExtValue(); if (ExtractedFromVec == VecIn1) Mask[i] = Idx; else if (ExtractedFromVec == VecIn2) Mask[i] = Idx + NumElems; } if (VecIn1.getNode() == 0) return SDValue(); VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]); for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) { unsigned Idx = InsertIndices[i]; NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx), DAG.getIntPtrConstant(Idx)); } return NV; } SDValue X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); MVT VT = Op.getValueType().getSimpleVT(); MVT ExtVT = VT.getVectorElementType(); unsigned NumElems = Op.getNumOperands(); // Vectors containing all zeros can be matched by pxor and xorps later if (ISD::isBuildVectorAllZeros(Op.getNode())) { // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd // and 2) ensure that i64 scalars are eliminated on x86-32 hosts. if (VT == MVT::v4i32 || VT == MVT::v8i32) return Op; return getZeroVector(VT, Subtarget, DAG, dl); } // Vectors containing all ones can be matched by pcmpeqd on 128-bit width // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use // vpcmpeqd on 256-bit vectors. if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) { if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256())) return Op; return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl); } SDValue Broadcast = LowerVectorBroadcast(Op, DAG); if (Broadcast.getNode()) return Broadcast; unsigned EVTBits = ExtVT.getSizeInBits(); unsigned NumZero = 0; unsigned NumNonZero = 0; unsigned NonZeros = 0; bool IsAllConstants = true; SmallSet Values; for (unsigned i = 0; i < NumElems; ++i) { SDValue Elt = Op.getOperand(i); if (Elt.getOpcode() == ISD::UNDEF) continue; Values.insert(Elt); if (Elt.getOpcode() != ISD::Constant && Elt.getOpcode() != ISD::ConstantFP) IsAllConstants = false; if (X86::isZeroNode(Elt)) NumZero++; else { NonZeros |= (1 << i); NumNonZero++; } } // All undef vector. Return an UNDEF. All zero vectors were handled above. if (NumNonZero == 0) return DAG.getUNDEF(VT); // Special case for single non-zero, non-undef, element. if (NumNonZero == 1) { unsigned Idx = CountTrailingZeros_32(NonZeros); SDValue Item = Op.getOperand(Idx); // If this is an insertion of an i64 value on x86-32, and if the top bits of // the value are obviously zero, truncate the value to i32 and do the // insertion that way. Only do this if the value is non-constant or if the // value is a constant being inserted into element 0. It is cheaper to do // a constant pool load than it is to do a movd + shuffle. if (ExtVT == MVT::i64 && !Subtarget->is64Bit() && (!IsAllConstants || Idx == 0)) { if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { // Handle SSE only. assert(VT == MVT::v2i64 && "Expected an SSE value type!"); EVT VecVT = MVT::v4i32; unsigned VecElts = 4; // Truncate the value (which may itself be a constant) to i32, and // convert it to a vector with movd (S2V+shuffle to zero extend). Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); // Now we have our 32-bit value zero extended in the low element of // a vector. If Idx != 0, swizzle it into place. if (Idx != 0) { SmallVector Mask; Mask.push_back(Idx); for (unsigned i = 1; i != VecElts; ++i) Mask.push_back(i); Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT), &Mask[0]); } return DAG.getNode(ISD::BITCAST, dl, VT, Item); } } // If we have a constant or non-constant insertion into the low element of // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into // the rest of the elements. This will be matched as movd/movq/movss/movsd // depending on what the source datatype is. if (Idx == 0) { if (NumZero == 0) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || (ExtVT == MVT::i64 && Subtarget->is64Bit())) { if (VT.is256BitVector()) { SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl); return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec, Item, DAG.getIntPtrConstant(0)); } assert(VT.is128BitVector() && "Expected an SSE value type!"); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); } if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); if (VT.is256BitVector()) { SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl); Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl); } else { assert(VT.is128BitVector() && "Expected an SSE value type!"); Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); } return DAG.getNode(ISD::BITCAST, dl, VT, Item); } } // Is it a vector logical left shift? if (NumElems == 2 && Idx == 1 && X86::isZeroNode(Op.getOperand(0)) && !X86::isZeroNode(Op.getOperand(1))) { unsigned NumBits = VT.getSizeInBits(); return getVShift(true, VT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(1)), NumBits/2, DAG, *this, dl); } if (IsAllConstants) // Otherwise, it's better to do a constpool load. return SDValue(); // Otherwise, if this is a vector with i32 or f32 elements, and the element // is a non-constant being inserted into an element other than the low one, // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka // movd/movss) to move this into the low element, then shuffle it into // place. if (EVTBits == 32) { Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); // Turn it into a shuffle of zero and zero-extended scalar to vector. Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG); SmallVector MaskVec; for (unsigned i = 0; i != NumElems; ++i) MaskVec.push_back(i == Idx ? 0 : 1); return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]); } } // Splat is obviously ok. Let legalizer expand it to a shuffle. if (Values.size() == 1) { if (EVTBits == 32) { // Instead of a shuffle like this: // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> // Check if it's possible to issue this instead. // shuffle (vload ptr)), undef, <1, 1, 1, 1> unsigned Idx = CountTrailingZeros_32(NonZeros); SDValue Item = Op.getOperand(Idx); if (Op.getNode()->isOnlyUserOf(Item.getNode())) return LowerAsSplatVectorLoad(Item, VT, dl, DAG); } return SDValue(); } // A vector full of immediates; various special cases are already // handled, so this is best done with a single constant-pool load. if (IsAllConstants) return SDValue(); // For AVX-length vectors, build the individual 128-bit pieces and use // shuffles to put them in place. if (VT.is256BitVector()) { SmallVector V; for (unsigned i = 0; i != NumElems; ++i) V.push_back(Op.getOperand(i)); EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2); // Build both the lower and upper subvector. SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2); SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2], NumElems/2); // Recreate the wider vector with the lower and upper part. return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl); } // Let legalizer expand 2-wide build_vectors. if (EVTBits == 64) { if (NumNonZero == 1) { // One half is zero or undef. unsigned Idx = CountTrailingZeros_32(NonZeros); SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(Idx)); return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG); } return SDValue(); } // If element VT is < 32 bits, convert it to inserts into a zero vector. if (EVTBits == 8 && NumElems == 16) { SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, Subtarget, *this); if (V.getNode()) return V; } if (EVTBits == 16 && NumElems == 8) { SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, Subtarget, *this); if (V.getNode()) return V; } // If element VT is == 32 bits, turn it into a number of shuffles. SmallVector V(NumElems); if (NumElems == 4 && NumZero > 0) { for (unsigned i = 0; i < 4; ++i) { bool isZero = !(NonZeros & (1 << i)); if (isZero) V[i] = getZeroVector(VT, Subtarget, DAG, dl); else V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); } for (unsigned i = 0; i < 2; ++i) { switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { default: break; case 0: V[i] = V[i*2]; // Must be a zero vector. break; case 1: V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); break; case 2: V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); break; case 3: V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); break; } } bool Reverse1 = (NonZeros & 0x3) == 2; bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2; int MaskVec[] = { Reverse1 ? 1 : 0, Reverse1 ? 0 : 1, static_cast(Reverse2 ? NumElems+1 : NumElems), static_cast(Reverse2 ? NumElems : NumElems+1) }; return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); } if (Values.size() > 1 && VT.is128BitVector()) { // Check for a build vector of consecutive loads. for (unsigned i = 0; i < NumElems; ++i) V[i] = Op.getOperand(i); // Check for elements which are consecutive loads. SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG); if (LD.getNode()) return LD; // Check for a build vector from mostly shuffle plus few inserting. SDValue Sh = buildFromShuffleMostly(Op, DAG); if (Sh.getNode()) return Sh; // For SSE 4.1, use insertps to put the high elements into the low element. if (getSubtarget()->hasSSE41()) { SDValue Result; if (Op.getOperand(0).getOpcode() != ISD::UNDEF) Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0)); else Result = DAG.getUNDEF(VT); for (unsigned i = 1; i < NumElems; ++i) { if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue; Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result, Op.getOperand(i), DAG.getIntPtrConstant(i)); } return Result; } // Otherwise, expand into a number of unpckl*, start by extending each of // our (non-undef) elements to the full vector width with the element in the // bottom slot of the vector (which generates no code for SSE). for (unsigned i = 0; i < NumElems; ++i) { if (Op.getOperand(i).getOpcode() != ISD::UNDEF) V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); else V[i] = DAG.getUNDEF(VT); } // Next, we iteratively mix elements, e.g. for v4f32: // Step 1: unpcklps 0, 2 ==> X: // : unpcklps 1, 3 ==> Y: // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> unsigned EltStride = NumElems >> 1; while (EltStride != 0) { for (unsigned i = 0; i < EltStride; ++i) { // If V[i+EltStride] is undef and this is the first round of mixing, // then it is safe to just drop this shuffle: V[i] is already in the // right place, the one element (since it's the first round) being // inserted as undef can be dropped. This isn't safe for successive // rounds because they will permute elements within both vectors. if (V[i+EltStride].getOpcode() == ISD::UNDEF && EltStride == NumElems/2) continue; V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]); } EltStride >>= 1; } return V[0]; } return SDValue(); } // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction // to create 256-bit vectors from two other 128-bit ones. static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); MVT ResVT = Op.getValueType().getSimpleVT(); assert(ResVT.is256BitVector() && "Value type must be 256-bit wide"); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); unsigned NumElems = ResVT.getVectorNumElements(); return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl); } static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { assert(Op.getNumOperands() == 2); // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors // from two other 128-bit ones. return LowerAVXCONCAT_VECTORS(Op, DAG); } // Try to lower a shuffle node into a simple blend instruction. static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); DebugLoc dl = SVOp->getDebugLoc(); MVT VT = SVOp->getValueType(0).getSimpleVT(); MVT EltVT = VT.getVectorElementType(); unsigned NumElems = VT.getVectorNumElements(); if (!Subtarget->hasSSE41() || EltVT == MVT::i8) return SDValue(); if (!Subtarget->hasInt256() && VT == MVT::v16i16) return SDValue(); // Check the mask for BLEND and build the value. unsigned MaskValue = 0; // There are 2 lanes if (NumElems > 8), and 1 lane otherwise. unsigned NumLanes = (NumElems-1)/8 + 1; unsigned NumElemsInLane = NumElems / NumLanes; // Blend for v16i16 should be symetric for the both lanes. for (unsigned i = 0; i < NumElemsInLane; ++i) { int SndLaneEltIdx = (NumLanes == 2) ? SVOp->getMaskElt(i + NumElemsInLane) : -1; int EltIdx = SVOp->getMaskElt(i); if ((EltIdx < 0 || EltIdx == (int)i) && (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane))) continue; if (((unsigned)EltIdx == (i + NumElems)) && (SndLaneEltIdx < 0 || (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane)) MaskValue |= (1<hasInt256())) { BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()), NumElems); V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1); V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2); } SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2, DAG.getConstant(MaskValue, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Ret); } // v8i16 shuffles - Prefer shuffles in the following order: // 1. [all] pshuflw, pshufhw, optional move // 2. [ssse3] 1 x pshufb // 3. [ssse3] 2 x pshufb + 1 x por // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw) static SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { ShuffleVectorSDNode *SVOp = cast(Op); SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); DebugLoc dl = SVOp->getDebugLoc(); SmallVector MaskVals; // Determine if more than 1 of the words in each of the low and high quadwords // of the result come from the same quadword of one of the two inputs. Undef // mask values count as coming from any quadword, for better codegen. unsigned LoQuad[] = { 0, 0, 0, 0 }; unsigned HiQuad[] = { 0, 0, 0, 0 }; std::bitset<4> InputQuads; for (unsigned i = 0; i < 8; ++i) { unsigned *Quad = i < 4 ? LoQuad : HiQuad; int EltIdx = SVOp->getMaskElt(i); MaskVals.push_back(EltIdx); if (EltIdx < 0) { ++Quad[0]; ++Quad[1]; ++Quad[2]; ++Quad[3]; continue; } ++Quad[EltIdx / 4]; InputQuads.set(EltIdx / 4); } int BestLoQuad = -1; unsigned MaxQuad = 1; for (unsigned i = 0; i < 4; ++i) { if (LoQuad[i] > MaxQuad) { BestLoQuad = i; MaxQuad = LoQuad[i]; } } int BestHiQuad = -1; MaxQuad = 1; for (unsigned i = 0; i < 4; ++i) { if (HiQuad[i] > MaxQuad) { BestHiQuad = i; MaxQuad = HiQuad[i]; } } // For SSSE3, If all 8 words of the result come from only 1 quadword of each // of the two input vectors, shuffle them into one input vector so only a // single pshufb instruction is necessary. If There are more than 2 input // quads, disable the next transformation since it does not help SSSE3. bool V1Used = InputQuads[0] || InputQuads[1]; bool V2Used = InputQuads[2] || InputQuads[3]; if (Subtarget->hasSSSE3()) { if (InputQuads.count() == 2 && V1Used && V2Used) { BestLoQuad = InputQuads[0] ? 0 : 1; BestHiQuad = InputQuads[2] ? 2 : 3; } if (InputQuads.count() > 2) { BestLoQuad = -1; BestHiQuad = -1; } } // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update // the shuffle mask. If a quad is scored as -1, that means that it contains // words from all 4 input quadwords. SDValue NewV; if (BestLoQuad >= 0 || BestHiQuad >= 0) { int MaskV[] = { BestLoQuad < 0 ? 0 : BestLoQuad, BestHiQuad < 0 ? 1 : BestHiQuad }; NewV = DAG.getVectorShuffle(MVT::v2i64, dl, DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1), DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]); NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV); // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the // source words for the shuffle, to aid later transformations. bool AllWordsInNewV = true; bool InOrder[2] = { true, true }; for (unsigned i = 0; i != 8; ++i) { int idx = MaskVals[i]; if (idx != (int)i) InOrder[i/4] = false; if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad) continue; AllWordsInNewV = false; break; } bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV; if (AllWordsInNewV) { for (int i = 0; i != 8; ++i) { int idx = MaskVals[i]; if (idx < 0) continue; idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4; if ((idx != i) && idx < 4) pshufhw = false; if ((idx != i) && idx > 3) pshuflw = false; } V1 = NewV; V2Used = false; BestLoQuad = 0; BestHiQuad = 1; } // If we've eliminated the use of V2, and the new mask is a pshuflw or // pshufhw, that's as cheap as it gets. Return the new shuffle. if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) { unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW; unsigned TargetMask = 0; NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), &MaskVals[0]); ShuffleVectorSDNode *SVOp = cast(NewV.getNode()); TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp): getShufflePSHUFLWImmediate(SVOp); V1 = NewV.getOperand(0); return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG); } } // Promote splats to a larger type which usually leads to more efficient code. // FIXME: Is this true if pshufb is available? if (SVOp->isSplat()) return PromoteSplat(SVOp, DAG); // If we have SSSE3, and all words of the result are from 1 input vector, // case 2 is generated, otherwise case 3 is generated. If no SSSE3 // is present, fall back to case 4. if (Subtarget->hasSSSE3()) { SmallVector pshufbMask; // If we have elements from both input vectors, set the high bit of the // shuffle mask element to zero out elements that come from V2 in the V1 // mask, and elements that come from V1 in the V2 mask, so that the two // results can be OR'd together. bool TwoInputs = V1Used && V2Used; for (unsigned i = 0; i != 8; ++i) { int EltIdx = MaskVals[i] * 2; int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx; int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1; pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8)); pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8)); } V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1); V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, &pshufbMask[0], 16)); if (!TwoInputs) return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); // Calculate the shuffle mask for the second input, shuffle it, and // OR it with the first shuffled input. pshufbMask.clear(); for (unsigned i = 0; i != 8; ++i) { int EltIdx = MaskVals[i] * 2; int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16; int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15; pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8)); pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8)); } V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2); V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, &pshufbMask[0], 16)); V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); } // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order, // and update MaskVals with new element order. std::bitset<8> InOrder; if (BestLoQuad >= 0) { int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 }; for (int i = 0; i != 4; ++i) { int idx = MaskVals[i]; if (idx < 0) { InOrder.set(i); } else if ((idx / 4) == BestLoQuad) { MaskV[i] = idx & 3; InOrder.set(i); } } NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), &MaskV[0]); if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) { ShuffleVectorSDNode *SVOp = cast(NewV.getNode()); NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16, NewV.getOperand(0), getShufflePSHUFLWImmediate(SVOp), DAG); } } // If BestHi >= 0, generate a pshufhw to put the high elements in order, // and update MaskVals with the new element order. if (BestHiQuad >= 0) { int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 }; for (unsigned i = 4; i != 8; ++i) { int idx = MaskVals[i]; if (idx < 0) { InOrder.set(i); } else if ((idx / 4) == BestHiQuad) { MaskV[i] = (idx & 3) + 4; InOrder.set(i); } } NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), &MaskV[0]); if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) { ShuffleVectorSDNode *SVOp = cast(NewV.getNode()); NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16, NewV.getOperand(0), getShufflePSHUFHWImmediate(SVOp), DAG); } } // In case BestHi & BestLo were both -1, which means each quadword has a word // from each of the four input quadwords, calculate the InOrder bitvector now // before falling through to the insert/extract cleanup. if (BestLoQuad == -1 && BestHiQuad == -1) { NewV = V1; for (int i = 0; i != 8; ++i) if (MaskVals[i] < 0 || MaskVals[i] == i) InOrder.set(i); } // The other elements are put in the right place using pextrw and pinsrw. for (unsigned i = 0; i != 8; ++i) { if (InOrder[i]) continue; int EltIdx = MaskVals[i]; if (EltIdx < 0) continue; SDValue ExtOp = (EltIdx < 8) ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1, DAG.getIntPtrConstant(EltIdx)) : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2, DAG.getIntPtrConstant(EltIdx - 8)); NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp, DAG.getIntPtrConstant(i)); } return NewV; } // v16i8 shuffles - Prefer shuffles in the following order: // 1. [ssse3] 1 x pshufb // 2. [ssse3] 2 x pshufb + 1 x por // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, const X86TargetLowering &TLI) { SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); DebugLoc dl = SVOp->getDebugLoc(); ArrayRef MaskVals = SVOp->getMask(); // Promote splats to a larger type which usually leads to more efficient code. // FIXME: Is this true if pshufb is available? if (SVOp->isSplat()) return PromoteSplat(SVOp, DAG); // If we have SSSE3, case 1 is generated when all result bytes come from // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is // present, fall back to case 3. // If SSSE3, use 1 pshufb instruction per vector with elements in the result. if (TLI.getSubtarget()->hasSSSE3()) { SmallVector pshufbMask; // If all result elements are from one input vector, then only translate // undef mask values to 0x80 (zero out result) in the pshufb mask. // // Otherwise, we have elements from both input vectors, and must zero out // elements that come from V2 in the first mask, and V1 in the second mask // so that we can OR them together. for (unsigned i = 0; i != 16; ++i) { int EltIdx = MaskVals[i]; if (EltIdx < 0 || EltIdx >= 16) EltIdx = 0x80; pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); } V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, &pshufbMask[0], 16)); // As PSHUFB will zero elements with negative indices, it's safe to ignore // the 2nd operand if it's undefined or zero. if (V2.getOpcode() == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) return V1; // Calculate the shuffle mask for the second input, shuffle it, and // OR it with the first shuffled input. pshufbMask.clear(); for (unsigned i = 0; i != 16; ++i) { int EltIdx = MaskVals[i]; EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16; pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); } V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, &pshufbMask[0], 16)); return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); } // No SSSE3 - Calculate in place words and then fix all out of place words // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from // the 16 different words that comprise the two doublequadword input vectors. V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); SDValue NewV = V1; for (int i = 0; i != 8; ++i) { int Elt0 = MaskVals[i*2]; int Elt1 = MaskVals[i*2+1]; // This word of the result is all undef, skip it. if (Elt0 < 0 && Elt1 < 0) continue; // This word of the result is already in the correct place, skip it. if ((Elt0 == i*2) && (Elt1 == i*2+1)) continue; SDValue Elt0Src = Elt0 < 16 ? V1 : V2; SDValue Elt1Src = Elt1 < 16 ? V1 : V2; SDValue InsElt; // If Elt0 and Elt1 are defined, are consecutive, and can be load // using a single extract together, load it and store it. if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) { InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, DAG.getIntPtrConstant(Elt1 / 2)); NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, DAG.getIntPtrConstant(i)); continue; } // If Elt1 is defined, extract it from the appropriate source. If the // source byte is not also odd, shift the extracted word left 8 bits // otherwise clear the bottom 8 bits if we need to do an or. if (Elt1 >= 0) { InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, DAG.getIntPtrConstant(Elt1 / 2)); if ((Elt1 & 1) == 0) InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt, DAG.getConstant(8, TLI.getShiftAmountTy(InsElt.getValueType()))); else if (Elt0 >= 0) InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt, DAG.getConstant(0xFF00, MVT::i16)); } // If Elt0 is defined, extract it from the appropriate source. If the // source byte is not also even, shift the extracted word right 8 bits. If // Elt1 was also defined, OR the extracted values together before // inserting them in the result. if (Elt0 >= 0) { SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt0Src, DAG.getIntPtrConstant(Elt0 / 2)); if ((Elt0 & 1) != 0) InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0, DAG.getConstant(8, TLI.getShiftAmountTy(InsElt0.getValueType()))); else if (Elt1 >= 0) InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0, DAG.getConstant(0x00FF, MVT::i16)); InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0) : InsElt0; } NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, DAG.getIntPtrConstant(i)); } return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV); } // v32i8 shuffles - Translate to VPSHUFB if possible. static SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = SVOp->getValueType(0).getSimpleVT(); SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); DebugLoc dl = SVOp->getDebugLoc(); SmallVector MaskVals(SVOp->getMask().begin(), SVOp->getMask().end()); bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode()); bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode()); // VPSHUFB may be generated if // (1) one of input vector is undefined or zeroinitializer. // The mask value 0x80 puts 0 in the corresponding slot of the vector. // And (2) the mask indexes don't cross the 128-bit lane. if (VT != MVT::v32i8 || !Subtarget->hasInt256() || (!V2IsUndef && !V2IsAllZero && !V1IsAllZero)) return SDValue(); if (V1IsAllZero && !V2IsAllZero) { CommuteVectorShuffleMask(MaskVals, 32); V1 = V2; } SmallVector pshufbMask; for (unsigned i = 0; i != 32; i++) { int EltIdx = MaskVals[i]; if (EltIdx < 0 || EltIdx >= 32) EltIdx = 0x80; else { if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16)) // Cross lane is not allowed. return SDValue(); EltIdx &= 0xf; } pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); } return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1, DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8, &pshufbMask[0], 32)); } /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be /// done when every pair / quad of shuffle mask elements point to elements in /// the right sequence. e.g. /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15> static SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { MVT VT = SVOp->getValueType(0).getSimpleVT(); DebugLoc dl = SVOp->getDebugLoc(); unsigned NumElems = VT.getVectorNumElements(); MVT NewVT; unsigned Scale; switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected!"); case MVT::v4f32: NewVT = MVT::v2f64; Scale = 2; break; case MVT::v4i32: NewVT = MVT::v2i64; Scale = 2; break; case MVT::v8i16: NewVT = MVT::v4i32; Scale = 2; break; case MVT::v16i8: NewVT = MVT::v4i32; Scale = 4; break; case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break; case MVT::v32i8: NewVT = MVT::v8i32; Scale = 4; break; } SmallVector MaskVec; for (unsigned i = 0; i != NumElems; i += Scale) { int StartIdx = -1; for (unsigned j = 0; j != Scale; ++j) { int EltIdx = SVOp->getMaskElt(i+j); if (EltIdx < 0) continue; if (StartIdx < 0) StartIdx = (EltIdx / Scale); if (EltIdx != (int)(StartIdx*Scale + j)) return SDValue(); } MaskVec.push_back(StartIdx); } SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0)); SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1)); return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]); } /// getVZextMovL - Return a zero-extending vector move low node. /// static SDValue getVZextMovL(MVT VT, EVT OpVT, SDValue SrcOp, SelectionDAG &DAG, const X86Subtarget *Subtarget, DebugLoc dl) { if (VT == MVT::v2f64 || VT == MVT::v4f32) { LoadSDNode *LD = NULL; if (!isScalarLoadToVector(SrcOp.getNode(), &LD)) LD = dyn_cast(SrcOp); if (!LD) { // movssrr and movsdrr do not clear top bits. Try to use movd, movq // instead. MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) && SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && SrcOp.getOperand(0).getOpcode() == ISD::BITCAST && SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) { // PR2108 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, OpVT, SrcOp.getOperand(0) .getOperand(0)))); } } } return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, DAG.getNode(ISD::BITCAST, dl, OpVT, SrcOp))); } /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles /// which could not be matched by any known target speficic shuffle static SDValue LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG); if (NewOp.getNode()) return NewOp; MVT VT = SVOp->getValueType(0).getSimpleVT(); unsigned NumElems = VT.getVectorNumElements(); unsigned NumLaneElems = NumElems / 2; DebugLoc dl = SVOp->getDebugLoc(); MVT EltVT = VT.getVectorElementType(); MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems); SDValue Output[2]; SmallVector Mask; for (unsigned l = 0; l < 2; ++l) { // Build a shuffle mask for the output, discovering on the fly which // input vectors to use as shuffle operands (recorded in InputUsed). // If building a suitable shuffle vector proves too hard, then bail // out with UseBuildVector set. bool UseBuildVector = false; int InputUsed[2] = { -1, -1 }; // Not yet discovered. unsigned LaneStart = l * NumLaneElems; for (unsigned i = 0; i != NumLaneElems; ++i) { // The mask element. This indexes into the input. int Idx = SVOp->getMaskElt(i+LaneStart); if (Idx < 0) { // the mask element does not index into any input vector. Mask.push_back(-1); continue; } // The input vector this mask element indexes into. int Input = Idx / NumLaneElems; // Turn the index into an offset from the start of the input vector. Idx -= Input * NumLaneElems; // Find or create a shuffle vector operand to hold this input. unsigned OpNo; for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { if (InputUsed[OpNo] == Input) // This input vector is already an operand. break; if (InputUsed[OpNo] < 0) { // Create a new operand for this input vector. InputUsed[OpNo] = Input; break; } } if (OpNo >= array_lengthof(InputUsed)) { // More than two input vectors used! Give up on trying to create a // shuffle vector. Insert all elements into a BUILD_VECTOR instead. UseBuildVector = true; break; } // Add the mask index for the new shuffle vector. Mask.push_back(Idx + OpNo * NumLaneElems); } if (UseBuildVector) { SmallVector SVOps; for (unsigned i = 0; i != NumLaneElems; ++i) { // The mask element. This indexes into the input. int Idx = SVOp->getMaskElt(i+LaneStart); if (Idx < 0) { SVOps.push_back(DAG.getUNDEF(EltVT)); continue; } // The input vector this mask element indexes into. int Input = Idx / NumElems; // Turn the index into an offset from the start of the input vector. Idx -= Input * NumElems; // Extract the vector element by hand. SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SVOp->getOperand(Input), DAG.getIntPtrConstant(Idx))); } // Construct the output using a BUILD_VECTOR. Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0], SVOps.size()); } else if (InputUsed[0] < 0) { // No input vectors were used! The result is undefined. Output[l] = DAG.getUNDEF(NVT); } else { SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2), (InputUsed[0] % 2) * NumLaneElems, DAG, dl); // If only one input was used, use an undefined vector for the other. SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) : Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2), (InputUsed[1] % 2) * NumLaneElems, DAG, dl); // At least one input vector was used. Create a new shuffle vector. Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]); } Mask.clear(); } // Concatenate the result back return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]); } /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with /// 4 elements, and match them with several different shuffle types. static SDValue LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); DebugLoc dl = SVOp->getDebugLoc(); MVT VT = SVOp->getValueType(0).getSimpleVT(); assert(VT.is128BitVector() && "Unsupported vector size"); std::pair Locs[4]; int Mask1[] = { -1, -1, -1, -1 }; SmallVector PermMask(SVOp->getMask().begin(), SVOp->getMask().end()); unsigned NumHi = 0; unsigned NumLo = 0; for (unsigned i = 0; i != 4; ++i) { int Idx = PermMask[i]; if (Idx < 0) { Locs[i] = std::make_pair(-1, -1); } else { assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!"); if (Idx < 4) { Locs[i] = std::make_pair(0, NumLo); Mask1[NumLo] = Idx; NumLo++; } else { Locs[i] = std::make_pair(1, NumHi); if (2+NumHi < 4) Mask1[2+NumHi] = Idx; NumHi++; } } } if (NumLo <= 2 && NumHi <= 2) { // If no more than two elements come from either vector. This can be // implemented with two shuffles. First shuffle gather the elements. // The second shuffle, which takes the first shuffle as both of its // vector operands, put the elements into the right order. V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); int Mask2[] = { -1, -1, -1, -1 }; for (unsigned i = 0; i != 4; ++i) if (Locs[i].first != -1) { unsigned Idx = (i < 2) ? 0 : 4; Idx += Locs[i].first * 2 + Locs[i].second; Mask2[i] = Idx; } return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]); } if (NumLo == 3 || NumHi == 3) { // Otherwise, we must have three elements from one vector, call it X, and // one element from the other, call it Y. First, use a shufps to build an // intermediate vector with the one element from Y and the element from X // that will be in the same half in the final destination (the indexes don't // matter). Then, use a shufps to build the final vector, taking the half // containing the element from Y from the intermediate, and the other half // from X. if (NumHi == 3) { // Normalize it so the 3 elements come from V1. CommuteVectorShuffleMask(PermMask, 4); std::swap(V1, V2); } // Find the element from V2. unsigned HiIndex; for (HiIndex = 0; HiIndex < 3; ++HiIndex) { int Val = PermMask[HiIndex]; if (Val < 0) continue; if (Val >= 4) break; } Mask1[0] = PermMask[HiIndex]; Mask1[1] = -1; Mask1[2] = PermMask[HiIndex^1]; Mask1[3] = -1; V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); if (HiIndex >= 2) { Mask1[0] = PermMask[0]; Mask1[1] = PermMask[1]; Mask1[2] = HiIndex & 1 ? 6 : 4; Mask1[3] = HiIndex & 1 ? 4 : 6; return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); } Mask1[0] = HiIndex & 1 ? 2 : 0; Mask1[1] = HiIndex & 1 ? 0 : 2; Mask1[2] = PermMask[2]; Mask1[3] = PermMask[3]; if (Mask1[2] >= 0) Mask1[2] += 4; if (Mask1[3] >= 0) Mask1[3] += 4; return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]); } // Break it into (shuffle shuffle_hi, shuffle_lo). int LoMask[] = { -1, -1, -1, -1 }; int HiMask[] = { -1, -1, -1, -1 }; int *MaskPtr = LoMask; unsigned MaskIdx = 0; unsigned LoIdx = 0; unsigned HiIdx = 2; for (unsigned i = 0; i != 4; ++i) { if (i == 2) { MaskPtr = HiMask; MaskIdx = 1; LoIdx = 0; HiIdx = 2; } int Idx = PermMask[i]; if (Idx < 0) { Locs[i] = std::make_pair(-1, -1); } else if (Idx < 4) { Locs[i] = std::make_pair(MaskIdx, LoIdx); MaskPtr[LoIdx] = Idx; LoIdx++; } else { Locs[i] = std::make_pair(MaskIdx, HiIdx); MaskPtr[HiIdx] = Idx; HiIdx++; } } SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]); SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]); int MaskOps[] = { -1, -1, -1, -1 }; for (unsigned i = 0; i != 4; ++i) if (Locs[i].first != -1) MaskOps[i] = Locs[i].first * 4 + Locs[i].second; return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]); } static bool MayFoldVectorLoad(SDValue V) { while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST) V = V.getOperand(0); if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR) V = V.getOperand(0); if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR && V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF) // BUILD_VECTOR (load), undef V = V.getOperand(0); return MayFoldLoad(V); } static SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) { EVT VT = Op.getValueType(); // Canonizalize to v2f64. V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); return DAG.getNode(ISD::BITCAST, dl, VT, getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64, V1, DAG)); } static SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) { SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); EVT VT = Op.getValueType(); assert(VT != MVT::v2i64 && "unsupported shuffle type"); if (HasSSE2 && VT == MVT::v2f64) return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG); // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1) return DAG.getNode(ISD::BITCAST, dl, VT, getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32, DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1), DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG)); } static SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) { SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); EVT VT = Op.getValueType(); assert((VT == MVT::v4i32 || VT == MVT::v4f32) && "unsupported shuffle type"); if (V2.getOpcode() == ISD::UNDEF) V2 = V1; // v4i32 or v4f32 return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG); } static SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) { SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); EVT VT = Op.getValueType(); unsigned NumElems = VT.getVectorNumElements(); // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second // operand of these instructions is only memory, so check if there's a // potencial load folding here, otherwise use SHUFPS or MOVSD to match the // same masks. bool CanFoldLoad = false; // Trivial case, when V2 comes from a load. if (MayFoldVectorLoad(V2)) CanFoldLoad = true; // When V1 is a load, it can be folded later into a store in isel, example: // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1) // turns into: // (MOVLPSmr addr:$src1, VR128:$src2) // So, recognize this potential and also use MOVLPS or MOVLPD else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op)) CanFoldLoad = true; ShuffleVectorSDNode *SVOp = cast(Op); if (CanFoldLoad) { if (HasSSE2 && NumElems == 2) return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG); if (NumElems == 4) // If we don't care about the second element, proceed to use movss. if (SVOp->getMaskElt(1) != -1) return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG); } // movl and movlp will both match v2i64, but v2i64 is never matched by // movl earlier because we make it strict to avoid messing with the movlp load // folding logic (see the code above getMOVLP call). Match it here then, // this is horrible, but will stay like this until we move all shuffle // matching to x86 specific nodes. Note that for the 1st condition all // types are matched with movsd. if (HasSSE2) { // FIXME: isMOVLMask should be checked and matched before getMOVLP, // as to remove this logic from here, as much as possible if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT)) return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); } assert(VT != MVT::v4i32 && "unsupported shuffle type"); // Invert the operand order and use SHUFPS to match it. return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1, getShuffleSHUFImmediate(SVOp), DAG); } // Reduce a vector shuffle to zext. SDValue X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const { // PMOVZX is only available from SSE41. if (!Subtarget->hasSSE41()) return SDValue(); EVT VT = Op.getValueType(); // Only AVX2 support 256-bit vector integer extending. if (!Subtarget->hasInt256() && VT.is256BitVector()) return SDValue(); ShuffleVectorSDNode *SVOp = cast(Op); DebugLoc DL = Op.getDebugLoc(); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); unsigned NumElems = VT.getVectorNumElements(); // Extending is an unary operation and the element type of the source vector // won't be equal to or larger than i64. if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() || VT.getVectorElementType() == MVT::i64) return SDValue(); // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4. unsigned Shift = 1; // Start from 2, i.e. 1 << 1. while ((1U << Shift) < NumElems) { if (SVOp->getMaskElt(1U << Shift) == 1) break; Shift += 1; // The maximal ratio is 8, i.e. from i8 to i64. if (Shift > 3) return SDValue(); } // Check the shuffle mask. unsigned Mask = (1U << Shift) - 1; for (unsigned i = 0; i != NumElems; ++i) { int EltIdx = SVOp->getMaskElt(i); if ((i & Mask) != 0 && EltIdx != -1) return SDValue(); if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift)) return SDValue(); } LLVMContext *Context = DAG.getContext(); unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift; EVT NeVT = EVT::getIntegerVT(*Context, NBits); EVT NVT = EVT::getVectorVT(*Context, NeVT, NumElems >> Shift); if (!isTypeLegal(NVT)) return SDValue(); // Simplify the operand as it's prepared to be fed into shuffle. unsigned SignificantBits = NVT.getSizeInBits() >> Shift; if (V1.getOpcode() == ISD::BITCAST && V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && V1.getOperand(0) .getOperand(0).getValueType().getSizeInBits() == SignificantBits) { // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x) SDValue V = V1.getOperand(0).getOperand(0).getOperand(0); ConstantSDNode *CIdx = dyn_cast(V1.getOperand(0).getOperand(0).getOperand(1)); // If it's foldable, i.e. normal load with single use, we will let code // selection to fold it. Otherwise, we will short the conversion sequence. if (CIdx && CIdx->getZExtValue() == 0 && (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) { if (V.getValueSizeInBits() > V1.getValueSizeInBits()) { // The "ext_vec_elt" node is wider than the result node. // In this case we should extract subvector from V. // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)). unsigned Ratio = V.getValueSizeInBits() / V1.getValueSizeInBits(); EVT FullVT = V.getValueType(); EVT SubVecVT = EVT::getVectorVT(*Context, FullVT.getVectorElementType(), FullVT.getVectorNumElements()/Ratio); V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V, DAG.getIntPtrConstant(0)); } V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V); } } return DAG.getNode(ISD::BITCAST, DL, VT, DAG.getNode(X86ISD::VZEXT, DL, NVT, V1)); } SDValue X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const { ShuffleVectorSDNode *SVOp = cast(Op); MVT VT = Op.getValueType().getSimpleVT(); DebugLoc dl = Op.getDebugLoc(); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); if (isZeroShuffle(SVOp)) return getZeroVector(VT, Subtarget, DAG, dl); // Handle splat operations if (SVOp->isSplat()) { // Use vbroadcast whenever the splat comes from a foldable load SDValue Broadcast = LowerVectorBroadcast(Op, DAG); if (Broadcast.getNode()) return Broadcast; } // Check integer expanding shuffles. SDValue NewOp = LowerVectorIntExtend(Op, DAG); if (NewOp.getNode()) return NewOp; // If the shuffle can be profitably rewritten as a narrower shuffle, then // do it! if (VT == MVT::v8i16 || VT == MVT::v16i8 || VT == MVT::v16i16 || VT == MVT::v32i8) { SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); if (NewOp.getNode()) return DAG.getNode(ISD::BITCAST, dl, VT, NewOp); } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { // FIXME: Figure out a cleaner way to do this. // Try to make use of movq to zero out the top part. if (ISD::isBuildVectorAllZeros(V2.getNode())) { SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); if (NewOp.getNode()) { MVT NewVT = NewOp.getValueType().getSimpleVT(); if (isCommutedMOVLMask(cast(NewOp)->getMask(), NewVT, true, false)) return getVZextMovL(VT, NewVT, NewOp.getOperand(0), DAG, Subtarget, dl); } } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); if (NewOp.getNode()) { MVT NewVT = NewOp.getValueType().getSimpleVT(); if (isMOVLMask(cast(NewOp)->getMask(), NewVT)) return getVZextMovL(VT, NewVT, NewOp.getOperand(1), DAG, Subtarget, dl); } } } return SDValue(); } SDValue X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { ShuffleVectorSDNode *SVOp = cast(Op); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); MVT VT = Op.getValueType().getSimpleVT(); DebugLoc dl = Op.getDebugLoc(); unsigned NumElems = VT.getVectorNumElements(); bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; bool V1IsSplat = false; bool V2IsSplat = false; bool HasSSE2 = Subtarget->hasSSE2(); bool HasFp256 = Subtarget->hasFp256(); bool HasInt256 = Subtarget->hasInt256(); MachineFunction &MF = DAG.getMachineFunction(); bool OptForSize = MF.getFunction()->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles"); if (V1IsUndef && V2IsUndef) return DAG.getUNDEF(VT); assert(!V1IsUndef && "Op 1 of shuffle should not be undef"); // Vector shuffle lowering takes 3 steps: // // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable // narrowing and commutation of operands should be handled. // 2) Matching of shuffles with known shuffle masks to x86 target specific // shuffle nodes. // 3) Rewriting of unmatched masks into new generic shuffle operations, // so the shuffle can be broken into other shuffles and the legalizer can // try the lowering again. // // The general idea is that no vector_shuffle operation should be left to // be matched during isel, all of them must be converted to a target specific // node here. // Normalize the input vectors. Here splats, zeroed vectors, profitable // narrowing and commutation of operands should be handled. The actual code // doesn't include all of those, work in progress... SDValue NewOp = NormalizeVectorShuffle(Op, DAG); if (NewOp.getNode()) return NewOp; SmallVector M(SVOp->getMask().begin(), SVOp->getMask().end()); // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and // unpckh_undef). Only use pshufd if speed is more important than size. if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() && V2IsUndef && MayFoldVectorLoad(V1)) return getMOVDDup(Op, dl, V1, DAG); if (isMOVHLPS_v_undef_Mask(M, VT)) return getMOVHighToLow(Op, dl, DAG); // Use to match splats if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef && (VT == MVT::v2f64 || VT == MVT::v2i64)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); if (isPSHUFDMask(M, VT)) { // The actual implementation will match the mask in the if above and then // during isel it can match several different instructions, not only pshufd // as its name says, sad but true, emulate the behavior for now... if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64))) return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG); unsigned TargetMask = getShuffleSHUFImmediate(SVOp); if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32)) return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG); if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64)) return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG); return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1, TargetMask, DAG); } // Check if this can be converted into a logical shift. bool isLeft = false; unsigned ShAmt = 0; SDValue ShVal; bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt); if (isShift && ShVal.hasOneUse()) { // If the shifted value has multiple uses, it may be cheaper to use // v_set0 + movlhps or movhlps, etc. MVT EltVT = VT.getVectorElementType(); ShAmt *= EltVT.getSizeInBits(); return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); } if (isMOVLMask(M, VT)) { if (ISD::isBuildVectorAllZeros(V1.getNode())) return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl); if (!isMOVLPMask(M, VT)) { if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64)) return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); if (VT == MVT::v4i32 || VT == MVT::v4f32) return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); } } // FIXME: fold these into legal mask. if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256)) return getMOVLowToHigh(Op, dl, DAG, HasSSE2); if (isMOVHLPSMask(M, VT)) return getMOVHighToLow(Op, dl, DAG); if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget)) return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG); if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget)) return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG); if (isMOVLPMask(M, VT)) return getMOVLP(Op, dl, DAG, HasSSE2); if (ShouldXformToMOVHLPS(M, VT) || ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT)) return CommuteVectorShuffle(SVOp, DAG); if (isShift) { // No better options. Use a vshldq / vsrldq. MVT EltVT = VT.getVectorElementType(); ShAmt *= EltVT.getSizeInBits(); return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); } bool Commuted = false; // FIXME: This should also accept a bitcast of a splat? Be careful, not // 1,1,1,1 -> v8i16 though. V1IsSplat = isSplatVector(V1.getNode()); V2IsSplat = isSplatVector(V2.getNode()); // Canonicalize the splat or undef, if present, to be on the RHS. if (!V2IsUndef && V1IsSplat && !V2IsSplat) { CommuteVectorShuffleMask(M, NumElems); std::swap(V1, V2); std::swap(V1IsSplat, V2IsSplat); Commuted = true; } if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) { // Shuffling low element of v1 into undef, just return v1. if (V2IsUndef) return V1; // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which // the instruction selector will not match, so get a canonical MOVL with // swapped operands to undo the commute. return getMOVL(DAG, dl, VT, V2, V1); } if (isUNPCKLMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); if (isUNPCKHMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); if (V2IsSplat) { // Normalize mask so all entries that point to V2 points to its first // element then try to match unpck{h|l} again. If match, return a // new vector_shuffle with the corrected mask.p SmallVector NewMask(M.begin(), M.end()); NormalizeMask(NewMask, NumElems); if (isUNPCKLMask(NewMask, VT, HasInt256, true)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); if (isUNPCKHMask(NewMask, VT, HasInt256, true)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); } if (Commuted) { // Commute is back and try unpck* again. // FIXME: this seems wrong. CommuteVectorShuffleMask(M, NumElems); std::swap(V1, V2); std::swap(V1IsSplat, V2IsSplat); Commuted = false; if (isUNPCKLMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); if (isUNPCKHMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); } // Normalize the node to match x86 shuffle ops if needed if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true))) return CommuteVectorShuffle(SVOp, DAG); // The checks below are all present in isShuffleMaskLegal, but they are // inlined here right now to enable us to directly emit target specific // nodes, and remove one by one until they don't return Op anymore. if (isPALIGNRMask(M, VT, Subtarget)) return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2, getShufflePALIGNRImmediate(SVOp), DAG); if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) && SVOp->getSplatIndex() == 0 && V2IsUndef) { if (VT == MVT::v2f64 || VT == MVT::v2i64) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); } if (isPSHUFHWMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1, getShufflePSHUFHWImmediate(SVOp), DAG); if (isPSHUFLWMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1, getShufflePSHUFLWImmediate(SVOp), DAG); if (isSHUFPMask(M, VT, HasFp256)) return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2, getShuffleSHUFImmediate(SVOp), DAG); if (isUNPCKL_v_undef_Mask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); if (isUNPCKH_v_undef_Mask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); //===--------------------------------------------------------------------===// // Generate target specific nodes for 128 or 256-bit shuffles only // supported in the AVX instruction set. // // Handle VMOVDDUPY permutations if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256)) return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG); // Handle VPERMILPS/D* permutations if (isVPERMILPMask(M, VT, HasFp256)) { if (HasInt256 && VT == MVT::v8i32) return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, getShuffleSHUFImmediate(SVOp), DAG); return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, getShuffleSHUFImmediate(SVOp), DAG); } // Handle VPERM2F128/VPERM2I128 permutations if (isVPERM2X128Mask(M, VT, HasFp256)) return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1, V2, getShuffleVPERM2X128Immediate(SVOp), DAG); SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG); if (BlendOp.getNode()) return BlendOp; if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) { SmallVector permclMask; for (unsigned i = 0; i != 8; ++i) { permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32)); } SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, &permclMask[0], 8); // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32 return DAG.getNode(X86ISD::VPERMV, dl, VT, DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1); } if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64)) return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, getShuffleCLImmediate(SVOp), DAG); //===--------------------------------------------------------------------===// // Since no target specific shuffle was selected for this generic one, // lower it into other known shuffles. FIXME: this isn't true yet, but // this is the plan. // // Handle v8i16 specifically since SSE can do byte extraction and insertion. if (VT == MVT::v8i16) { SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG); if (NewOp.getNode()) return NewOp; } if (VT == MVT::v16i8) { SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this); if (NewOp.getNode()) return NewOp; } if (VT == MVT::v32i8) { SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG); if (NewOp.getNode()) return NewOp; } // Handle all 128-bit wide vectors with 4 elements, and match them with // several different shuffle types. if (NumElems == 4 && VT.is128BitVector()) return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG); // Handle general 256-bit shuffles if (VT.is256BitVector()) return LowerVECTOR_SHUFFLE_256(SVOp, DAG); return SDValue(); } static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getValueType().getSimpleVT(); DebugLoc dl = Op.getDebugLoc(); if (!Op.getOperand(0).getValueType().getSimpleVT().is128BitVector()) return SDValue(); if (VT.getSizeInBits() == 8) { SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, Op.getOperand(0), Op.getOperand(1)); SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); } if (VT.getSizeInBits() == 16) { unsigned Idx = cast(Op.getOperand(1))->getZExtValue(); // If Idx is 0, it's cheaper to do a move instead of a pextrw. if (Idx == 0) return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), Op.getOperand(1))); SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, Op.getOperand(0), Op.getOperand(1)); SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); } if (VT == MVT::f32) { // EXTRACTPS outputs to a GPR32 register which will require a movd to copy // the result back to FR32 register. It's only worth matching if the // result has a single use which is a store or a bitcast to i32. And in // the case of a store, it's not worth it if the index is a constant 0, // because a MOVSSmr can be used instead, which is smaller and faster. if (!Op.hasOneUse()) return SDValue(); SDNode *User = *Op.getNode()->use_begin(); if ((User->getOpcode() != ISD::STORE || (isa(Op.getOperand(1)) && cast(Op.getOperand(1))->isNullValue())) && (User->getOpcode() != ISD::BITCAST || User->getValueType(0) != MVT::i32)) return SDValue(); SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), Op.getOperand(1)); return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract); } if (VT == MVT::i32 || VT == MVT::i64) { // ExtractPS/pextrq works with constant index. if (isa(Op.getOperand(1))) return Op; } return SDValue(); } SDValue X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { if (!isa(Op.getOperand(1))) return SDValue(); SDValue Vec = Op.getOperand(0); MVT VecVT = Vec.getValueType().getSimpleVT(); // If this is a 256-bit vector result, first extract the 128-bit vector and // then extract the element from the 128-bit vector. if (VecVT.is256BitVector()) { DebugLoc dl = Op.getNode()->getDebugLoc(); unsigned NumElems = VecVT.getVectorNumElements(); SDValue Idx = Op.getOperand(1); unsigned IdxVal = cast(Idx)->getZExtValue(); // Get the 128-bit vector. Vec = Extract128BitVector(Vec, IdxVal, DAG, dl); if (IdxVal >= NumElems/2) IdxVal -= NumElems/2; return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec, DAG.getConstant(IdxVal, MVT::i32)); } assert(VecVT.is128BitVector() && "Unexpected vector length"); if (Subtarget->hasSSE41()) { SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); if (Res.getNode()) return Res; } MVT VT = Op.getValueType().getSimpleVT(); DebugLoc dl = Op.getDebugLoc(); // TODO: handle v16i8. if (VT.getSizeInBits() == 16) { SDValue Vec = Op.getOperand(0); unsigned Idx = cast(Op.getOperand(1))->getZExtValue(); if (Idx == 0) return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Vec), Op.getOperand(1))); // Transform it so it match pextrw which produces a 32-bit result. MVT EltVT = MVT::i32; SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, Op.getOperand(0), Op.getOperand(1)); SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); } if (VT.getSizeInBits() == 32) { unsigned Idx = cast(Op.getOperand(1))->getZExtValue(); if (Idx == 0) return Op; // SHUFPS the element to the lowest double word, then movss. int Mask[4] = { static_cast(Idx), -1, -1, -1 }; MVT VVT = Op.getOperand(0).getValueType().getSimpleVT(); SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), DAG.getUNDEF(VVT), Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, DAG.getIntPtrConstant(0)); } if (VT.getSizeInBits() == 64) { // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught // to match extract_elt for f64. unsigned Idx = cast(Op.getOperand(1))->getZExtValue(); if (Idx == 0) return Op; // UNPCKHPD the element to the lowest double word, then movsd. // Note if the lower 64 bits of the result of the UNPCKHPD is then stored // to a f64mem, the whole operation is folded into a single MOVHPDmr. int Mask[2] = { 1, -1 }; MVT VVT = Op.getOperand(0).getValueType().getSimpleVT(); SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), DAG.getUNDEF(VVT), Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, DAG.getIntPtrConstant(0)); } return SDValue(); } static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getValueType().getSimpleVT(); MVT EltVT = VT.getVectorElementType(); DebugLoc dl = Op.getDebugLoc(); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2 = Op.getOperand(2); if (!VT.is128BitVector()) return SDValue(); if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) && isa(N2)) { unsigned Opc; if (VT == MVT::v8i16) Opc = X86ISD::PINSRW; else if (VT == MVT::v16i8) Opc = X86ISD::PINSRB; else Opc = X86ISD::PINSRB; // Transform it so it match pinsr{b,w} which expects a GR32 as its second // argument. if (N1.getValueType() != MVT::i32) N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); if (N2.getValueType() != MVT::i32) N2 = DAG.getIntPtrConstant(cast(N2)->getZExtValue()); return DAG.getNode(Opc, dl, VT, N0, N1, N2); } if (EltVT == MVT::f32 && isa(N2)) { // Bits [7:6] of the constant are the source select. This will always be // zero here. The DAG Combiner may combine an extract_elt index into these // bits. For example (insert (extract, 3), 2) could be matched by putting // the '3' into bits [7:6] of X86ISD::INSERTPS. // Bits [5:4] of the constant are the destination select. This is the // value of the incoming immediate. // Bits [3:0] of the constant are the zero mask. The DAG Combiner may // combine either bitwise AND or insert of float 0.0 to set these bits. N2 = DAG.getIntPtrConstant(cast(N2)->getZExtValue() << 4); // Create this as a scalar to vector.. N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); } if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa(N2)) { // PINSR* works with constant index. return Op; } return SDValue(); } SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getValueType().getSimpleVT(); MVT EltVT = VT.getVectorElementType(); DebugLoc dl = Op.getDebugLoc(); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2 = Op.getOperand(2); // If this is a 256-bit vector result, first extract the 128-bit vector, // insert the element into the extracted half and then place it back. if (VT.is256BitVector()) { if (!isa(N2)) return SDValue(); // Get the desired 128-bit vector half. unsigned NumElems = VT.getVectorNumElements(); unsigned IdxVal = cast(N2)->getZExtValue(); SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl); // Insert the element into the desired half. bool Upper = IdxVal >= NumElems/2; V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1, DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32)); // Insert the changed part back to the 256-bit vector return Insert128BitVector(N0, V, IdxVal, DAG, dl); } if (Subtarget->hasSSE41()) return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); if (EltVT == MVT::i8) return SDValue(); if (EltVT.getSizeInBits() == 16 && isa(N2)) { // Transform it so it match pinsrw which expects a 16-bit value in a GR32 // as its second argument. if (N1.getValueType() != MVT::i32) N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); if (N2.getValueType() != MVT::i32) N2 = DAG.getIntPtrConstant(cast(N2)->getZExtValue()); return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); } return SDValue(); } static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { LLVMContext *Context = DAG.getContext(); DebugLoc dl = Op.getDebugLoc(); MVT OpVT = Op.getValueType().getSimpleVT(); // If this is a 256-bit vector result, first insert into a 128-bit // vector and then insert into the 256-bit vector. if (!OpVT.is128BitVector()) { // Insert into a 128-bit vector. EVT VT128 = EVT::getVectorVT(*Context, OpVT.getVectorElementType(), OpVT.getVectorNumElements() / 2); Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0)); // Insert the 128-bit vector. return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl); } if (OpVT == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); assert(OpVT.is128BitVector() && "Expected an SSE type!"); return DAG.getNode(ISD::BITCAST, dl, OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt)); } // Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in // a simple subregister reference or explicit instructions to grab // upper bits of a vector. static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { if (Subtarget->hasFp256()) { DebugLoc dl = Op.getNode()->getDebugLoc(); SDValue Vec = Op.getNode()->getOperand(0); SDValue Idx = Op.getNode()->getOperand(1); if (Op.getNode()->getValueType(0).is128BitVector() && Vec.getNode()->getValueType(0).is256BitVector() && isa(Idx)) { unsigned IdxVal = cast(Idx)->getZExtValue(); return Extract128BitVector(Vec, IdxVal, DAG, dl); } } return SDValue(); } // Lower a node with an INSERT_SUBVECTOR opcode. This may result in a // simple superregister reference or explicit instructions to insert // the upper bits of a vector. static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { if (Subtarget->hasFp256()) { DebugLoc dl = Op.getNode()->getDebugLoc(); SDValue Vec = Op.getNode()->getOperand(0); SDValue SubVec = Op.getNode()->getOperand(1); SDValue Idx = Op.getNode()->getOperand(2); if (Op.getNode()->getValueType(0).is256BitVector() && SubVec.getNode()->getValueType(0).is128BitVector() && isa(Idx)) { unsigned IdxVal = cast(Idx)->getZExtValue(); return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl); } } return SDValue(); } // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is // one of the above mentioned nodes. It has to be wrapped because otherwise // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only // be used to form addressing mode. These wrapped nodes will be selected // into MOV32ri. SDValue X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { ConstantPoolSDNode *CP = cast(Op); // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. unsigned char OpFlag = 0; unsigned WrapperKind = X86ISD::Wrapper; CodeModel::Model M = getTargetMachine().getCodeModel(); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) WrapperKind = X86ISD::WrapperRIP; else if (Subtarget->isPICStyleGOT()) OpFlag = X86II::MO_GOTOFF; else if (Subtarget->isPICStyleStubPIC()) OpFlag = X86II::MO_PIC_BASE_OFFSET; SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(), CP->getAlignment(), CP->getOffset(), OpFlag); DebugLoc DL = CP->getDebugLoc(); Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (OpFlag) { Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy()), Result); } return Result; } SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { JumpTableSDNode *JT = cast(Op); // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. unsigned char OpFlag = 0; unsigned WrapperKind = X86ISD::Wrapper; CodeModel::Model M = getTargetMachine().getCodeModel(); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) WrapperKind = X86ISD::WrapperRIP; else if (Subtarget->isPICStyleGOT()) OpFlag = X86II::MO_GOTOFF; else if (Subtarget->isPICStyleStubPIC()) OpFlag = X86II::MO_PIC_BASE_OFFSET; SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(), OpFlag); DebugLoc DL = JT->getDebugLoc(); Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (OpFlag) Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy()), Result); return Result; } SDValue X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { const char *Sym = cast(Op)->getSymbol(); // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. unsigned char OpFlag = 0; unsigned WrapperKind = X86ISD::Wrapper; CodeModel::Model M = getTargetMachine().getCodeModel(); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) { if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF()) OpFlag = X86II::MO_GOTPCREL; WrapperKind = X86ISD::WrapperRIP; } else if (Subtarget->isPICStyleGOT()) { OpFlag = X86II::MO_GOT; } else if (Subtarget->isPICStyleStubPIC()) { OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE; } else if (Subtarget->isPICStyleStubNoDynamic()) { OpFlag = X86II::MO_DARWIN_NONLAZY; } SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag); DebugLoc DL = Op.getDebugLoc(); Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && !Subtarget->is64Bit()) { Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy()), Result); } // For symbols that require a load from a stub to get the address, emit the // load. if (isGlobalStubReference(OpFlag)) Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(), false, false, false, 0); return Result; } SDValue X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { // Create the TargetBlockAddressAddress node. unsigned char OpFlags = Subtarget->ClassifyBlockAddressReference(); CodeModel::Model M = getTargetMachine().getCodeModel(); const BlockAddress *BA = cast(Op)->getBlockAddress(); int64_t Offset = cast(Op)->getOffset(); DebugLoc dl = Op.getDebugLoc(); SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset, OpFlags); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); else Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (isGlobalRelativeToPICBase(OpFlags)) { Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), Result); } return Result; } SDValue X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, int64_t Offset, SelectionDAG &DAG) const { // Create the TargetGlobalAddress node, folding in the constant // offset if it is legal. unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); CodeModel::Model M = getTargetMachine().getCodeModel(); SDValue Result; if (OpFlags == X86II::MO_NO_FLAG && X86::isOffsetSuitableForCodeModel(Offset, M)) { // A direct static reference to a global. Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset); Offset = 0; } else { Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags); } if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); else Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (isGlobalRelativeToPICBase(OpFlags)) { Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), Result); } // For globals that require a load from a stub to get the address, emit the // load. if (isGlobalStubReference(OpFlags)) Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(), false, false, false, 0); // If there was a non-zero offset that we didn't fold, create an explicit // addition for it. if (Offset != 0) Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result, DAG.getConstant(Offset, getPointerTy())); return Result; } SDValue X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { const GlobalValue *GV = cast(Op)->getGlobal(); int64_t Offset = cast(Op)->getOffset(); return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); } static SDValue GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, unsigned char OperandFlags, bool LocalDynamic = false, unsigned Opcode = ISD::DELETED_NODE) { // @LOCALMOD MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); DebugLoc dl = GA->getDebugLoc(); SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), OperandFlags); // @LOCALMOD - changed type for casting unsigned CallType = LocalDynamic ? X86ISD::TLSBASEADDR : X86ISD::TLSADDR; // @LOCALMOD-START // If Opcode was explicitly overridden, use it as the call type. if (Opcode != ISD::DELETED_NODE) CallType = Opcode; // @LOCALMOD-END if (InFlag) { SDValue Ops[] = { Chain, TGA, *InFlag }; Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops)); } else { SDValue Ops[] = { Chain, TGA }; Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops)); } // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. MFI->setAdjustsStack(true); SDValue Flag = Chain.getValue(1); return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); } // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit static SDValue LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT) { SDValue InFlag; DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag); InFlag = Chain.getValue(1); return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); } // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit static SDValue LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT) { return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX, X86II::MO_TLSGD); } // Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model. static SDValue LowerToTLSExecCall(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT, TLSModel::Model model, bool is64Bit) { // See: http://code.google.com/p/nativeclient/issues/detail?id=1685 unsigned char TargetFlag; unsigned Opcode; if (model == TLSModel::LocalExec) { TargetFlag = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; Opcode = X86ISD::TLSADDR_LE; } else if (model == TLSModel::InitialExec) { TargetFlag = is64Bit ? X86II::MO_GOTTPOFF : X86II::MO_INDNTPOFF; Opcode = X86ISD::TLSADDR_IE; } else { llvm_unreachable("Unknown TLS model"); } return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::EAX, // PtrVT is 32-bit. TargetFlag, false, Opcode); } // @LOCALMOD-START // Lower TLS accesses to a function call, rather than use segment registers. // Lower ISD::GlobalTLSAddress for NaCl 64 bit. static SDValue LowerToTLSNaCl64(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT, TLSModel::Model model) { // See: http://code.google.com/p/nativeclient/issues/detail?id=1685 unsigned char TargetFlag; unsigned Opcode; if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { TargetFlag = X86II::MO_TLSGD; Opcode = X86ISD::TLSADDR; } else { return LowerToTLSExecCall(GA, DAG, PtrVT, model, true); } return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::EAX, // PtrVT is 32-bit. TargetFlag, false, Opcode); } // @LOCALMOD-END static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT, bool is64Bit) { DebugLoc dl = GA->getDebugLoc(); // Get the start address of the TLS block for this module. X86MachineFunctionInfo* MFI = DAG.getMachineFunction() .getInfo(); MFI->incNumLocalDynamicTLSAccesses(); SDValue Base; if (is64Bit) { Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX, X86II::MO_TLSLD, /*LocalDynamic=*/true); } else { SDValue InFlag; SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag); InFlag = Chain.getValue(1); Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSLDM, /*LocalDynamic=*/true); } // Note: the CleanupLocalDynamicTLSPass will remove redundant computations // of Base. // Build x@dtpoff. unsigned char OperandFlags = X86II::MO_DTPOFF; unsigned WrapperKind = X86ISD::Wrapper; SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), OperandFlags); SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); // Add x@dtpoff with the base. return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base); } // Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model. static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT, TLSModel::Model model, bool is64Bit, bool isPIC) { DebugLoc dl = GA->getDebugLoc(); // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit). Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(), is64Bit ? 257 : 256)); SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0), MachinePointerInfo(Ptr), false, false, false, 0); unsigned char OperandFlags = 0; // Most TLS accesses are not RIP relative, even on x86-64. One exception is // initialexec. unsigned WrapperKind = X86ISD::Wrapper; if (model == TLSModel::LocalExec) { OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; } else if (model == TLSModel::InitialExec) { if (is64Bit) { OperandFlags = X86II::MO_GOTTPOFF; WrapperKind = X86ISD::WrapperRIP; } else { OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF; } } else { llvm_unreachable("Unexpected model"); } // emit "addl x@ntpoff,%eax" (local exec) // or "addl x@indntpoff,%eax" (initial exec) // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic) SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), OperandFlags); SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); if (model == TLSModel::InitialExec) { if (isPIC && !is64Bit) { Offset = DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), Offset); } Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, MachinePointerInfo::getGOT(), false, false, false, 0); } // The address of the thread local variable is the add of the thread // pointer with the offset of the variable. return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); } SDValue X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GA = cast(Op); const GlobalValue *GV = GA->getGlobal(); if (Subtarget->isTargetELF()) { TLSModel::Model model = getTargetMachine().getTLSModel(GV); // @LOCALMOD-START if (Subtarget->isTargetNaCl64()) return LowerToTLSNaCl64(GA, DAG, getPointerTy(), model); // @LOCALMOD-END switch (model) { case TLSModel::GeneralDynamic: if (Subtarget->is64Bit()) return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); case TLSModel::LocalDynamic: return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(), Subtarget->is64Bit()); case TLSModel::InitialExec: case TLSModel::LocalExec: // @LOCALMOD-START if (llvm::TLSUseCall && Subtarget->isTargetNaCl()) { return LowerToTLSExecCall(GA, DAG, getPointerTy(), model, Subtarget->is64Bit()); } else { return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, Subtarget->is64Bit(), getTargetMachine().getRelocationModel() == Reloc::PIC_); } // @LOCALMOD-END } llvm_unreachable("Unknown TLS model."); } if (Subtarget->isTargetDarwin()) { // Darwin only has one model of TLS. Lower to that. unsigned char OpFlag = 0; unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ? X86ISD::WrapperRIP : X86ISD::Wrapper; // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) && !Subtarget->is64Bit(); if (PIC32) OpFlag = X86II::MO_TLVP_PIC_BASE; else OpFlag = X86II::MO_TLVP; DebugLoc DL = Op.getDebugLoc(); SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, GA->getValueType(0), GA->getOffset(), OpFlag); SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); // With PIC32, the address is actually $g + Offset. if (PIC32) Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy()), Offset); // Lowering the machine isd will make sure everything is in the right // location. SDValue Chain = DAG.getEntryNode(); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Args[] = { Chain, Offset }; Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2); // TLSCALL will be codegen'ed as call. Inform MFI that function has calls. MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setAdjustsStack(true); // And our return value (tls address) is in the standard call return value // location. unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(), Chain.getValue(1)); } if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) { // Just use the implicit TLS architecture // Need to generate someting similar to: // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage // ; from TEB // mov ecx, dword [rel _tls_index]: Load index (from C runtime) // mov rcx, qword [rdx+rcx*8] // mov eax, .tls$:tlsvar // [rax+rcx] contains the address // Windows 64bit: gs:0x58 // Windows 32bit: fs:__tls_array // If GV is an alias then use the aliasee for determining // thread-localness. if (const GlobalAlias *GA = dyn_cast(GV)) GV = GA->resolveAliasedGlobal(false); DebugLoc dl = GA->getDebugLoc(); SDValue Chain = DAG.getEntryNode(); // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly // use its literal value of 0x2C. Value *Ptr = Constant::getNullValue(Subtarget->is64Bit() ? Type::getInt8PtrTy(*DAG.getContext(), 256) : Type::getInt32PtrTy(*DAG.getContext(), 257)); SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) : (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) : DAG.getExternalSymbol("_tls_array", getPointerTy())); SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray, MachinePointerInfo(Ptr), false, false, false, 0); // Load the _tls_index variable SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy()); if (Subtarget->is64Bit()) IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain, IDX, MachinePointerInfo(), MVT::i32, false, false, 0); else IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(), false, false, false, 0); SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()), getPointerTy()); IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale); SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX); res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(), false, false, false, 0); // Get the offset of start of .tls section SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), X86II::MO_SECREL); SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA); // The address of the thread local variable is the add of the thread // pointer with the offset of the variable. return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset); } llvm_unreachable("TLS not implemented for this target."); } /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values /// and take a 2 x i32 value to shift plus a shift amount. SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{ assert(Op.getNumOperands() == 3 && "Not a double-shift!"); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); DebugLoc dl = Op.getDebugLoc(); bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) : DAG.getConstant(0, VT); SDValue Tmp2, Tmp3; if (Op.getOpcode() == ISD::SHL_PARTS) { Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); } else { Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt); } SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, DAG.getConstant(VTBits, MVT::i8)); SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, AndNode, DAG.getConstant(0, MVT::i8)); SDValue Hi, Lo; SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8); SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; if (Op.getOpcode() == ISD::SHL_PARTS) { Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); } else { Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); } SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, array_lengthof(Ops), dl); } SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { EVT SrcVT = Op.getOperand(0).getValueType(); if (SrcVT.isVector()) return SDValue(); assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 && "Unknown SINT_TO_FP to lower!"); // These are really Legal; return the operand so the caller accepts it as // Legal. if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) return Op; if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && Subtarget->is64Bit()) { return Op; } DebugLoc dl = Op.getDebugLoc(); unsigned Size = SrcVT.getSizeInBits()/8; MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot, MachinePointerInfo::getFixedStack(SSFI), false, false, 0); return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); } SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot, SelectionDAG &DAG) const { // Build the FILD DebugLoc DL = Op.getDebugLoc(); SDVTList Tys; bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); if (useSSE) Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue); else Tys = DAG.getVTList(Op.getValueType(), MVT::Other); unsigned ByteSize = SrcVT.getSizeInBits()/8; FrameIndexSDNode *FI = dyn_cast(StackSlot); MachineMemOperand *MMO; if (FI) { int SSFI = FI->getIndex(); MMO = DAG.getMachineFunction() .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), MachineMemOperand::MOLoad, ByteSize, ByteSize); } else { MMO = cast(StackSlot)->getMemOperand(); StackSlot = StackSlot.getOperand(1); } SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, DL, Tys, Ops, array_lengthof(Ops), SrcVT, MMO); if (useSSE) { Chain = Result.getValue(1); SDValue InFlag = Result.getValue(2); // FIXME: Currently the FST is flagged to the FILD_FLAG. This // shouldn't be necessary except that RFP cannot be live across // multiple blocks. When stackifier is fixed, they can be uncoupled. MachineFunction &MF = DAG.getMachineFunction(); unsigned SSFISize = Op.getValueType().getSizeInBits()/8; int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); Tys = DAG.getVTList(MVT::Other); SDValue Ops[] = { Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag }; MachineMemOperand *MMO = DAG.getMachineFunction() .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), MachineMemOperand::MOStore, SSFISize, SSFISize); Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, Ops, array_lengthof(Ops), Op.getValueType(), MMO); Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot, MachinePointerInfo::getFixedStack(SSFI), false, false, false, 0); } return Result; } // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const { // This algorithm is not obvious. Here it is what we're trying to output: /* movq %rax, %xmm0 punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U } subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 } #ifdef __SSE3__ haddpd %xmm0, %xmm0 #else pshufd $0x4e, %xmm0, %xmm1 addpd %xmm1, %xmm0 #endif */ DebugLoc dl = Op.getDebugLoc(); LLVMContext *Context = DAG.getContext(); // Build some magic constants. const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 }; Constant *C0 = ConstantDataVector::get(*Context, CV0); SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16); SmallVector CV1; CV1.push_back( ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, APInt(64, 0x4330000000000000ULL)))); CV1.push_back( ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, APInt(64, 0x4530000000000000ULL)))); Constant *C1 = ConstantVector::get(CV1); SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16); // Load the 64-bit value into an XMM register. SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Op.getOperand(0)); SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, MachinePointerInfo::getConstantPool(), false, false, false, 16); SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1), CLod0); SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, MachinePointerInfo::getConstantPool(), false, false, false, 16); SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1); SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); SDValue Result; if (Subtarget->hasSSE3()) { // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'. Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub); } else { SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub); SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32, S2F, 0x4E, DAG); Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64, DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle), Sub); } return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result, DAG.getIntPtrConstant(0)); } // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); // FP constant to bias correct the final result. SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), MVT::f64); // Load the 32-bit value into an XMM register. SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Op.getOperand(0)); // Zero out the upper parts of the register. Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG); Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load), DAG.getIntPtrConstant(0)); // Or the load with the bias. SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)), DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias))); Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or), DAG.getIntPtrConstant(0)); // Subtract the bias. SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); // Handle final rounding. EVT DestVT = Op.getValueType(); if (DestVT.bitsLT(MVT::f64)) return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, DAG.getIntPtrConstant(0)); if (DestVT.bitsGT(MVT::f64)) return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); // Handle final rounding. return Sub; } SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const { SDValue N0 = Op.getOperand(0); EVT SVT = N0.getValueType(); DebugLoc dl = Op.getDebugLoc(); assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 || SVT == MVT::v8i8 || SVT == MVT::v8i16) && "Custom UINT_TO_FP is not supported!"); EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, SVT.getVectorNumElements()); return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0)); } SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { SDValue N0 = Op.getOperand(0); DebugLoc dl = Op.getDebugLoc(); if (Op.getValueType().isVector()) return lowerUINT_TO_FP_vec(Op, DAG); // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform // the optimization here. if (DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); EVT SrcVT = N0.getValueType(); EVT DstVT = Op.getValueType(); if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64) return LowerUINT_TO_FP_i64(Op, DAG); if (SrcVT == MVT::i32 && X86ScalarSSEf64) return LowerUINT_TO_FP_i32(Op, DAG); if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32) return SDValue(); // Make a 64-bit buffer, and use it to build an FILD. SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); if (SrcVT == MVT::i32) { SDValue WordOff = DAG.getConstant(4, getPointerTy()); SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackSlot, WordOff); SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot, MachinePointerInfo(), false, false, 0); SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32), OffsetSlot, MachinePointerInfo(), false, false, 0); SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); return Fild; } assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP"); SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot, MachinePointerInfo(), false, false, 0); // For i64 source, we need to add the appropriate power of 2 if the input // was negative. This is the same as the optimization in // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here, // we must be careful to do the computation in x87 extended precision, not // in SSE. (The generic code can't know it's OK to do this, or how to.) int SSFI = cast(StackSlot)->getIndex(); MachineMemOperand *MMO = DAG.getMachineFunction() .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), MachineMemOperand::MOLoad, 8, 8); SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other); SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) }; SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, array_lengthof(Ops), MVT::i64, MMO); APInt FF(32, 0x5F800000ULL); // Check whether the sign bit is set. SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op.getOperand(0), DAG.getConstant(0, MVT::i64), ISD::SETLT); // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. SDValue FudgePtr = DAG.getConstantPool( ConstantInt::get(*DAG.getContext(), FF.zext(64)), getPointerTy()); // Get a pointer to FF if the sign bit was set, or to 0 otherwise. SDValue Zero = DAG.getIntPtrConstant(0); SDValue Four = DAG.getIntPtrConstant(4); SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet, Zero, Four); FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset); // Load the value out, extending it from f32 to f80. // FIXME: Avoid the extend by constructing the right constant pool? SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr, MachinePointerInfo::getConstantPool(), MVT::f32, false, false, 4); // Extend everything to 80 bits to force it to be done on x87. SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge); return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0)); } std::pair X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const { DebugLoc DL = Op.getDebugLoc(); EVT DstTy = Op.getValueType(); if (!IsSigned && !isIntegerTypeFTOL(DstTy)) { assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); DstTy = MVT::i64; } assert(DstTy.getSimpleVT() <= MVT::i64 && DstTy.getSimpleVT() >= MVT::i16 && "Unknown FP_TO_INT to lower!"); // These are really Legal. if (DstTy == MVT::i32 && isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) return std::make_pair(SDValue(), SDValue()); if (Subtarget->is64Bit() && DstTy == MVT::i64 && isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) return std::make_pair(SDValue(), SDValue()); // We lower FP->int64 either into FISTP64 followed by a load from a temporary // stack slot, or into the FTOL runtime function. MachineFunction &MF = DAG.getMachineFunction(); unsigned MemSize = DstTy.getSizeInBits()/8; int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); unsigned Opc; if (!IsSigned && isIntegerTypeFTOL(DstTy)) Opc = X86ISD::WIN_FTOL; else switch (DstTy.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; } SDValue Chain = DAG.getEntryNode(); SDValue Value = Op.getOperand(0); EVT TheVT = Op.getOperand(0).getValueType(); // FIXME This causes a redundant load/store if the SSE-class value is already // in memory, such as if it is on the callstack. if (isScalarFPTypeInSSEReg(TheVT)) { assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); Chain = DAG.getStore(Chain, DL, Value, StackSlot, MachinePointerInfo::getFixedStack(SSFI), false, false, 0); SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(TheVT) }; MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), MachineMemOperand::MOLoad, MemSize, MemSize); Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, array_lengthof(Ops), DstTy, MMO); Chain = Value.getValue(1); SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); } MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), MachineMemOperand::MOStore, MemSize, MemSize); if (Opc != X86ISD::WIN_FTOL) { // Build the FP_TO_INT*_IN_MEM SDValue Ops[] = { Chain, Value, StackSlot }; SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops), DstTy, MMO); return std::make_pair(FIST, StackSlot); } else { SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL, DAG.getVTList(MVT::Other, MVT::Glue), Chain, Value); SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX, MVT::i32, ftol.getValue(1)); SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX, MVT::i32, eax.getValue(2)); SDValue Ops[] = { eax, edx }; SDValue pair = IsReplace ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, array_lengthof(Ops)) : DAG.getMergeValues(Ops, array_lengthof(Ops), DL); return std::make_pair(pair, SDValue()); } } static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG, const X86Subtarget *Subtarget) { MVT VT = Op->getValueType(0).getSimpleVT(); SDValue In = Op->getOperand(0); MVT InVT = In.getValueType().getSimpleVT(); DebugLoc dl = Op->getDebugLoc(); // Optimize vectors in AVX mode: // // v8i16 -> v8i32 // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32. // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32. // Concat upper and lower parts. // // v4i32 -> v4i64 // Use vpunpckldq for 4 lower elements v4i32 -> v2i64. // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64. // Concat upper and lower parts. // if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) && ((VT != MVT::v4i64) || (InVT != MVT::v4i32))) return SDValue(); if (Subtarget->hasInt256()) return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In); SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl); SDValue Undef = DAG.getUNDEF(InVT); bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND; SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); MVT HVT = MVT::getVectorVT(VT.getVectorElementType(), VT.getVectorNumElements()/2); OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo); OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); } SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op, SelectionDAG &DAG) const { if (Subtarget->hasFp256()) { SDValue Res = LowerAVXExtend(Op, DAG, Subtarget); if (Res.getNode()) return Res; } return SDValue(); } SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const { DebugLoc DL = Op.getDebugLoc(); MVT VT = Op.getValueType().getSimpleVT(); SDValue In = Op.getOperand(0); MVT SVT = In.getValueType().getSimpleVT(); if (Subtarget->hasFp256()) { SDValue Res = LowerAVXExtend(Op, DAG, Subtarget); if (Res.getNode()) return Res; } if (!VT.is256BitVector() || !SVT.is128BitVector() || VT.getVectorNumElements() != SVT.getVectorNumElements()) return SDValue(); assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!"); // AVX2 has better support of integer extending. if (Subtarget->hasInt256()) return DAG.getNode(X86ISD::VZEXT, DL, VT, In); SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In); static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1}; SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, DAG.getVectorShuffle(MVT::v8i16, DL, In, DAG.getUNDEF(MVT::v8i16), &Mask[0])); return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi); } SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { DebugLoc DL = Op.getDebugLoc(); MVT VT = Op.getValueType().getSimpleVT(); SDValue In = Op.getOperand(0); MVT SVT = In.getValueType().getSimpleVT(); if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) { // On AVX2, v4i64 -> v4i32 becomes VPERMD. if (Subtarget->hasInt256()) { static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1}; In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In); In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32), ShufMask); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In, DAG.getIntPtrConstant(0)); } // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS. SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, DAG.getIntPtrConstant(0)); SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, DAG.getIntPtrConstant(2)); OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo); OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi); // The PSHUFD mask: static const int ShufMask1[] = {0, 2, 0, 0}; SDValue Undef = DAG.getUNDEF(VT); OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1); OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1); // The MOVLHPS mask: static const int ShufMask2[] = {0, 1, 4, 5}; return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2); } if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) { // On AVX2, v8i32 -> v8i16 becomed PSHUFB. if (Subtarget->hasInt256()) { In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In); SmallVector pshufbMask; for (unsigned i = 0; i < 2; ++i) { pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8)); for (unsigned j = 0; j < 8; ++j) pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); } SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, &pshufbMask[0], 32); In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV); In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In); static const int ShufMask[] = {0, 2, -1, -1}; In = DAG.getVectorShuffle(MVT::v4i64, DL, In, DAG.getUNDEF(MVT::v4i64), &ShufMask[0]); In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, DAG.getIntPtrConstant(0)); return DAG.getNode(ISD::BITCAST, DL, VT, In); } SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, DAG.getIntPtrConstant(0)); SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, DAG.getIntPtrConstant(4)); OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo); OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi); // The PSHUFB mask: static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13, -1, -1, -1, -1, -1, -1, -1, -1}; SDValue Undef = DAG.getUNDEF(MVT::v16i8); OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1); OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1); OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo); OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi); // The MOVLHPS Mask: static const int ShufMask2[] = {0, 1, 4, 5}; SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2); return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res); } // Handle truncation of V256 to V128 using shuffles. if (!VT.is128BitVector() || !SVT.is256BitVector()) return SDValue(); assert(VT.getVectorNumElements() != SVT.getVectorNumElements() && "Invalid op"); assert(Subtarget->hasFp256() && "256-bit vector without AVX!"); unsigned NumElems = VT.getVectorNumElements(); EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElems * 2); SmallVector MaskVec(NumElems * 2, -1); // Prepare truncation shuffle mask for (unsigned i = 0; i != NumElems; ++i) MaskVec[i] = i * 2; SDValue V = DAG.getVectorShuffle(NVT, DL, DAG.getNode(ISD::BITCAST, DL, NVT, In), DAG.getUNDEF(NVT), &MaskVec[0]); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, DAG.getIntPtrConstant(0)); } SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getValueType().getSimpleVT(); if (VT.isVector()) { if (VT == MVT::v8i16) return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), VT, DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(), MVT::v8i32, Op.getOperand(0))); return SDValue(); } std::pair Vals = FP_TO_INTHelper(Op, DAG, /*IsSigned=*/ true, /*IsReplace=*/ false); SDValue FIST = Vals.first, StackSlot = Vals.second; // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. if (FIST.getNode() == 0) return Op; if (StackSlot.getNode()) // Load the result. return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), FIST, StackSlot, MachinePointerInfo(), false, false, false, 0); // The node is the result. return FIST; } SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const { std::pair Vals = FP_TO_INTHelper(Op, DAG, /*IsSigned=*/ false, /*IsReplace=*/ false); SDValue FIST = Vals.first, StackSlot = Vals.second; assert(FIST.getNode() && "Unexpected failure"); if (StackSlot.getNode()) // Load the result. return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), FIST, StackSlot, MachinePointerInfo(), false, false, false, 0); // The node is the result. return FIST; } static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) { DebugLoc DL = Op.getDebugLoc(); MVT VT = Op.getValueType().getSimpleVT(); SDValue In = Op.getOperand(0); MVT SVT = In.getValueType().getSimpleVT(); assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!"); return DAG.getNode(X86ISD::VFPEXT, DL, VT, DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32, In, DAG.getUNDEF(SVT))); } SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const { LLVMContext *Context = DAG.getContext(); DebugLoc dl = Op.getDebugLoc(); MVT VT = Op.getValueType().getSimpleVT(); MVT EltVT = VT; unsigned NumElts = VT == MVT::f64 ? 2 : 4; if (VT.isVector()) { EltVT = VT.getVectorElementType(); NumElts = VT.getVectorNumElements(); } Constant *C; if (EltVT == MVT::f64) C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, APInt(64, ~(1ULL << 63)))); else C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle, APInt(32, ~(1U << 31)))); C = ConstantVector::getSplat(NumElts, C); SDValue CPIdx = DAG.getConstantPool(C, getPointerTy()); unsigned Alignment = cast(CPIdx)->getAlignment(); SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), false, false, false, Alignment); if (VT.isVector()) { MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(ISD::AND, dl, ANDVT, DAG.getNode(ISD::BITCAST, dl, ANDVT, Op.getOperand(0)), DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask))); } return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask); } SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const { LLVMContext *Context = DAG.getContext(); DebugLoc dl = Op.getDebugLoc(); MVT VT = Op.getValueType().getSimpleVT(); MVT EltVT = VT; unsigned NumElts = VT == MVT::f64 ? 2 : 4; if (VT.isVector()) { EltVT = VT.getVectorElementType(); NumElts = VT.getVectorNumElements(); } Constant *C; if (EltVT == MVT::f64) C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, APInt(64, 1ULL << 63))); else C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle, APInt(32, 1U << 31))); C = ConstantVector::getSplat(NumElts, C); SDValue CPIdx = DAG.getConstantPool(C, getPointerTy()); unsigned Alignment = cast(CPIdx)->getAlignment(); SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), false, false, false, Alignment); if (VT.isVector()) { MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(ISD::XOR, dl, XORVT, DAG.getNode(ISD::BITCAST, dl, XORVT, Op.getOperand(0)), DAG.getNode(ISD::BITCAST, dl, XORVT, Mask))); } return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask); } SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { LLVMContext *Context = DAG.getContext(); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); DebugLoc dl = Op.getDebugLoc(); MVT VT = Op.getValueType().getSimpleVT(); MVT SrcVT = Op1.getValueType().getSimpleVT(); // If second operand is smaller, extend it first. if (SrcVT.bitsLT(VT)) { Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); SrcVT = VT; } // And if it is bigger, shrink it first. if (SrcVT.bitsGT(VT)) { Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1)); SrcVT = VT; } // At this point the operands and the result should have the same // type, and that won't be f80 since that is not custom lowered. // First get the sign bit of second operand. SmallVector CV; if (SrcVT == MVT::f64) { const fltSemantics &Sem = APFloat::IEEEdouble; CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63)))); CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0)))); } else { const fltSemantics &Sem = APFloat::IEEEsingle; CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31)))); CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); } Constant *C = ConstantVector::get(CV); SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), false, false, false, 16); SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1); // Shift sign bit right or left if the two operands have different types. if (SrcVT.bitsGT(VT)) { // Op0 is MVT::f32, Op1 is MVT::f64. SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit); SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit, DAG.getConstant(32, MVT::i32)); SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit); SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit, DAG.getIntPtrConstant(0)); } // Clear first operand sign bit. CV.clear(); if (VT == MVT::f64) { const fltSemantics &Sem = APFloat::IEEEdouble; CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, ~(1ULL << 63))))); CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0)))); } else { const fltSemantics &Sem = APFloat::IEEEsingle; CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, ~(1U << 31))))); CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); } C = ConstantVector::get(CV); CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), false, false, false, 16); SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2); // Or the value with the sign bit. return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit); } static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) { SDValue N0 = Op.getOperand(0); DebugLoc dl = Op.getDebugLoc(); MVT VT = Op.getValueType().getSimpleVT(); // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1). SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0, DAG.getConstant(1, VT)); return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT)); } // LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able. // SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree."); if (!Subtarget->hasSSE41()) return SDValue(); if (!Op->hasOneUse()) return SDValue(); SDNode *N = Op.getNode(); DebugLoc DL = N->getDebugLoc(); SmallVector Opnds; DenseMap VecInMap; EVT VT = MVT::Other; // Recognize a special case where a vector is casted into wide integer to // test all 0s. Opnds.push_back(N->getOperand(0)); Opnds.push_back(N->getOperand(1)); for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) { SmallVector::const_iterator I = Opnds.begin() + Slot; // BFS traverse all OR'd operands. if (I->getOpcode() == ISD::OR) { Opnds.push_back(I->getOperand(0)); Opnds.push_back(I->getOperand(1)); // Re-evaluate the number of nodes to be traversed. e += 2; // 2 more nodes (LHS and RHS) are pushed. continue; } // Quit if a non-EXTRACT_VECTOR_ELT if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); // Quit if without a constant index. SDValue Idx = I->getOperand(1); if (!isa(Idx)) return SDValue(); SDValue ExtractedFromVec = I->getOperand(0); DenseMap::iterator M = VecInMap.find(ExtractedFromVec); if (M == VecInMap.end()) { VT = ExtractedFromVec.getValueType(); // Quit if not 128/256-bit vector. if (!VT.is128BitVector() && !VT.is256BitVector()) return SDValue(); // Quit if not the same type. if (VecInMap.begin() != VecInMap.end() && VT != VecInMap.begin()->first.getValueType()) return SDValue(); M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first; } M->second |= 1U << cast(Idx)->getZExtValue(); } assert((VT.is128BitVector() || VT.is256BitVector()) && "Not extracted from 128-/256-bit vector."); unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U; SmallVector VecIns; for (DenseMap::const_iterator I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) { // Quit if not all elements are used. if (I->second != FullMask) return SDValue(); VecIns.push_back(I->first); } EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; // Cast all vectors into TestVT for PTEST. for (unsigned i = 0, e = VecIns.size(); i < e; ++i) VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]); // If more than one full vectors are evaluated, OR them first before PTEST. for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) { // Each iteration will OR 2 nodes and append the result until there is only // 1 node left, i.e. the final OR'd value of all vectors. SDValue LHS = VecIns[Slot]; SDValue RHS = VecIns[Slot + 1]; VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS)); } return DAG.getNode(X86ISD::PTEST, DL, MVT::i32, VecIns.back(), VecIns.back()); } /// Emit nodes that will be selected as "test Op0,Op0", or something /// equivalent. SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); // CF and OF aren't always set the way we want. Determine which // of these we need. bool NeedCF = false; bool NeedOF = false; switch (X86CC) { default: break; case X86::COND_A: case X86::COND_AE: case X86::COND_B: case X86::COND_BE: NeedCF = true; break; case X86::COND_G: case X86::COND_GE: case X86::COND_L: case X86::COND_LE: case X86::COND_O: case X86::COND_NO: NeedOF = true; break; } // @LOCALMOD-BEGIN // This function only peeks at the data dependencies of the DAG to find // an arith op that also defines EFLAGS. However, function calls may // clobber EFLAGS and the data dependencies do not show that. // When that occurs, EFLAGS must be copied via PUSHF and POPF. // The problem is that NaCl does not allow PUSHF and POPF. // We could try to detect such clobbers for NaCl, but for now, we // keep this code simple, and bail out for NaCl. A further // PeepholeOptimizer pass can do a similar optimization // (see optimizeCompareInstr in X86InstrInfo.cpp), so it's not *so* // bad. This function also converts "add op, -1" to DEC, which can // help fold load/stores: // (store m, (add (load m), -1)) -> (dec m) // So we lose out on that. // BUG=http://code.google.com/p/nativeclient/issues/detail?id=2711 bool ConservativeForNaCl = Subtarget->isTargetNaCl(); // See if we can use the EFLAGS value from the operand instead of // doing a separate TEST. TEST always sets OF and CF to 0, so unless // we prove that the arithmetic won't overflow, we can't use OF or CF. if (Op.getResNo() != 0 || NeedOF || NeedCF || ConservativeForNaCl) // Emit a CMP with 0, which is the TEST pattern. return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, DAG.getConstant(0, Op.getValueType())); // @LOCALMOD-END unsigned Opcode = 0; unsigned NumOperands = 0; // Truncate operations may prevent the merge of the SETCC instruction // and the arithmetic intruction before it. Attempt to truncate the operands // of the arithmetic instruction and use a reduced bit-width instruction. bool NeedTruncation = false; SDValue ArithOp = Op; if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) { SDValue Arith = Op->getOperand(0); // Both the trunc and the arithmetic op need to have one user each. if (Arith->hasOneUse()) switch (Arith.getOpcode()) { default: break; case ISD::ADD: case ISD::SUB: case ISD::AND: case ISD::OR: case ISD::XOR: { NeedTruncation = true; ArithOp = Arith; } } } // NOTICE: In the code below we use ArithOp to hold the arithmetic operation // which may be the result of a CAST. We use the variable 'Op', which is the // non-casted variable when we check for possible users. switch (ArithOp.getOpcode()) { case ISD::ADD: // Due to an isel shortcoming, be conservative if this add is likely to be // selected as part of a load-modify-store instruction. When the root node // in a match is a store, isel doesn't know how to remap non-chain non-flag // uses of other nodes in the match, such as the ADD in this case. This // leads to the ADD being left around and reselected, with the result being // two adds in the output. Alas, even if none our users are stores, that // doesn't prove we're O.K. Ergo, if we have any parents that aren't // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require // climbing the DAG back to the root, and it doesn't seem to be worth the // effort. for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC && UI->getOpcode() != ISD::STORE) goto default_case; if (ConstantSDNode *C = dyn_cast(ArithOp.getNode()->getOperand(1))) { // An add of one will be selected as an INC. if (C->getAPIntValue() == 1) { Opcode = X86ISD::INC; NumOperands = 1; break; } // An add of negative one (subtract of one) will be selected as a DEC. if (C->getAPIntValue().isAllOnesValue()) { Opcode = X86ISD::DEC; NumOperands = 1; break; } } // Otherwise use a regular EFLAGS-setting add. Opcode = X86ISD::ADD; NumOperands = 2; break; case ISD::AND: { // If the primary and result isn't used, don't bother using X86ISD::AND, // because a TEST instruction will be better. bool NonFlagUse = false; for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; unsigned UOpNo = UI.getOperandNo(); if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { // Look pass truncate. UOpNo = User->use_begin().getOperandNo(); User = *User->use_begin(); } if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC && !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) { NonFlagUse = true; break; } } if (!NonFlagUse) break; } // FALL THROUGH case ISD::SUB: case ISD::OR: case ISD::XOR: // Due to the ISEL shortcoming noted above, be conservative if this op is // likely to be selected as part of a load-modify-store instruction. for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) if (UI->getOpcode() == ISD::STORE) goto default_case; // Otherwise use a regular EFLAGS-setting instruction. switch (ArithOp.getOpcode()) { default: llvm_unreachable("unexpected operator!"); case ISD::SUB: Opcode = X86ISD::SUB; break; case ISD::XOR: Opcode = X86ISD::XOR; break; case ISD::AND: Opcode = X86ISD::AND; break; case ISD::OR: { if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) { SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG); if (EFLAGS.getNode()) return EFLAGS; } Opcode = X86ISD::OR; break; } } NumOperands = 2; break; case X86ISD::ADD: case X86ISD::SUB: case X86ISD::INC: case X86ISD::DEC: case X86ISD::OR: case X86ISD::XOR: case X86ISD::AND: return SDValue(Op.getNode(), 1); default: default_case: break; } // If we found that truncation is beneficial, perform the truncation and // update 'Op'. if (NeedTruncation) { EVT VT = Op.getValueType(); SDValue WideVal = Op->getOperand(0); EVT WideVT = WideVal.getValueType(); unsigned ConvertedOp = 0; // Use a target machine opcode to prevent further DAGCombine // optimizations that may separate the arithmetic operations // from the setcc node. switch (WideVal.getOpcode()) { default: break; case ISD::ADD: ConvertedOp = X86ISD::ADD; break; case ISD::SUB: ConvertedOp = X86ISD::SUB; break; case ISD::AND: ConvertedOp = X86ISD::AND; break; case ISD::OR: ConvertedOp = X86ISD::OR; break; case ISD::XOR: ConvertedOp = X86ISD::XOR; break; } if (ConvertedOp) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) { SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0)); SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1)); Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1); } } } if (Opcode == 0) // Emit a CMP with 0, which is the TEST pattern. return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, DAG.getConstant(0, Op.getValueType())); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); SmallVector Ops; for (unsigned i = 0; i != NumOperands; ++i) Ops.push_back(Op.getOperand(i)); SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands); DAG.ReplaceAllUsesWith(Op, New); return SDValue(New.getNode(), 1); } /// Emit nodes that will be selected as "cmp Op0,Op1", or something /// equivalent. SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SelectionDAG &DAG) const { if (ConstantSDNode *C = dyn_cast(Op1)) if (C->getAPIntValue() == 0) return EmitTest(Op0, X86CC, DAG); DebugLoc dl = Op0.getDebugLoc(); if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 || Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) { // Use SUB instead of CMP to enable CSE between SUB and CMP. SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32); SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, Op0, Op1); return SDValue(Sub.getNode(), 1); } return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); } /// Convert a comparison if required by the subtarget. SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const { // If the subtarget does not support the FUCOMI instruction, floating-point // comparisons have to be converted. if (Subtarget->hasCMov() || Cmp.getOpcode() != X86ISD::CMP || !Cmp.getOperand(0).getValueType().isFloatingPoint() || !Cmp.getOperand(1).getValueType().isFloatingPoint()) return Cmp; // The instruction selector will select an FUCOM instruction instead of // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence // build an SDNode sequence that transfers the result from FPSW into EFLAGS: // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8)))) DebugLoc dl = Cmp.getDebugLoc(); SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp); SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW); SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW, DAG.getConstant(8, MVT::i8)); SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl); return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl); } static bool isAllOnes(SDValue V) { ConstantSDNode *C = dyn_cast(V); return C && C->isAllOnesValue(); } /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node /// if it's possible. SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, DebugLoc dl, SelectionDAG &DAG) const { // @LOCALMOD: NaCl validator rejects BT, BTS, and BTC. if (Subtarget->isTargetNaCl()) return SDValue(); SDValue Op0 = And.getOperand(0); SDValue Op1 = And.getOperand(1); if (Op0.getOpcode() == ISD::TRUNCATE) Op0 = Op0.getOperand(0); if (Op1.getOpcode() == ISD::TRUNCATE) Op1 = Op1.getOperand(0); SDValue LHS, RHS; if (Op1.getOpcode() == ISD::SHL) std::swap(Op0, Op1); if (Op0.getOpcode() == ISD::SHL) { if (ConstantSDNode *And00C = dyn_cast(Op0.getOperand(0))) if (And00C->getZExtValue() == 1) { // If we looked past a truncate, check that it's only truncating away // known zeros. unsigned BitWidth = Op0.getValueSizeInBits(); unsigned AndBitWidth = And.getValueSizeInBits(); if (BitWidth > AndBitWidth) { APInt Zeros, Ones; DAG.ComputeMaskedBits(Op0, Zeros, Ones); if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth) return SDValue(); } LHS = Op1; RHS = Op0.getOperand(1); } } else if (Op1.getOpcode() == ISD::Constant) { ConstantSDNode *AndRHS = cast(Op1); uint64_t AndRHSVal = AndRHS->getZExtValue(); SDValue AndLHS = Op0; if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) { LHS = AndLHS.getOperand(0); RHS = AndLHS.getOperand(1); } // Use BT if the immediate can't be encoded in a TEST instruction. if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) { LHS = AndLHS; RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType()); } } if (LHS.getNode()) { // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT // instruction. Since the shift amount is in-range-or-undefined, we know // that doing a bittest on the i32 value is ok. We extend to i32 because // the encoding for the i16 version is larger than the i32 version. // Also promote i16 to i32 for performance / code size reason. if (LHS.getValueType() == MVT::i8 || LHS.getValueType() == MVT::i16) LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); // If the operand types disagree, extend the shift amount to match. Since // BT ignores high bits (like shifts) we can use anyextend. if (LHS.getValueType() != RHS.getValueType()) RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(Cond, MVT::i8), BT); } return SDValue(); } // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128 // ones, and then concatenate the result back. static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getValueType().getSimpleVT(); assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC && "Unsupported value type for operation"); unsigned NumElems = VT.getVectorNumElements(); DebugLoc dl = Op.getDebugLoc(); SDValue CC = Op.getOperand(2); // Extract the LHS vectors SDValue LHS = Op.getOperand(0); SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); // Extract the RHS vectors SDValue RHS = Op.getOperand(1); SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); // Issue the operation on the smaller types and concatenate the result back MVT EltVT = VT.getVectorElementType(); MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC), DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC)); } static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDValue Cond; SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue CC = Op.getOperand(2); MVT VT = Op.getValueType().getSimpleVT(); ISD::CondCode SetCCOpcode = cast(CC)->get(); bool isFP = Op.getOperand(1).getValueType().getSimpleVT().isFloatingPoint(); DebugLoc dl = Op.getDebugLoc(); if (isFP) { #ifndef NDEBUG MVT EltVT = Op0.getValueType().getVectorElementType().getSimpleVT(); assert(EltVT == MVT::f32 || EltVT == MVT::f64); #endif unsigned SSECC; bool Swap = false; // SSE Condition code mapping: // 0 - EQ // 1 - LT // 2 - LE // 3 - UNORD // 4 - NEQ // 5 - NLT // 6 - NLE // 7 - ORD switch (SetCCOpcode) { default: llvm_unreachable("Unexpected SETCC condition"); case ISD::SETOEQ: case ISD::SETEQ: SSECC = 0; break; case ISD::SETOGT: case ISD::SETGT: Swap = true; // Fallthrough case ISD::SETLT: case ISD::SETOLT: SSECC = 1; break; case ISD::SETOGE: case ISD::SETGE: Swap = true; // Fallthrough case ISD::SETLE: case ISD::SETOLE: SSECC = 2; break; case ISD::SETUO: SSECC = 3; break; case ISD::SETUNE: case ISD::SETNE: SSECC = 4; break; case ISD::SETULE: Swap = true; // Fallthrough case ISD::SETUGE: SSECC = 5; break; case ISD::SETULT: Swap = true; // Fallthrough case ISD::SETUGT: SSECC = 6; break; case ISD::SETO: SSECC = 7; break; case ISD::SETUEQ: case ISD::SETONE: SSECC = 8; break; } if (Swap) std::swap(Op0, Op1); // In the two special cases we can't handle, emit two comparisons. if (SSECC == 8) { unsigned CC0, CC1; unsigned CombineOpc; if (SetCCOpcode == ISD::SETUEQ) { CC0 = 3; CC1 = 0; CombineOpc = ISD::OR; } else { assert(SetCCOpcode == ISD::SETONE); CC0 = 7; CC1 = 4; CombineOpc = ISD::AND; } SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1, DAG.getConstant(CC0, MVT::i8)); SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1, DAG.getConstant(CC1, MVT::i8)); return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1); } // Handle all other FP comparisons here. return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8)); } // Break 256-bit integer vector compare into smaller ones. if (VT.is256BitVector() && !Subtarget->hasInt256()) return Lower256IntVSETCC(Op, DAG); // We are handling one of the integer comparisons here. Since SSE only has // GT and EQ comparisons for integer, swapping operands and multiple // operations may be required for some comparisons. unsigned Opc; bool Swap = false, Invert = false, FlipSigns = false; switch (SetCCOpcode) { default: llvm_unreachable("Unexpected SETCC condition"); case ISD::SETNE: Invert = true; case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break; case ISD::SETLT: Swap = true; case ISD::SETGT: Opc = X86ISD::PCMPGT; break; case ISD::SETGE: Swap = true; case ISD::SETLE: Opc = X86ISD::PCMPGT; Invert = true; break; case ISD::SETULT: Swap = true; case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break; case ISD::SETUGE: Swap = true; case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break; } if (Swap) std::swap(Op0, Op1); // Check that the operation in question is available (most are plain SSE2, // but PCMPGTQ and PCMPEQQ have different requirements). if (VT == MVT::v2i64) { if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) { assert(Subtarget->hasSSE2() && "Don't know how to lower!"); // First cast everything to the right type. Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0); Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1); // Since SSE has no unsigned integer comparisons, we need to flip the sign // bits of the inputs before performing those operations. The lower // compare is always unsigned. SDValue SB; if (FlipSigns) { SB = DAG.getConstant(0x80000000U, MVT::v4i32); } else { SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32); SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32); SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Sign, Zero, Sign, Zero); } Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB); Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB); // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2)) SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1); SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1); // Create masks for only the low parts/high parts of the 64 bit integers. const int MaskHi[] = { 1, 1, 3, 3 }; const int MaskLo[] = { 0, 0, 2, 2 }; SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi); SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo); SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi); SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo); Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi); if (Invert) Result = DAG.getNOT(dl, Result, MVT::v4i32); return DAG.getNode(ISD::BITCAST, dl, VT, Result); } if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) { // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with // pcmpeqd + pshufd + pand. assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!"); // First cast everything to the right type. Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0); Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1); // Do the compare. SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1); // Make sure the lower and upper halves are both all-ones. const int Mask[] = { 1, 0, 3, 2 }; SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask); Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf); if (Invert) Result = DAG.getNOT(dl, Result, MVT::v4i32); return DAG.getNode(ISD::BITCAST, dl, VT, Result); } } // Since SSE has no unsigned integer comparisons, we need to flip the sign // bits of the inputs before performing those operations. if (FlipSigns) { EVT EltVT = VT.getVectorElementType(); SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT); Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB); Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB); } SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); // If the logical-not of the result is required, perform that now. if (Invert) Result = DAG.getNOT(dl, Result, VT); return Result; } SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getValueType().getSimpleVT(); if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG); assert(VT == MVT::i8 && "SetCC type must be 8-bit integer"); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); DebugLoc dl = Op.getDebugLoc(); ISD::CondCode CC = cast(Op.getOperand(2))->get(); // Optimize to BT if possible. // Lower (X & (1 << N)) == 0 to BT(X, N). // Lower ((X >>u N) & 1) != 0 to BT(X, N). // Lower ((X >>s N) & 1) != 0 to BT(X, N). if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && Op1.getOpcode() == ISD::Constant && cast(Op1)->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); if (NewSetCC.getNode()) return NewSetCC; } // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of // these. if (Op1.getOpcode() == ISD::Constant && (cast(Op1)->getZExtValue() == 1 || cast(Op1)->isNullValue()) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { // If the input is a setcc, then reuse the input setcc or use a new one with // the inverted condition. if (Op0.getOpcode() == X86ISD::SETCC) { X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); bool Invert = (CC == ISD::SETNE) ^ cast(Op1)->isNullValue(); if (!Invert) return Op0; CCode = X86::GetOppositeBranchCondition(CCode); return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1)); } } bool isFP = Op1.getValueType().getSimpleVT().isFloatingPoint(); unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); if (X86CC == X86::COND_INVALID) return SDValue(); SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG); EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG); return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86CC, MVT::i8), EFLAGS); } // isX86LogicalCmp - Return true if opcode is a X86 logical comparison. static bool isX86LogicalCmp(SDValue Op) { unsigned Opc = Op.getNode()->getOpcode(); if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI || Opc == X86ISD::SAHF) return true; if (Op.getResNo() == 1 && (Opc == X86ISD::ADD || Opc == X86ISD::SUB || Opc == X86ISD::ADC || Opc == X86ISD::SBB || Opc == X86ISD::SMUL || Opc == X86ISD::UMUL || Opc == X86ISD::INC || Opc == X86ISD::DEC || Opc == X86ISD::OR || Opc == X86ISD::XOR || Opc == X86ISD::AND)) return true; if (Op.getResNo() == 2 && Opc == X86ISD::UMUL) return true; return false; } static bool isZero(SDValue V) { ConstantSDNode *C = dyn_cast(V); return C && C->isNullValue(); } static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) { if (V.getOpcode() != ISD::TRUNCATE) return false; SDValue VOp0 = V.getOperand(0); unsigned InBits = VOp0.getValueSizeInBits(); unsigned Bits = V.getValueSizeInBits(); return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits)); } SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { bool addTest = true; SDValue Cond = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue Op2 = Op.getOperand(2); DebugLoc DL = Op.getDebugLoc(); SDValue CC; if (Cond.getOpcode() == ISD::SETCC) { SDValue NewCond = LowerSETCC(Cond, DAG); if (NewCond.getNode()) Cond = NewCond; } // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y if (Cond.getOpcode() == X86ISD::SETCC && Cond.getOperand(1).getOpcode() == X86ISD::CMP && isZero(Cond.getOperand(1).getOperand(1))) { SDValue Cmp = Cond.getOperand(1); unsigned CondCode =cast(Cond.getOperand(0))->getZExtValue(); if ((isAllOnes(Op1) || isAllOnes(Op2)) && (CondCode == X86::COND_E || CondCode == X86::COND_NE)) { SDValue Y = isAllOnes(Op2) ? Op1 : Op2; SDValue CmpOp0 = Cmp.getOperand(0); // Apply further optimizations for special cases // (select (x != 0), -1, 0) -> neg & sbb // (select (x == 0), 0, -1) -> neg & sbb if (ConstantSDNode *YC = dyn_cast(Y)) if (YC->isNullValue() && (isAllOnes(Op1) == (CondCode == X86::COND_NE))) { SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32); SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs, DAG.getConstant(0, CmpOp0.getValueType()), CmpOp0); SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), DAG.getConstant(X86::COND_B, MVT::i8), SDValue(Neg.getNode(), 1)); return Res; } Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0, DAG.getConstant(1, CmpOp0.getValueType())); Cmp = ConvertCmpIfNecessary(Cmp, DAG); SDValue Res = // Res = 0 or -1. DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), DAG.getConstant(X86::COND_B, MVT::i8), Cmp); if (isAllOnes(Op1) != (CondCode == X86::COND_E)) Res = DAG.getNOT(DL, Res, Res.getValueType()); ConstantSDNode *N2C = dyn_cast(Op2); if (N2C == 0 || !N2C->isNullValue()) Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y); return Res; } } // Look past (and (setcc_carry (cmp ...)), 1). if (Cond.getOpcode() == ISD::AND && Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { ConstantSDNode *C = dyn_cast(Cond.getOperand(1)); if (C && C->getAPIntValue() == 1) Cond = Cond.getOperand(0); } // If condition flag is set by a X86ISD::CMP, then use it as the condition // setting operand in place of the X86ISD::SETCC. unsigned CondOpcode = Cond.getOpcode(); if (CondOpcode == X86ISD::SETCC || CondOpcode == X86ISD::SETCC_CARRY) { CC = Cond.getOperand(0); SDValue Cmp = Cond.getOperand(1); unsigned Opc = Cmp.getOpcode(); MVT VT = Op.getValueType().getSimpleVT(); bool IllegalFPCMov = false; if (VT.isFloatingPoint() && !VT.isVector() && !isScalarFPTypeInSSEReg(VT)) // FPStack? IllegalFPCMov = !hasFPCMov(cast(CC)->getSExtValue()); if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || Opc == X86ISD::BT) { // FIXME Cond = Cmp; addTest = false; } } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && Cond.getOperand(0).getValueType() != MVT::i8)) { SDValue LHS = Cond.getOperand(0); SDValue RHS = Cond.getOperand(1); unsigned X86Opcode; unsigned X86Cond; SDVTList VTs; switch (CondOpcode) { case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; default: llvm_unreachable("unexpected overflowing operator"); } if (CondOpcode == ISD::UMULO) VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), MVT::i32); else VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS); if (CondOpcode == ISD::UMULO) Cond = X86Op.getValue(2); else Cond = X86Op.getValue(1); CC = DAG.getConstant(X86Cond, MVT::i8); addTest = false; } if (addTest) { // Look pass the truncate if the high bits are known zero. if (isTruncWithZeroHighBitsInput(Cond, DAG)) Cond = Cond.getOperand(0); // We know the result of AND is compared against zero. Try to match // it to BT. if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG); if (NewSetCC.getNode()) { CC = NewSetCC.getOperand(0); Cond = NewSetCC.getOperand(1); addTest = false; } } } if (addTest) { CC = DAG.getConstant(X86::COND_NE, MVT::i8); Cond = EmitTest(Cond, X86::COND_NE, DAG); } // a < b ? -1 : 0 -> RES = ~setcc_carry // a < b ? 0 : -1 -> RES = setcc_carry // a >= b ? -1 : 0 -> RES = setcc_carry // a >= b ? 0 : -1 -> RES = ~setcc_carry if (Cond.getOpcode() == X86ISD::SUB) { Cond = ConvertCmpIfNecessary(Cond, DAG); unsigned CondCode = cast(CC)->getZExtValue(); if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) && (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) { SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), DAG.getConstant(X86::COND_B, MVT::i8), Cond); if (isAllOnes(Op1) != (CondCode == X86::COND_B)) return DAG.getNOT(DL, Res, Res.getValueType()); return Res; } } // X86 doesn't have an i8 cmov. If both operands are the result of a truncate // widen the cmov and push the truncate through. This avoids introducing a new // branch during isel and doesn't add any extensions. if (Op.getValueType() == MVT::i8 && Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) { SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0); if (T1.getValueType() == T2.getValueType() && // Blacklist CopyFromReg to avoid partial register stalls. T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){ SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue); SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond); return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov); } } // X86ISD::CMOV means set the result (which is operand 1) to the RHS if // condition is true. SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); SDValue Ops[] = { Op2, Op1, CC, Cond }; return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops)); } SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op->getValueType(0).getSimpleVT(); SDValue In = Op->getOperand(0); MVT InVT = In.getValueType().getSimpleVT(); DebugLoc dl = Op->getDebugLoc(); if ((VT != MVT::v4i64 || InVT != MVT::v4i32) && (VT != MVT::v8i32 || InVT != MVT::v8i16)) return SDValue(); if (Subtarget->hasInt256()) return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In); // Optimize vectors in AVX mode // Sign extend v8i16 to v8i32 and // v4i32 to v4i64 // // Divide input vector into two parts // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1} // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32 // concat the vectors to original VT unsigned NumElems = InVT.getVectorNumElements(); SDValue Undef = DAG.getUNDEF(InVT); SmallVector ShufMask1(NumElems, -1); for (unsigned i = 0; i != NumElems/2; ++i) ShufMask1[i] = i; SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]); SmallVector ShufMask2(NumElems, -1); for (unsigned i = 0; i != NumElems/2; ++i) ShufMask2[i] = i + NumElems/2; SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]); MVT HalfVT = MVT::getVectorVT(VT.getScalarType(), VT.getVectorNumElements()/2); OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo); OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); } // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart // from the AND / OR. static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { Opc = Op.getOpcode(); if (Opc != ISD::OR && Opc != ISD::AND) return false; return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && Op.getOperand(0).hasOneUse() && Op.getOperand(1).getOpcode() == X86ISD::SETCC && Op.getOperand(1).hasOneUse()); } // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and // 1 and that the SETCC node has a single use. static bool isXor1OfSetCC(SDValue Op) { if (Op.getOpcode() != ISD::XOR) return false; ConstantSDNode *N1C = dyn_cast(Op.getOperand(1)); if (N1C && N1C->getAPIntValue() == 1) { return Op.getOperand(0).getOpcode() == X86ISD::SETCC && Op.getOperand(0).hasOneUse(); } return false; } SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { bool addTest = true; SDValue Chain = Op.getOperand(0); SDValue Cond = Op.getOperand(1); SDValue Dest = Op.getOperand(2); DebugLoc dl = Op.getDebugLoc(); SDValue CC; bool Inverted = false; if (Cond.getOpcode() == ISD::SETCC) { // Check for setcc([su]{add,sub,mul}o == 0). if (cast(Cond.getOperand(2))->get() == ISD::SETEQ && isa(Cond.getOperand(1)) && cast(Cond.getOperand(1))->isNullValue() && Cond.getOperand(0).getResNo() == 1 && (Cond.getOperand(0).getOpcode() == ISD::SADDO || Cond.getOperand(0).getOpcode() == ISD::UADDO || Cond.getOperand(0).getOpcode() == ISD::SSUBO || Cond.getOperand(0).getOpcode() == ISD::USUBO || Cond.getOperand(0).getOpcode() == ISD::SMULO || Cond.getOperand(0).getOpcode() == ISD::UMULO)) { Inverted = true; Cond = Cond.getOperand(0); } else { SDValue NewCond = LowerSETCC(Cond, DAG); if (NewCond.getNode()) Cond = NewCond; } } #if 0 // FIXME: LowerXALUO doesn't handle these!! else if (Cond.getOpcode() == X86ISD::ADD || Cond.getOpcode() == X86ISD::SUB || Cond.getOpcode() == X86ISD::SMUL || Cond.getOpcode() == X86ISD::UMUL) Cond = LowerXALUO(Cond, DAG); #endif // Look pass (and (setcc_carry (cmp ...)), 1). if (Cond.getOpcode() == ISD::AND && Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { ConstantSDNode *C = dyn_cast(Cond.getOperand(1)); if (C && C->getAPIntValue() == 1) Cond = Cond.getOperand(0); } // If condition flag is set by a X86ISD::CMP, then use it as the condition // setting operand in place of the X86ISD::SETCC. unsigned CondOpcode = Cond.getOpcode(); if (CondOpcode == X86ISD::SETCC || CondOpcode == X86ISD::SETCC_CARRY) { CC = Cond.getOperand(0); SDValue Cmp = Cond.getOperand(1); unsigned Opc = Cmp.getOpcode(); // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { Cond = Cmp; addTest = false; } else { switch (cast(CC)->getZExtValue()) { default: break; case X86::COND_O: case X86::COND_B: // These can only come from an arithmetic instruction with overflow, // e.g. SADDO, UADDO. Cond = Cond.getNode()->getOperand(1); addTest = false; break; } } } CondOpcode = Cond.getOpcode(); if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && Cond.getOperand(0).getValueType() != MVT::i8)) { SDValue LHS = Cond.getOperand(0); SDValue RHS = Cond.getOperand(1); unsigned X86Opcode; unsigned X86Cond; SDVTList VTs; switch (CondOpcode) { case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; default: llvm_unreachable("unexpected overflowing operator"); } if (Inverted) X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond); if (CondOpcode == ISD::UMULO) VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), MVT::i32); else VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS); if (CondOpcode == ISD::UMULO) Cond = X86Op.getValue(2); else Cond = X86Op.getValue(1); CC = DAG.getConstant(X86Cond, MVT::i8); addTest = false; } else { unsigned CondOpc; if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { SDValue Cmp = Cond.getOperand(0).getOperand(1); if (CondOpc == ISD::OR) { // Also, recognize the pattern generated by an FCMP_UNE. We can emit // two branches instead of an explicit OR instruction with a // separate test. if (Cmp == Cond.getOperand(1).getOperand(1) && isX86LogicalCmp(Cmp)) { CC = Cond.getOperand(0).getOperand(0); Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); CC = Cond.getOperand(1).getOperand(0); Cond = Cmp; addTest = false; } } else { // ISD::AND // Also, recognize the pattern generated by an FCMP_OEQ. We can emit // two branches instead of an explicit AND instruction with a // separate test. However, we only do this if this block doesn't // have a fall-through edge, because this requires an explicit // jmp when the condition is false. if (Cmp == Cond.getOperand(1).getOperand(1) && isX86LogicalCmp(Cmp) && Op.getNode()->hasOneUse()) { X86::CondCode CCode = (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); CCode = X86::GetOppositeBranchCondition(CCode); CC = DAG.getConstant(CCode, MVT::i8); SDNode *User = *Op.getNode()->use_begin(); // Look for an unconditional branch following this conditional branch. // We need this because we need to reverse the successors in order // to implement FCMP_OEQ. if (User->getOpcode() == ISD::BR) { SDValue FalseBB = User->getOperand(1); SDNode *NewBR = DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); assert(NewBR == User); (void)NewBR; Dest = FalseBB; Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); X86::CondCode CCode = (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); CCode = X86::GetOppositeBranchCondition(CCode); CC = DAG.getConstant(CCode, MVT::i8); Cond = Cmp; addTest = false; } } } } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. // It should be transformed during dag combiner except when the condition // is set by a arithmetics with overflow node. X86::CondCode CCode = (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); CCode = X86::GetOppositeBranchCondition(CCode); CC = DAG.getConstant(CCode, MVT::i8); Cond = Cond.getOperand(0).getOperand(1); addTest = false; } else if (Cond.getOpcode() == ISD::SETCC && cast(Cond.getOperand(2))->get() == ISD::SETOEQ) { // For FCMP_OEQ, we can emit // two branches instead of an explicit AND instruction with a // separate test. However, we only do this if this block doesn't // have a fall-through edge, because this requires an explicit // jmp when the condition is false. if (Op.getNode()->hasOneUse()) { SDNode *User = *Op.getNode()->use_begin(); // Look for an unconditional branch following this conditional branch. // We need this because we need to reverse the successors in order // to implement FCMP_OEQ. if (User->getOpcode() == ISD::BR) { SDValue FalseBB = User->getOperand(1); SDNode *NewBR = DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); assert(NewBR == User); (void)NewBR; Dest = FalseBB; SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, Cond.getOperand(0), Cond.getOperand(1)); Cmp = ConvertCmpIfNecessary(Cmp, DAG); CC = DAG.getConstant(X86::COND_NE, MVT::i8); Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); CC = DAG.getConstant(X86::COND_P, MVT::i8); Cond = Cmp; addTest = false; } } } else if (Cond.getOpcode() == ISD::SETCC && cast(Cond.getOperand(2))->get() == ISD::SETUNE) { // For FCMP_UNE, we can emit // two branches instead of an explicit AND instruction with a // separate test. However, we only do this if this block doesn't // have a fall-through edge, because this requires an explicit // jmp when the condition is false. if (Op.getNode()->hasOneUse()) { SDNode *User = *Op.getNode()->use_begin(); // Look for an unconditional branch following this conditional branch. // We need this because we need to reverse the successors in order // to implement FCMP_UNE. if (User->getOpcode() == ISD::BR) { SDValue FalseBB = User->getOperand(1); SDNode *NewBR = DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); assert(NewBR == User); (void)NewBR; SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, Cond.getOperand(0), Cond.getOperand(1)); Cmp = ConvertCmpIfNecessary(Cmp, DAG); CC = DAG.getConstant(X86::COND_NE, MVT::i8); Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); CC = DAG.getConstant(X86::COND_NP, MVT::i8); Cond = Cmp; addTest = false; Dest = FalseBB; } } } } if (addTest) { // Look pass the truncate if the high bits are known zero. if (isTruncWithZeroHighBitsInput(Cond, DAG)) Cond = Cond.getOperand(0); // We know the result of AND is compared against zero. Try to match // it to BT. if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); if (NewSetCC.getNode()) { CC = NewSetCC.getOperand(0); Cond = NewSetCC.getOperand(1); addTest = false; } } } if (addTest) { CC = DAG.getConstant(X86::COND_NE, MVT::i8); Cond = EmitTest(Cond, X86::COND_NE, DAG); } Cond = ConvertCmpIfNecessary(Cond, DAG); return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cond); } // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. // Calls to _alloca is needed to probe the stack when allocating more than 4k // bytes in one go. Touching the stack at 4K increments is necessary to ensure // that the guard pages used by the OS virtual memory manager are allocated in // correct sequence. SDValue X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() || getTargetMachine().Options.EnableSegmentedStacks) && "This should be used only on Windows targets or when segmented stacks " "are being used"); assert(!Subtarget->isTargetEnvMacho() && "Not implemented"); DebugLoc dl = Op.getDebugLoc(); // Get the inputs. SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); // FIXME: Ensure alignment here bool Has64BitPointers = Subtarget->has64BitPointers(); // @LOCALMOD EVT SPTy = Has64BitPointers ? MVT::i64 : MVT::i32; // @LOCALMOD if (getTargetMachine().Options.EnableSegmentedStacks) { MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &MRI = MF.getRegInfo(); if (Subtarget->is64Bit()) { // @LOCALMOD // The 64 bit implementation of segmented stacks needs to clobber both r10 // r11. This makes it impossible to use it along with nested parameters. const Function *F = MF.getFunction(); for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (I->hasNestAttr()) report_fatal_error("Cannot use segmented stacks with functions that " "have nested arguments."); } const TargetRegisterClass *AddrRegClass = getRegClassFor(Has64BitPointers ? MVT::i64:MVT::i32); // @LOCALMOD unsigned Vreg = MRI.createVirtualRegister(AddrRegClass); Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size); SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain, DAG.getRegister(Vreg, SPTy)); SDValue Ops1[2] = { Value, Chain }; return DAG.getMergeValues(Ops1, 2, dl); } else { SDValue Flag; unsigned Reg = (Has64BitPointers ? X86::RAX : X86::EAX); // @LOCALMOD Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag); Flag = Chain.getValue(1); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag); Flag = Chain.getValue(1); Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, // @LOCALMOD SPTy).getValue(1); SDValue Ops1[2] = { Chain.getValue(0), Chain }; return DAG.getMergeValues(Ops1, 2, dl); } } SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo(); const Value *SV = cast(Op.getOperand(2))->getValue(); DebugLoc DL = Op.getDebugLoc(); if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), getPointerTy()); return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); } // __va_list_tag: // gp_offset (0 - 6 * 8) // fp_offset (48 - 48 + 8 * 16) // overflow_arg_area (point to parameters coming in memory). // reg_save_area unsigned PointerSize = TD->getPointerSize(0); // @LOCALMOD SmallVector MemOps; SDValue FIN = Op.getOperand(1); // Store gp_offset SDValue Store = DAG.getStore(Op.getOperand(0), DL, DAG.getConstant(FuncInfo->getVarArgsGPOffset(), MVT::i32), FIN, MachinePointerInfo(SV), false, false, 0); MemOps.push_back(Store); // Store fp_offset FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); Store = DAG.getStore(Op.getOperand(0), DL, DAG.getConstant(FuncInfo->getVarArgsFPOffset(), MVT::i32), FIN, MachinePointerInfo(SV, 4), false, false, 0); MemOps.push_back(Store); // Store ptr to overflow_arg_area FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), getPointerTy()); Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, MachinePointerInfo(SV, 8), false, false, 0); MemOps.push_back(Store); // Store ptr to reg_save_area. FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, DAG.getIntPtrConstant(PointerSize)); // @LOCALMOD SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), getPointerTy()); Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN, MachinePointerInfo(SV, 8+PointerSize), // @LOCALMOD false, false, 0); MemOps.push_back(Store); return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0], MemOps.size()); } SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->is64Bit() && "LowerVAARG only handles 64-bit va_arg!"); assert((Subtarget->isTargetLinux() || Subtarget->isTargetDarwin() || Subtarget->isTargetNaCl()) && // @LOCALMOD "Unhandled target in LowerVAARG"); assert(Op.getNode()->getNumOperands() == 4); SDValue Chain = Op.getOperand(0); SDValue SrcPtr = Op.getOperand(1); const Value *SV = cast(Op.getOperand(2))->getValue(); unsigned Align = Op.getConstantOperandVal(3); DebugLoc dl = Op.getDebugLoc(); EVT ArgVT = Op.getNode()->getValueType(0); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy); uint8_t ArgMode; // Decide which area this value should be read from. // TODO: Implement the AMD64 ABI in its entirety. This simple // selection mechanism works only for the basic types. if (ArgVT == MVT::f80) { llvm_unreachable("va_arg for f80 not yet implemented"); } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) { ArgMode = 2; // Argument passed in XMM register. Use fp_offset. } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) { ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset. } else { llvm_unreachable("Unhandled argument type in LowerVAARG"); } if (ArgMode == 2) { // Sanity Check: Make sure using fp_offset makes sense. assert(!getTargetMachine().Options.UseSoftFloat && !(DAG.getMachineFunction() .getFunction()->getAttributes() .hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat)) && Subtarget->hasSSE1()); } // Insert VAARG_64 node into the DAG // VAARG_64 returns two values: Variable Argument Address, Chain SmallVector InstOps; InstOps.push_back(Chain); InstOps.push_back(SrcPtr); InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32)); InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8)); InstOps.push_back(DAG.getConstant(Align, MVT::i32)); SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other); SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl, VTs, &InstOps[0], InstOps.size(), MVT::i64, MachinePointerInfo(SV), /*Align=*/0, /*Volatile=*/false, /*ReadMem=*/true, /*WriteMem=*/true); Chain = VAARG.getValue(1); // Load the next argument and return it return DAG.getLoad(ArgVT, dl, Chain, VAARG, MachinePointerInfo(), false, false, false, 0); } static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { // X86-64 va_list is a struct { i32, i32, i8*, i8* }. assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); SDValue Chain = Op.getOperand(0); SDValue DstPtr = Op.getOperand(1); SDValue SrcPtr = Op.getOperand(2); const Value *DstSV = cast(Op.getOperand(3))->getValue(); const Value *SrcSV = cast(Op.getOperand(4))->getValue(); DebugLoc DL = Op.getDebugLoc(); return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, // @LOCALMOD-START // Size is actually 8 + 2 * pointer size and align // is the pointer ABI alignment but we don't have a // pointer to TD in this static function DAG.getIntPtrConstant(Subtarget->has64BitPointers() ? 24 : 16), Subtarget->has64BitPointers() ? 8 : 4, /*isVolatile*/false, // @LOCALMOD-END false, MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); } ////////////////////////////////////////////////////////////////////// // NaCl TLS setup / layout intrinsics. // See: native_client/src/untrusted/stubs/tls_params.h SDValue X86TargetLowering::LowerNaClTpTlsOffset(SDValue Op, SelectionDAG &DAG) const { // ssize_t __nacl_tp_tls_offset (size_t tls_size) { // return -tls_size; // } DebugLoc dl = Op.getDebugLoc(); return DAG.getNode(ISD::SUB, dl, Op.getValueType().getSimpleVT(), DAG.getConstant(0, Op.getValueType().getSimpleVT()), Op.getOperand(0)); } SDValue X86TargetLowering::LowerNaClTpTdbOffset(SDValue Op, SelectionDAG &DAG) const { // ssize_t __nacl_tp_tdb_offset (size_t tdb_size) { // return 0; // } return DAG.getConstant(0, Op.getValueType().getSimpleVT()); } SDValue X86TargetLowering::LowerNaClTargetArch(SDValue Op, SelectionDAG &DAG) const { // int __nacl_target_arch () { // return (is_64_bit ? // PnaclTargetArchitectureX86_64 : // PnaclTargetArchitectureX86_32); // } return DAG.getConstant((Subtarget->is64Bit() ? PnaclTargetArchitectureX86_64 : PnaclTargetArchitectureX86_32), Op.getValueType().getSimpleVT()); } ////////////////////////////////////////////////////////////////////// // getTargetVShiftNOde - Handle vector element shifts where the shift amount // may or may not be a constant. Takes immediate version of shift as input. static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT, SDValue SrcOp, SDValue ShAmt, SelectionDAG &DAG) { assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32"); if (isa(ShAmt)) { // Constant may be a TargetConstant. Use a regular constant. uint32_t ShiftAmt = cast(ShAmt)->getZExtValue(); switch (Opc) { default: llvm_unreachable("Unknown target vector shift node"); case X86ISD::VSHLI: case X86ISD::VSRLI: case X86ISD::VSRAI: return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i32)); } } // Change opcode to non-immediate version switch (Opc) { default: llvm_unreachable("Unknown target vector shift node"); case X86ISD::VSHLI: Opc = X86ISD::VSHL; break; case X86ISD::VSRLI: Opc = X86ISD::VSRL; break; case X86ISD::VSRAI: Opc = X86ISD::VSRA; break; } // Need to build a vector containing shift amount // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0 SDValue ShOps[4]; ShOps[0] = ShAmt; ShOps[1] = DAG.getConstant(0, MVT::i32); ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32); ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4); // The return type has to be a 128-bit type with the same element // type as the input type. MVT EltVT = VT.getVectorElementType().getSimpleVT(); EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits()); ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt); return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt); } SDValue X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); unsigned IntNo = cast(Op.getOperand(0))->getZExtValue(); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. // @LOCALMOD-BEGIN case Intrinsic::nacl_read_tp: { EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); if (Subtarget->is64Bit() || llvm::TLSUseCall) { // Call __nacl_read_tp() to get the thread pointer. unsigned PtrSize = PtrVT.getSizeInBits(); IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize); SDValue ReadTpFunction = DAG.getExternalSymbol("__nacl_read_tp", PtrVT); ArgListTy Args; TargetLowering::CallLoweringInfo CLI( DAG.getEntryNode(), PtrTy, false, false, false, false, 0, CallingConv::C, /*isTailCall=*/false, /*doesNotRet=*/false, /*isReturnValueUsed=*/true, ReadTpFunction, Args, DAG, dl); std::pair CallResult = LowerCallTo(CLI); return CallResult.first; } else { // Get %gs:0, which contains the thread pointer on x86-32. return DAG.getNode(X86ISD::THREAD_POINTER_FROM_GS, dl, PtrVT); } } // @LOCALMOD-END // Comparison intrinsics. case Intrinsic::x86_sse_comieq_ss: case Intrinsic::x86_sse_comilt_ss: case Intrinsic::x86_sse_comile_ss: case Intrinsic::x86_sse_comigt_ss: case Intrinsic::x86_sse_comige_ss: case Intrinsic::x86_sse_comineq_ss: case Intrinsic::x86_sse_ucomieq_ss: case Intrinsic::x86_sse_ucomilt_ss: case Intrinsic::x86_sse_ucomile_ss: case Intrinsic::x86_sse_ucomigt_ss: case Intrinsic::x86_sse_ucomige_ss: case Intrinsic::x86_sse_ucomineq_ss: case Intrinsic::x86_sse2_comieq_sd: case Intrinsic::x86_sse2_comilt_sd: case Intrinsic::x86_sse2_comile_sd: case Intrinsic::x86_sse2_comigt_sd: case Intrinsic::x86_sse2_comige_sd: case Intrinsic::x86_sse2_comineq_sd: case Intrinsic::x86_sse2_ucomieq_sd: case Intrinsic::x86_sse2_ucomilt_sd: case Intrinsic::x86_sse2_ucomile_sd: case Intrinsic::x86_sse2_ucomigt_sd: case Intrinsic::x86_sse2_ucomige_sd: case Intrinsic::x86_sse2_ucomineq_sd: { unsigned Opc; ISD::CondCode CC; switch (IntNo) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_sse_comieq_ss: case Intrinsic::x86_sse2_comieq_sd: Opc = X86ISD::COMI; CC = ISD::SETEQ; break; case Intrinsic::x86_sse_comilt_ss: case Intrinsic::x86_sse2_comilt_sd: Opc = X86ISD::COMI; CC = ISD::SETLT; break; case Intrinsic::x86_sse_comile_ss: case Intrinsic::x86_sse2_comile_sd: Opc = X86ISD::COMI; CC = ISD::SETLE; break; case Intrinsic::x86_sse_comigt_ss: case Intrinsic::x86_sse2_comigt_sd: Opc = X86ISD::COMI; CC = ISD::SETGT; break; case Intrinsic::x86_sse_comige_ss: case Intrinsic::x86_sse2_comige_sd: Opc = X86ISD::COMI; CC = ISD::SETGE; break; case Intrinsic::x86_sse_comineq_ss: case Intrinsic::x86_sse2_comineq_sd: Opc = X86ISD::COMI; CC = ISD::SETNE; break; case Intrinsic::x86_sse_ucomieq_ss: case Intrinsic::x86_sse2_ucomieq_sd: Opc = X86ISD::UCOMI; CC = ISD::SETEQ; break; case Intrinsic::x86_sse_ucomilt_ss: case Intrinsic::x86_sse2_ucomilt_sd: Opc = X86ISD::UCOMI; CC = ISD::SETLT; break; case Intrinsic::x86_sse_ucomile_ss: case Intrinsic::x86_sse2_ucomile_sd: Opc = X86ISD::UCOMI; CC = ISD::SETLE; break; case Intrinsic::x86_sse_ucomigt_ss: case Intrinsic::x86_sse2_ucomigt_sd: Opc = X86ISD::UCOMI; CC = ISD::SETGT; break; case Intrinsic::x86_sse_ucomige_ss: case Intrinsic::x86_sse2_ucomige_sd: Opc = X86ISD::UCOMI; CC = ISD::SETGE; break; case Intrinsic::x86_sse_ucomineq_ss: case Intrinsic::x86_sse2_ucomineq_sd: Opc = X86ISD::UCOMI; CC = ISD::SETNE; break; } SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG); assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!"); SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86CC, MVT::i8), Cond); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } // Arithmetic intrinsics. case Intrinsic::x86_sse2_pmulu_dq: case Intrinsic::x86_avx2_pmulu_dq: return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); // SSE2/AVX2 sub with unsigned saturation intrinsics case Intrinsic::x86_sse2_psubus_b: case Intrinsic::x86_sse2_psubus_w: case Intrinsic::x86_avx2_psubus_b: case Intrinsic::x86_avx2_psubus_w: return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); // SSE3/AVX horizontal add/sub intrinsics case Intrinsic::x86_sse3_hadd_ps: case Intrinsic::x86_sse3_hadd_pd: case Intrinsic::x86_avx_hadd_ps_256: case Intrinsic::x86_avx_hadd_pd_256: case Intrinsic::x86_sse3_hsub_ps: case Intrinsic::x86_sse3_hsub_pd: case Intrinsic::x86_avx_hsub_ps_256: case Intrinsic::x86_avx_hsub_pd_256: case Intrinsic::x86_ssse3_phadd_w_128: case Intrinsic::x86_ssse3_phadd_d_128: case Intrinsic::x86_avx2_phadd_w: case Intrinsic::x86_avx2_phadd_d: case Intrinsic::x86_ssse3_phsub_w_128: case Intrinsic::x86_ssse3_phsub_d_128: case Intrinsic::x86_avx2_phsub_w: case Intrinsic::x86_avx2_phsub_d: { unsigned Opcode; switch (IntNo) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_sse3_hadd_ps: case Intrinsic::x86_sse3_hadd_pd: case Intrinsic::x86_avx_hadd_ps_256: case Intrinsic::x86_avx_hadd_pd_256: Opcode = X86ISD::FHADD; break; case Intrinsic::x86_sse3_hsub_ps: case Intrinsic::x86_sse3_hsub_pd: case Intrinsic::x86_avx_hsub_ps_256: case Intrinsic::x86_avx_hsub_pd_256: Opcode = X86ISD::FHSUB; break; case Intrinsic::x86_ssse3_phadd_w_128: case Intrinsic::x86_ssse3_phadd_d_128: case Intrinsic::x86_avx2_phadd_w: case Intrinsic::x86_avx2_phadd_d: Opcode = X86ISD::HADD; break; case Intrinsic::x86_ssse3_phsub_w_128: case Intrinsic::x86_ssse3_phsub_d_128: case Intrinsic::x86_avx2_phsub_w: case Intrinsic::x86_avx2_phsub_d: Opcode = X86ISD::HSUB; break; } return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } // SSE2/SSE41/AVX2 integer max/min intrinsics. case Intrinsic::x86_sse2_pmaxu_b: case Intrinsic::x86_sse41_pmaxuw: case Intrinsic::x86_sse41_pmaxud: case Intrinsic::x86_avx2_pmaxu_b: case Intrinsic::x86_avx2_pmaxu_w: case Intrinsic::x86_avx2_pmaxu_d: case Intrinsic::x86_sse2_pminu_b: case Intrinsic::x86_sse41_pminuw: case Intrinsic::x86_sse41_pminud: case Intrinsic::x86_avx2_pminu_b: case Intrinsic::x86_avx2_pminu_w: case Intrinsic::x86_avx2_pminu_d: case Intrinsic::x86_sse41_pmaxsb: case Intrinsic::x86_sse2_pmaxs_w: case Intrinsic::x86_sse41_pmaxsd: case Intrinsic::x86_avx2_pmaxs_b: case Intrinsic::x86_avx2_pmaxs_w: case Intrinsic::x86_avx2_pmaxs_d: case Intrinsic::x86_sse41_pminsb: case Intrinsic::x86_sse2_pmins_w: case Intrinsic::x86_sse41_pminsd: case Intrinsic::x86_avx2_pmins_b: case Intrinsic::x86_avx2_pmins_w: case Intrinsic::x86_avx2_pmins_d: { unsigned Opcode; switch (IntNo) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_sse2_pmaxu_b: case Intrinsic::x86_sse41_pmaxuw: case Intrinsic::x86_sse41_pmaxud: case Intrinsic::x86_avx2_pmaxu_b: case Intrinsic::x86_avx2_pmaxu_w: case Intrinsic::x86_avx2_pmaxu_d: Opcode = X86ISD::UMAX; break; case Intrinsic::x86_sse2_pminu_b: case Intrinsic::x86_sse41_pminuw: case Intrinsic::x86_sse41_pminud: case Intrinsic::x86_avx2_pminu_b: case Intrinsic::x86_avx2_pminu_w: case Intrinsic::x86_avx2_pminu_d: Opcode = X86ISD::UMIN; break; case Intrinsic::x86_sse41_pmaxsb: case Intrinsic::x86_sse2_pmaxs_w: case Intrinsic::x86_sse41_pmaxsd: case Intrinsic::x86_avx2_pmaxs_b: case Intrinsic::x86_avx2_pmaxs_w: case Intrinsic::x86_avx2_pmaxs_d: Opcode = X86ISD::SMAX; break; case Intrinsic::x86_sse41_pminsb: case Intrinsic::x86_sse2_pmins_w: case Intrinsic::x86_sse41_pminsd: case Intrinsic::x86_avx2_pmins_b: case Intrinsic::x86_avx2_pmins_w: case Intrinsic::x86_avx2_pmins_d: Opcode = X86ISD::SMIN; break; } return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } // SSE/SSE2/AVX floating point max/min intrinsics. case Intrinsic::x86_sse_max_ps: case Intrinsic::x86_sse2_max_pd: case Intrinsic::x86_avx_max_ps_256: case Intrinsic::x86_avx_max_pd_256: case Intrinsic::x86_sse_min_ps: case Intrinsic::x86_sse2_min_pd: case Intrinsic::x86_avx_min_ps_256: case Intrinsic::x86_avx_min_pd_256: { unsigned Opcode; switch (IntNo) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_sse_max_ps: case Intrinsic::x86_sse2_max_pd: case Intrinsic::x86_avx_max_ps_256: case Intrinsic::x86_avx_max_pd_256: Opcode = X86ISD::FMAX; break; case Intrinsic::x86_sse_min_ps: case Intrinsic::x86_sse2_min_pd: case Intrinsic::x86_avx_min_ps_256: case Intrinsic::x86_avx_min_pd_256: Opcode = X86ISD::FMIN; break; } return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } // AVX2 variable shift intrinsics case Intrinsic::x86_avx2_psllv_d: case Intrinsic::x86_avx2_psllv_q: case Intrinsic::x86_avx2_psllv_d_256: case Intrinsic::x86_avx2_psllv_q_256: case Intrinsic::x86_avx2_psrlv_d: case Intrinsic::x86_avx2_psrlv_q: case Intrinsic::x86_avx2_psrlv_d_256: case Intrinsic::x86_avx2_psrlv_q_256: case Intrinsic::x86_avx2_psrav_d: case Intrinsic::x86_avx2_psrav_d_256: { unsigned Opcode; switch (IntNo) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_avx2_psllv_d: case Intrinsic::x86_avx2_psllv_q: case Intrinsic::x86_avx2_psllv_d_256: case Intrinsic::x86_avx2_psllv_q_256: Opcode = ISD::SHL; break; case Intrinsic::x86_avx2_psrlv_d: case Intrinsic::x86_avx2_psrlv_q: case Intrinsic::x86_avx2_psrlv_d_256: case Intrinsic::x86_avx2_psrlv_q_256: Opcode = ISD::SRL; break; case Intrinsic::x86_avx2_psrav_d: case Intrinsic::x86_avx2_psrav_d_256: Opcode = ISD::SRA; break; } return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } case Intrinsic::x86_ssse3_pshuf_b_128: case Intrinsic::x86_avx2_pshuf_b: return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::x86_ssse3_psign_b_128: case Intrinsic::x86_ssse3_psign_w_128: case Intrinsic::x86_ssse3_psign_d_128: case Intrinsic::x86_avx2_psign_b: case Intrinsic::x86_avx2_psign_w: case Intrinsic::x86_avx2_psign_d: return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::x86_sse41_insertps: return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::x86_avx_vperm2f128_ps_256: case Intrinsic::x86_avx_vperm2f128_pd_256: case Intrinsic::x86_avx_vperm2f128_si_256: case Intrinsic::x86_avx2_vperm2i128: return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::x86_avx2_permd: case Intrinsic::x86_avx2_permps: // Operands intentionally swapped. Mask is last operand to intrinsic, // but second operand for node/intruction. return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(1)); case Intrinsic::x86_sse_sqrt_ps: case Intrinsic::x86_sse2_sqrt_pd: case Intrinsic::x86_avx_sqrt_ps_256: case Intrinsic::x86_avx_sqrt_pd_256: return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1)); // ptest and testp intrinsics. The intrinsic these come from are designed to // return an integer value, not just an instruction so lower it to the ptest // or testp pattern and a setcc for the result. case Intrinsic::x86_sse41_ptestz: case Intrinsic::x86_sse41_ptestc: case Intrinsic::x86_sse41_ptestnzc: case Intrinsic::x86_avx_ptestz_256: case Intrinsic::x86_avx_ptestc_256: case Intrinsic::x86_avx_ptestnzc_256: case Intrinsic::x86_avx_vtestz_ps: case Intrinsic::x86_avx_vtestc_ps: case Intrinsic::x86_avx_vtestnzc_ps: case Intrinsic::x86_avx_vtestz_pd: case Intrinsic::x86_avx_vtestc_pd: case Intrinsic::x86_avx_vtestnzc_pd: case Intrinsic::x86_avx_vtestz_ps_256: case Intrinsic::x86_avx_vtestc_ps_256: case Intrinsic::x86_avx_vtestnzc_ps_256: case Intrinsic::x86_avx_vtestz_pd_256: case Intrinsic::x86_avx_vtestc_pd_256: case Intrinsic::x86_avx_vtestnzc_pd_256: { bool IsTestPacked = false; unsigned X86CC; switch (IntNo) { default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); case Intrinsic::x86_avx_vtestz_ps: case Intrinsic::x86_avx_vtestz_pd: case Intrinsic::x86_avx_vtestz_ps_256: case Intrinsic::x86_avx_vtestz_pd_256: IsTestPacked = true; // Fallthrough case Intrinsic::x86_sse41_ptestz: case Intrinsic::x86_avx_ptestz_256: // ZF = 1 X86CC = X86::COND_E; break; case Intrinsic::x86_avx_vtestc_ps: case Intrinsic::x86_avx_vtestc_pd: case Intrinsic::x86_avx_vtestc_ps_256: case Intrinsic::x86_avx_vtestc_pd_256: IsTestPacked = true; // Fallthrough case Intrinsic::x86_sse41_ptestc: case Intrinsic::x86_avx_ptestc_256: // CF = 1 X86CC = X86::COND_B; break; case Intrinsic::x86_avx_vtestnzc_ps: case Intrinsic::x86_avx_vtestnzc_pd: case Intrinsic::x86_avx_vtestnzc_ps_256: case Intrinsic::x86_avx_vtestnzc_pd_256: IsTestPacked = true; // Fallthrough case Intrinsic::x86_sse41_ptestnzc: case Intrinsic::x86_avx_ptestnzc_256: // ZF and CF = 0 X86CC = X86::COND_A; break; } SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST; SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS); SDValue CC = DAG.getConstant(X86CC, MVT::i8); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } // SSE/AVX shift intrinsics case Intrinsic::x86_sse2_psll_w: case Intrinsic::x86_sse2_psll_d: case Intrinsic::x86_sse2_psll_q: case Intrinsic::x86_avx2_psll_w: case Intrinsic::x86_avx2_psll_d: case Intrinsic::x86_avx2_psll_q: case Intrinsic::x86_sse2_psrl_w: case Intrinsic::x86_sse2_psrl_d: case Intrinsic::x86_sse2_psrl_q: case Intrinsic::x86_avx2_psrl_w: case Intrinsic::x86_avx2_psrl_d: case Intrinsic::x86_avx2_psrl_q: case Intrinsic::x86_sse2_psra_w: case Intrinsic::x86_sse2_psra_d: case Intrinsic::x86_avx2_psra_w: case Intrinsic::x86_avx2_psra_d: { unsigned Opcode; switch (IntNo) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_sse2_psll_w: case Intrinsic::x86_sse2_psll_d: case Intrinsic::x86_sse2_psll_q: case Intrinsic::x86_avx2_psll_w: case Intrinsic::x86_avx2_psll_d: case Intrinsic::x86_avx2_psll_q: Opcode = X86ISD::VSHL; break; case Intrinsic::x86_sse2_psrl_w: case Intrinsic::x86_sse2_psrl_d: case Intrinsic::x86_sse2_psrl_q: case Intrinsic::x86_avx2_psrl_w: case Intrinsic::x86_avx2_psrl_d: case Intrinsic::x86_avx2_psrl_q: Opcode = X86ISD::VSRL; break; case Intrinsic::x86_sse2_psra_w: case Intrinsic::x86_sse2_psra_d: case Intrinsic::x86_avx2_psra_w: case Intrinsic::x86_avx2_psra_d: Opcode = X86ISD::VSRA; break; } return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } // SSE/AVX immediate shift intrinsics case Intrinsic::x86_sse2_pslli_w: case Intrinsic::x86_sse2_pslli_d: case Intrinsic::x86_sse2_pslli_q: case Intrinsic::x86_avx2_pslli_w: case Intrinsic::x86_avx2_pslli_d: case Intrinsic::x86_avx2_pslli_q: case Intrinsic::x86_sse2_psrli_w: case Intrinsic::x86_sse2_psrli_d: case Intrinsic::x86_sse2_psrli_q: case Intrinsic::x86_avx2_psrli_w: case Intrinsic::x86_avx2_psrli_d: case Intrinsic::x86_avx2_psrli_q: case Intrinsic::x86_sse2_psrai_w: case Intrinsic::x86_sse2_psrai_d: case Intrinsic::x86_avx2_psrai_w: case Intrinsic::x86_avx2_psrai_d: { unsigned Opcode; switch (IntNo) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_sse2_pslli_w: case Intrinsic::x86_sse2_pslli_d: case Intrinsic::x86_sse2_pslli_q: case Intrinsic::x86_avx2_pslli_w: case Intrinsic::x86_avx2_pslli_d: case Intrinsic::x86_avx2_pslli_q: Opcode = X86ISD::VSHLI; break; case Intrinsic::x86_sse2_psrli_w: case Intrinsic::x86_sse2_psrli_d: case Intrinsic::x86_sse2_psrli_q: case Intrinsic::x86_avx2_psrli_w: case Intrinsic::x86_avx2_psrli_d: case Intrinsic::x86_avx2_psrli_q: Opcode = X86ISD::VSRLI; break; case Intrinsic::x86_sse2_psrai_w: case Intrinsic::x86_sse2_psrai_d: case Intrinsic::x86_avx2_psrai_w: case Intrinsic::x86_avx2_psrai_d: Opcode = X86ISD::VSRAI; break; } return getTargetVShiftNode(Opcode, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), DAG); } case Intrinsic::x86_sse42_pcmpistria128: case Intrinsic::x86_sse42_pcmpestria128: case Intrinsic::x86_sse42_pcmpistric128: case Intrinsic::x86_sse42_pcmpestric128: case Intrinsic::x86_sse42_pcmpistrio128: case Intrinsic::x86_sse42_pcmpestrio128: case Intrinsic::x86_sse42_pcmpistris128: case Intrinsic::x86_sse42_pcmpestris128: case Intrinsic::x86_sse42_pcmpistriz128: case Intrinsic::x86_sse42_pcmpestriz128: { unsigned Opcode; unsigned X86CC; switch (IntNo) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_sse42_pcmpistria128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_A; break; case Intrinsic::x86_sse42_pcmpestria128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_A; break; case Intrinsic::x86_sse42_pcmpistric128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_B; break; case Intrinsic::x86_sse42_pcmpestric128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_B; break; case Intrinsic::x86_sse42_pcmpistrio128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_O; break; case Intrinsic::x86_sse42_pcmpestrio128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_O; break; case Intrinsic::x86_sse42_pcmpistris128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_S; break; case Intrinsic::x86_sse42_pcmpestris128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_S; break; case Intrinsic::x86_sse42_pcmpistriz128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_E; break; case Intrinsic::x86_sse42_pcmpestriz128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_E; break; } SmallVector NewOps; NewOps.append(Op->op_begin()+1, Op->op_end()); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size()); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86CC, MVT::i8), SDValue(PCMP.getNode(), 1)); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } case Intrinsic::x86_sse42_pcmpistri128: case Intrinsic::x86_sse42_pcmpestri128: { unsigned Opcode; if (IntNo == Intrinsic::x86_sse42_pcmpistri128) Opcode = X86ISD::PCMPISTRI; else Opcode = X86ISD::PCMPESTRI; SmallVector NewOps; NewOps.append(Op->op_begin()+1, Op->op_end()); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size()); } case Intrinsic::x86_fma_vfmadd_ps: case Intrinsic::x86_fma_vfmadd_pd: case Intrinsic::x86_fma_vfmsub_ps: case Intrinsic::x86_fma_vfmsub_pd: case Intrinsic::x86_fma_vfnmadd_ps: case Intrinsic::x86_fma_vfnmadd_pd: case Intrinsic::x86_fma_vfnmsub_ps: case Intrinsic::x86_fma_vfnmsub_pd: case Intrinsic::x86_fma_vfmaddsub_ps: case Intrinsic::x86_fma_vfmaddsub_pd: case Intrinsic::x86_fma_vfmsubadd_ps: case Intrinsic::x86_fma_vfmsubadd_pd: case Intrinsic::x86_fma_vfmadd_ps_256: case Intrinsic::x86_fma_vfmadd_pd_256: case Intrinsic::x86_fma_vfmsub_ps_256: case Intrinsic::x86_fma_vfmsub_pd_256: case Intrinsic::x86_fma_vfnmadd_ps_256: case Intrinsic::x86_fma_vfnmadd_pd_256: case Intrinsic::x86_fma_vfnmsub_ps_256: case Intrinsic::x86_fma_vfnmsub_pd_256: case Intrinsic::x86_fma_vfmaddsub_ps_256: case Intrinsic::x86_fma_vfmaddsub_pd_256: case Intrinsic::x86_fma_vfmsubadd_ps_256: case Intrinsic::x86_fma_vfmsubadd_pd_256: { unsigned Opc; switch (IntNo) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_fma_vfmadd_ps: case Intrinsic::x86_fma_vfmadd_pd: case Intrinsic::x86_fma_vfmadd_ps_256: case Intrinsic::x86_fma_vfmadd_pd_256: Opc = X86ISD::FMADD; break; case Intrinsic::x86_fma_vfmsub_ps: case Intrinsic::x86_fma_vfmsub_pd: case Intrinsic::x86_fma_vfmsub_ps_256: case Intrinsic::x86_fma_vfmsub_pd_256: Opc = X86ISD::FMSUB; break; case Intrinsic::x86_fma_vfnmadd_ps: case Intrinsic::x86_fma_vfnmadd_pd: case Intrinsic::x86_fma_vfnmadd_ps_256: case Intrinsic::x86_fma_vfnmadd_pd_256: Opc = X86ISD::FNMADD; break; case Intrinsic::x86_fma_vfnmsub_ps: case Intrinsic::x86_fma_vfnmsub_pd: case Intrinsic::x86_fma_vfnmsub_ps_256: case Intrinsic::x86_fma_vfnmsub_pd_256: Opc = X86ISD::FNMSUB; break; case Intrinsic::x86_fma_vfmaddsub_ps: case Intrinsic::x86_fma_vfmaddsub_pd: case Intrinsic::x86_fma_vfmaddsub_ps_256: case Intrinsic::x86_fma_vfmaddsub_pd_256: Opc = X86ISD::FMADDSUB; break; case Intrinsic::x86_fma_vfmsubadd_ps: case Intrinsic::x86_fma_vfmsubadd_pd: case Intrinsic::x86_fma_vfmsubadd_ps_256: case Intrinsic::x86_fma_vfmsubadd_pd_256: Opc = X86ISD::FMSUBADD; break; } return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); } } } static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); unsigned IntNo = cast(Op.getOperand(1))->getZExtValue(); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. // RDRAND/RDSEED intrinsics. case Intrinsic::x86_rdrand_16: case Intrinsic::x86_rdrand_32: case Intrinsic::x86_rdrand_64: case Intrinsic::x86_rdseed_16: case Intrinsic::x86_rdseed_32: case Intrinsic::x86_rdseed_64: { unsigned Opcode = (IntNo == Intrinsic::x86_rdseed_16 || IntNo == Intrinsic::x86_rdseed_32 || IntNo == Intrinsic::x86_rdseed_64) ? X86ISD::RDSEED : X86ISD::RDRAND; // Emit the node with the right value type. SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other); SDValue Result = DAG.getNode(Opcode, dl, VTs, Op.getOperand(0)); // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1. // Otherwise return the value from Rand, which is always 0, casted to i32. SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)), DAG.getConstant(1, Op->getValueType(1)), DAG.getConstant(X86::COND_B, MVT::i32), SDValue(Result.getNode(), 1) }; SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, DAG.getVTList(Op->getValueType(1), MVT::Glue), Ops, array_lengthof(Ops)); // Return { result, isValid, chain }. return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid, SDValue(Result.getNode(), 2)); } // XTEST intrinsics. case Intrinsic::x86_xtest: { SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other); SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0)); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86::COND_NE, MVT::i8), InTrans); SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC); return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Ret, SDValue(InTrans.getNode(), 1)); } } } SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setReturnAddressIsTaken(true); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); DebugLoc dl = Op.getDebugLoc(); EVT PtrVT = getPointerTy(); if (Depth > 0) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT); return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), MachinePointerInfo(), false, false, false, 0); } // Just load the return address. SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, MachinePointerInfo(), false, false, false, 0); } SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); unsigned FrameReg; // @LOCALMOD if (Subtarget->isTargetNaCl()) { FrameReg = Subtarget->has64BitPointers() ? X86::RBP : X86::EBP; } else { FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction()); } assert(((FrameReg == X86::RBP && VT == MVT::i64) || (FrameReg == X86::EBP && VT == MVT::i32)) && "Invalid Frame Register!"); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); while (Depth--) FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, MachinePointerInfo(), false, false, false, 0); return FrameAddr; } SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const { return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize()); } SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Offset = Op.getOperand(1); SDValue Handler = Op.getOperand(2); DebugLoc dl = Op.getDebugLoc(); // @LOCALMOD-START bool Has64BitPointers = Subtarget->has64BitPointers(); EVT PtrVT = getPointerTy(); unsigned FrameReg; if (Subtarget->isTargetNaCl()) { FrameReg = Subtarget->has64BitPointers() ? X86::RBP : X86::EBP; } else { FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction()); } assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) || (FrameReg == X86::EBP && PtrVT == MVT::i32)) && "Invalid Frame Register!"); SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT); unsigned StoreAddrReg = Has64BitPointers ? X86::RCX : X86::ECX; // @LOCALMOD-END SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame, DAG.getIntPtrConstant(RegInfo->getSlotSize())); StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset); Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(), false, false, 0); Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain, DAG.getRegister(StoreAddrReg, PtrVT)); } SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { DebugLoc DL = Op.getDebugLoc(); return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL, DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), Op.getOperand(1)); } SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { DebugLoc DL = Op.getDebugLoc(); return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), Op.getOperand(1)); } static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) { return Op.getOperand(0); } SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { SDValue Root = Op.getOperand(0); SDValue Trmp = Op.getOperand(1); // trampoline SDValue FPtr = Op.getOperand(2); // nested function SDValue Nest = Op.getOperand(3); // 'nest' parameter value DebugLoc dl = Op.getDebugLoc(); const Value *TrmpAddr = cast(Op.getOperand(4))->getValue(); const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo(); if (Subtarget->is64Bit()) { SDValue OutChains[6]; // Large code-model. const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode. const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7; const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7; const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix // Load the pointer to the nested function into R11. unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 SDValue Addr = Trmp; OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), Addr, MachinePointerInfo(TrmpAddr), false, false, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64)); OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 2), false, false, 2); // Load the 'nest' parameter value into R10. // R10 is specified in X86CallingConv.td OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64)); OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), Addr, MachinePointerInfo(TrmpAddr, 10), false, false, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64)); OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12), false, false, 2); // Jump to the nested function. OpCode = (JMP64r << 8) | REX_WB; // jmpq *... Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64)); OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), Addr, MachinePointerInfo(TrmpAddr, 20), false, false, 0); unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64)); OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr, MachinePointerInfo(TrmpAddr, 22), false, false, 0); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6); } else { const Function *Func = cast(cast(Op.getOperand(5))->getValue()); CallingConv::ID CC = Func->getCallingConv(); unsigned NestReg; switch (CC) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::C: case CallingConv::X86_StdCall: { // Pass 'nest' parameter in ECX. // Must be kept in sync with X86CallingConv.td NestReg = X86::ECX; // Check that ECX wasn't needed by an 'inreg' parameter. FunctionType *FTy = Func->getFunctionType(); const AttributeSet &Attrs = Func->getAttributes(); if (!Attrs.isEmpty() && !Func->isVarArg()) { unsigned InRegCount = 0; unsigned Idx = 1; for (FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); I != E; ++I, ++Idx) if (Attrs.hasAttribute(Idx, Attribute::InReg)) // FIXME: should only count parameters that are lowered to integers. InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; if (InRegCount > 2) { report_fatal_error("Nest register in use - reduce number of inreg" " parameters!"); } } break; } case CallingConv::X86_FastCall: case CallingConv::X86_ThisCall: case CallingConv::Fast: // Pass 'nest' parameter in EAX. // Must be kept in sync with X86CallingConv.td NestReg = X86::EAX; break; } SDValue OutChains[4]; SDValue Addr, Disp; Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32)); Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); // This is storing the opcode for MOV32ri. const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7; OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(MOV32ri|N86Reg, MVT::i8), Trmp, MachinePointerInfo(TrmpAddr), false, false, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32)); OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 1), false, false, 1); const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32)); OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr, MachinePointerInfo(TrmpAddr, 5), false, false, 1); Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32)); OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, MachinePointerInfo(TrmpAddr, 6), false, false, 1); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4); } } SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const { /* The rounding mode is in bits 11:10 of FPSR, and has the following settings: 00 Round to nearest 01 Round to -inf 10 Round to +inf 11 Round to 0 FLT_ROUNDS, on the other hand, expects the following: -1 Undefined 0 Round to 0 1 Round to nearest 2 Round to +inf 3 Round to -inf To perform the conversion, we do: (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) */ MachineFunction &MF = DAG.getMachineFunction(); const TargetMachine &TM = MF.getTarget(); const TargetFrameLowering &TFI = *TM.getFrameLowering(); unsigned StackAlignment = TFI.getStackAlignment(); EVT VT = Op.getValueType(); DebugLoc DL = Op.getDebugLoc(); // Save FP Control Word to stack slot int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), MachineMemOperand::MOStore, 2, 2); SDValue Ops[] = { DAG.getEntryNode(), StackSlot }; SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL, DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops), MVT::i16, MMO); // Load FP Control Word from stack slot SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot, MachinePointerInfo(), false, false, false, 0); // Transform as necessary SDValue CWD1 = DAG.getNode(ISD::SRL, DL, MVT::i16, DAG.getNode(ISD::AND, DL, MVT::i16, CWD, DAG.getConstant(0x800, MVT::i16)), DAG.getConstant(11, MVT::i8)); SDValue CWD2 = DAG.getNode(ISD::SRL, DL, MVT::i16, DAG.getNode(ISD::AND, DL, MVT::i16, CWD, DAG.getConstant(0x400, MVT::i16)), DAG.getConstant(9, MVT::i8)); SDValue RetVal = DAG.getNode(ISD::AND, DL, MVT::i16, DAG.getNode(ISD::ADD, DL, MVT::i16, DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2), DAG.getConstant(1, MVT::i16)), DAG.getConstant(3, MVT::i16)); return DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal); } static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); EVT OpVT = VT; unsigned NumBits = VT.getSizeInBits(); DebugLoc dl = Op.getDebugLoc(); Op = Op.getOperand(0); if (VT == MVT::i8) { // Zero extend to i32 since there is not an i8 bsr. OpVT = MVT::i32; Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); } // Issue a bsr (scan bits in reverse) which also sets EFLAGS. SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); // If src is zero (i.e. bsr sets ZF), returns NumBits. SDValue Ops[] = { Op, DAG.getConstant(NumBits+NumBits-1, OpVT), DAG.getConstant(X86::COND_E, MVT::i8), Op.getValue(1) }; Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); // Finally xor with NumBits-1. Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); if (VT == MVT::i8) Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); return Op; } static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); EVT OpVT = VT; unsigned NumBits = VT.getSizeInBits(); DebugLoc dl = Op.getDebugLoc(); Op = Op.getOperand(0); if (VT == MVT::i8) { // Zero extend to i32 since there is not an i8 bsr. OpVT = MVT::i32; Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); } // Issue a bsr (scan bits in reverse). SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); // And xor with NumBits-1. Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); if (VT == MVT::i8) Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); return Op; } static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); unsigned NumBits = VT.getSizeInBits(); DebugLoc dl = Op.getDebugLoc(); Op = Op.getOperand(0); // Issue a bsf (scan bits forward) which also sets EFLAGS. SDVTList VTs = DAG.getVTList(VT, MVT::i32); Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op); // If src is zero (i.e. bsf sets ZF), returns NumBits. SDValue Ops[] = { Op, DAG.getConstant(NumBits, VT), DAG.getConstant(X86::COND_E, MVT::i8), Op.getValue(1) }; return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops)); } // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit // ones, and then concatenate the result back. static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); assert(VT.is256BitVector() && VT.isInteger() && "Unsupported value type for operation"); unsigned NumElems = VT.getVectorNumElements(); DebugLoc dl = Op.getDebugLoc(); // Extract the LHS vectors SDValue LHS = Op.getOperand(0); SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); // Extract the RHS vectors SDValue RHS = Op.getOperand(1); SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); MVT EltVT = VT.getVectorElementType().getSimpleVT(); EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1), DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2)); } static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) { assert(Op.getValueType().is256BitVector() && Op.getValueType().isInteger() && "Only handle AVX 256-bit vector integer operation"); return Lower256IntArith(Op, DAG); } static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) { assert(Op.getValueType().is256BitVector() && Op.getValueType().isInteger() && "Only handle AVX 256-bit vector integer operation"); return Lower256IntArith(Op, DAG); } static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); EVT VT = Op.getValueType(); // Decompose 256-bit ops into smaller 128-bit ops. if (VT.is256BitVector() && !Subtarget->hasInt256()) return Lower256IntArith(Op, DAG); SDValue A = Op.getOperand(0); SDValue B = Op.getOperand(1); // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle. if (VT == MVT::v4i32) { assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() && "Should not custom lower when pmuldq is available!"); // Extract the odd parts. const int UnpackMask[] = { 1, -1, 3, -1 }; SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask); SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask); // Multiply the even parts. SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B); // Now multiply odd parts. SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds); Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens); Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds); // Merge the two vectors back together with a shuffle. This expands into 2 // shuffles. const int ShufMask[] = { 0, 4, 2, 6 }; return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask); } assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Only know how to lower V2I64/V4I64 multiply"); // Ahi = psrlqi(a, 32); // Bhi = psrlqi(b, 32); // // AloBlo = pmuludq(a, b); // AloBhi = pmuludq(a, Bhi); // AhiBlo = pmuludq(Ahi, b); // AloBhi = psllqi(AloBhi, 32); // AhiBlo = psllqi(AhiBlo, 32); // return AloBlo + AloBhi + AhiBlo; SDValue ShAmt = DAG.getConstant(32, MVT::i32); SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt); SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt); // Bit cast to 32-bit vectors for MULUDQ EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32; A = DAG.getNode(ISD::BITCAST, dl, MulVT, A); B = DAG.getNode(ISD::BITCAST, dl, MulVT, B); Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi); Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi); SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B); SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi); SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B); AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt); AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt); SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); } SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); EVT EltTy = VT.getVectorElementType(); unsigned NumElts = VT.getVectorNumElements(); SDValue N0 = Op.getOperand(0); DebugLoc dl = Op.getDebugLoc(); // Lower sdiv X, pow2-const. BuildVectorSDNode *C = dyn_cast(Op.getOperand(1)); if (!C) return SDValue(); APInt SplatValue, SplatUndef; unsigned MinSplatBits; bool HasAnyUndefs; if (!C->isConstantSplat(SplatValue, SplatUndef, MinSplatBits, HasAnyUndefs)) return SDValue(); if ((SplatValue != 0) && (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) { unsigned lg2 = SplatValue.countTrailingZeros(); // Splat the sign bit. SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32); SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG); // Add (N0 < 0) ? abs2 - 1 : 0; SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32); SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG); SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL); SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32); SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG); // If we're dividing by a positive value, we're done. Otherwise, we must // negate the result. if (SplatValue.isNonNegative()) return SRA; SmallVector V(NumElts, DAG.getConstant(0, EltTy)); SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts); return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA); } return SDValue(); } static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); SDValue R = Op.getOperand(0); SDValue Amt = Op.getOperand(1); // Optimize shl/srl/sra with constant shift amount. if (isSplatVector(Amt.getNode())) { SDValue SclrAmt = Amt->getOperand(0); if (ConstantSDNode *C = dyn_cast(SclrAmt)) { uint64_t ShiftAmt = C->getZExtValue(); if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || (Subtarget->hasInt256() && (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) { if (Op.getOpcode() == ISD::SHL) return DAG.getNode(X86ISD::VSHLI, dl, VT, R, DAG.getConstant(ShiftAmt, MVT::i32)); if (Op.getOpcode() == ISD::SRL) return DAG.getNode(X86ISD::VSRLI, dl, VT, R, DAG.getConstant(ShiftAmt, MVT::i32)); if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64) return DAG.getNode(X86ISD::VSRAI, dl, VT, R, DAG.getConstant(ShiftAmt, MVT::i32)); } if (VT == MVT::v16i8) { if (Op.getOpcode() == ISD::SHL) { // Make a large shift. SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R, DAG.getConstant(ShiftAmt, MVT::i32)); SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL); // Zero out the rightmost bits. SmallVector V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt), MVT::i8)); return DAG.getNode(ISD::AND, dl, VT, SHL, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16)); } if (Op.getOpcode() == ISD::SRL) { // Make a large shift. SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R, DAG.getConstant(ShiftAmt, MVT::i32)); SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL); // Zero out the leftmost bits. SmallVector V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt, MVT::i8)); return DAG.getNode(ISD::AND, dl, VT, SRL, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16)); } if (Op.getOpcode() == ISD::SRA) { if (ShiftAmt == 7) { // R s>> 7 === R s< 0 SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); } // R s>> a === ((R u>> a) ^ m) - m SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); SmallVector V(16, DAG.getConstant(128 >> ShiftAmt, MVT::i8)); SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16); Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); return Res; } llvm_unreachable("Unknown shift opcode."); } if (Subtarget->hasInt256() && VT == MVT::v32i8) { if (Op.getOpcode() == ISD::SHL) { // Make a large shift. SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R, DAG.getConstant(ShiftAmt, MVT::i32)); SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL); // Zero out the rightmost bits. SmallVector V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt), MVT::i8)); return DAG.getNode(ISD::AND, dl, VT, SHL, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32)); } if (Op.getOpcode() == ISD::SRL) { // Make a large shift. SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R, DAG.getConstant(ShiftAmt, MVT::i32)); SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL); // Zero out the leftmost bits. SmallVector V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt, MVT::i8)); return DAG.getNode(ISD::AND, dl, VT, SRL, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32)); } if (Op.getOpcode() == ISD::SRA) { if (ShiftAmt == 7) { // R s>> 7 === R s< 0 SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); } // R s>> a === ((R u>> a) ^ m) - m SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); SmallVector V(32, DAG.getConstant(128 >> ShiftAmt, MVT::i8)); SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32); Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); return Res; } llvm_unreachable("Unknown shift opcode."); } } } // Special case in 32-bit mode, where i64 is expanded into high and low parts. if (!Subtarget->is64Bit() && (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) && Amt.getOpcode() == ISD::BITCAST && Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { Amt = Amt.getOperand(0); unsigned Ratio = Amt.getValueType().getVectorNumElements() / VT.getVectorNumElements(); unsigned RatioInLog2 = Log2_32_Ceil(Ratio); uint64_t ShiftAmt = 0; for (unsigned i = 0; i != Ratio; ++i) { ConstantSDNode *C = dyn_cast(Amt.getOperand(i)); if (C == 0) return SDValue(); // 6 == Log2(64) ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2))); } // Check remaining shift amounts. for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { uint64_t ShAmt = 0; for (unsigned j = 0; j != Ratio; ++j) { ConstantSDNode *C = dyn_cast(Amt.getOperand(i + j)); if (C == 0) return SDValue(); // 6 == Log2(64) ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2))); } if (ShAmt != ShiftAmt) return SDValue(); } switch (Op.getOpcode()) { default: llvm_unreachable("Unknown shift opcode!"); case ISD::SHL: return DAG.getNode(X86ISD::VSHLI, dl, VT, R, DAG.getConstant(ShiftAmt, MVT::i32)); case ISD::SRL: return DAG.getNode(X86ISD::VSRLI, dl, VT, R, DAG.getConstant(ShiftAmt, MVT::i32)); case ISD::SRA: return DAG.getNode(X86ISD::VSRAI, dl, VT, R, DAG.getConstant(ShiftAmt, MVT::i32)); } } return SDValue(); } static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG, const X86Subtarget* Subtarget) { EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); SDValue R = Op.getOperand(0); SDValue Amt = Op.getOperand(1); if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) || VT == MVT::v4i32 || VT == MVT::v8i16 || (Subtarget->hasInt256() && ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) || VT == MVT::v8i32 || VT == MVT::v16i16))) { SDValue BaseShAmt; EVT EltVT = VT.getVectorElementType(); if (Amt.getOpcode() == ISD::BUILD_VECTOR) { unsigned NumElts = VT.getVectorNumElements(); unsigned i, j; for (i = 0; i != NumElts; ++i) { if (Amt.getOperand(i).getOpcode() == ISD::UNDEF) continue; break; } for (j = i; j != NumElts; ++j) { SDValue Arg = Amt.getOperand(j); if (Arg.getOpcode() == ISD::UNDEF) continue; if (Arg != Amt.getOperand(i)) break; } if (i != NumElts && j == NumElts) BaseShAmt = Amt.getOperand(i); } else { if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR) Amt = Amt.getOperand(0); if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE && cast(Amt)->isSplat()) { SDValue InVec = Amt.getOperand(0); if (InVec.getOpcode() == ISD::BUILD_VECTOR) { unsigned NumElts = InVec.getValueType().getVectorNumElements(); unsigned i = 0; for (; i != NumElts; ++i) { SDValue Arg = InVec.getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; BaseShAmt = Arg; break; } } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { if (ConstantSDNode *C = dyn_cast(InVec.getOperand(2))) { unsigned SplatIdx = cast(Amt)->getSplatIndex(); if (C->getZExtValue() == SplatIdx) BaseShAmt = InVec.getOperand(1); } } if (BaseShAmt.getNode() == 0) BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt, DAG.getIntPtrConstant(0)); } } if (BaseShAmt.getNode()) { if (EltVT.bitsGT(MVT::i32)) BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt); else if (EltVT.bitsLT(MVT::i32)) BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt); switch (Op.getOpcode()) { default: llvm_unreachable("Unknown shift opcode!"); case ISD::SHL: switch (VT.getSimpleVT().SimpleTy) { default: return SDValue(); case MVT::v2i64: case MVT::v4i32: case MVT::v8i16: case MVT::v4i64: case MVT::v8i32: case MVT::v16i16: return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG); } case ISD::SRA: switch (VT.getSimpleVT().SimpleTy) { default: return SDValue(); case MVT::v4i32: case MVT::v8i16: case MVT::v8i32: case MVT::v16i16: return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG); } case ISD::SRL: switch (VT.getSimpleVT().SimpleTy) { default: return SDValue(); case MVT::v2i64: case MVT::v4i32: case MVT::v8i16: case MVT::v4i64: case MVT::v8i32: case MVT::v16i16: return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG); } } } } // Special case in 32-bit mode, where i64 is expanded into high and low parts. if (!Subtarget->is64Bit() && (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) && Amt.getOpcode() == ISD::BITCAST && Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { Amt = Amt.getOperand(0); unsigned Ratio = Amt.getValueType().getVectorNumElements() / VT.getVectorNumElements(); std::vector Vals(Ratio); for (unsigned i = 0; i != Ratio; ++i) Vals[i] = Amt.getOperand(i); for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { for (unsigned j = 0; j != Ratio; ++j) if (Vals[j] != Amt.getOperand(i + j)) return SDValue(); } switch (Op.getOpcode()) { default: llvm_unreachable("Unknown shift opcode!"); case ISD::SHL: return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1)); case ISD::SRL: return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1)); case ISD::SRA: return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1)); } } return SDValue(); } SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); SDValue R = Op.getOperand(0); SDValue Amt = Op.getOperand(1); SDValue V; if (!Subtarget->hasSSE2()) return SDValue(); V = LowerScalarImmediateShift(Op, DAG, Subtarget); if (V.getNode()) return V; V = LowerScalarVariableShift(Op, DAG, Subtarget); if (V.getNode()) return V; // AVX2 has VPSLLV/VPSRAV/VPSRLV. if (Subtarget->hasInt256()) { if (Op.getOpcode() == ISD::SRL && (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v4i64 || VT == MVT::v8i32)) return Op; if (Op.getOpcode() == ISD::SHL && (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v4i64 || VT == MVT::v8i32)) return Op; if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32)) return Op; } // Lower SHL with variable shift amount. if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) { Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT)); Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT)); Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op); Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op); return DAG.getNode(ISD::MUL, dl, VT, Op, R); } if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) { assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq."); // a = a << 5; Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT)); Op = DAG.getNode(ISD::BITCAST, dl, VT, Op); // Turn 'a' into a mask suitable for VSELECT SDValue VSelM = DAG.getConstant(0x80, VT); SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); SDValue CM1 = DAG.getConstant(0x0f, VT); SDValue CM2 = DAG.getConstant(0x3f, VT); // r = VSELECT(r, psllw(r & (char16)15, 4), a); SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1); M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M, DAG.getConstant(4, MVT::i32), DAG); M = DAG.getNode(ISD::BITCAST, dl, VT, M); R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R); // a += a Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); // r = VSELECT(r, psllw(r & (char16)63, 2), a); M = DAG.getNode(ISD::AND, dl, VT, R, CM2); M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M, DAG.getConstant(2, MVT::i32), DAG); M = DAG.getNode(ISD::BITCAST, dl, VT, M); R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R); // a += a Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); // return VSELECT(r, r+r, a); R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, DAG.getNode(ISD::ADD, dl, VT, R, R), R); return R; } // Decompose 256-bit shifts into smaller 128-bit shifts. if (VT.is256BitVector()) { unsigned NumElems = VT.getVectorNumElements(); MVT EltVT = VT.getVectorElementType().getSimpleVT(); EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); // Extract the two vectors SDValue V1 = Extract128BitVector(R, 0, DAG, dl); SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl); // Recreate the shift amount vectors SDValue Amt1, Amt2; if (Amt.getOpcode() == ISD::BUILD_VECTOR) { // Constant shift amount SmallVector Amt1Csts; SmallVector Amt2Csts; for (unsigned i = 0; i != NumElems/2; ++i) Amt1Csts.push_back(Amt->getOperand(i)); for (unsigned i = NumElems/2; i != NumElems; ++i) Amt2Csts.push_back(Amt->getOperand(i)); Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, &Amt1Csts[0], NumElems/2); Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, &Amt2Csts[0], NumElems/2); } else { // Variable shift amount Amt1 = Extract128BitVector(Amt, 0, DAG, dl); Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl); } // Issue new vector shifts for the smaller types V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1); V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2); // Concatenate the result back return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2); } return SDValue(); } static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { // Lower the "add/sub/mul with overflow" instruction into a regular ins plus // a "setcc" instruction that checks the overflow flag. The "brcond" lowering // looks for this combo and may remove the "setcc" instruction if the "setcc" // has only one use. SDNode *N = Op.getNode(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); unsigned BaseOp = 0; unsigned Cond = 0; DebugLoc DL = Op.getDebugLoc(); switch (Op.getOpcode()) { default: llvm_unreachable("Unknown ovf instruction!"); case ISD::SADDO: // A subtract of one will be selected as a INC. Note that INC doesn't // set CF, so we can't do this for UADDO. if (ConstantSDNode *C = dyn_cast(RHS)) if (C->isOne()) { BaseOp = X86ISD::INC; Cond = X86::COND_O; break; } BaseOp = X86ISD::ADD; Cond = X86::COND_O; break; case ISD::UADDO: BaseOp = X86ISD::ADD; Cond = X86::COND_B; break; case ISD::SSUBO: // A subtract of one will be selected as a DEC. Note that DEC doesn't // set CF, so we can't do this for USUBO. if (ConstantSDNode *C = dyn_cast(RHS)) if (C->isOne()) { BaseOp = X86ISD::DEC; Cond = X86::COND_O; break; } BaseOp = X86ISD::SUB; Cond = X86::COND_O; break; case ISD::USUBO: BaseOp = X86ISD::SUB; Cond = X86::COND_B; break; case ISD::SMULO: BaseOp = X86ISD::SMUL; Cond = X86::COND_O; break; case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0), MVT::i32); SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(X86::COND_O, MVT::i32), SDValue(Sum.getNode(), 2)); return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); } } // Also sets EFLAGS. SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1), DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1)); return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); } SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); EVT ExtraVT = cast(Op.getOperand(1))->getVT(); EVT VT = Op.getValueType(); if (!Subtarget->hasSSE2() || !VT.isVector()) return SDValue(); unsigned BitsDiff = VT.getScalarType().getSizeInBits() - ExtraVT.getScalarType().getSizeInBits(); SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32); switch (VT.getSimpleVT().SimpleTy) { default: return SDValue(); case MVT::v8i32: case MVT::v16i16: if (!Subtarget->hasFp256()) return SDValue(); if (!Subtarget->hasInt256()) { // needs to be split unsigned NumElems = VT.getVectorNumElements(); // Extract the LHS vectors SDValue LHS = Op.getOperand(0); SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); MVT EltVT = VT.getVectorElementType().getSimpleVT(); EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); EVT ExtraEltVT = ExtraVT.getVectorElementType(); unsigned ExtraNumElems = ExtraVT.getVectorNumElements(); ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT, ExtraNumElems/2); SDValue Extra = DAG.getValueType(ExtraVT); LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra); LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2); } // fall through case MVT::v4i32: case MVT::v8i16: { // (sext (vzext x)) -> (vsext x) SDValue Op0 = Op.getOperand(0); SDValue Op00 = Op0.getOperand(0); SDValue Tmp1; // Hopefully, this VECTOR_SHUFFLE is just a VZEXT. if (Op0.getOpcode() == ISD::BITCAST && Op00.getOpcode() == ISD::VECTOR_SHUFFLE) Tmp1 = LowerVectorIntExtend(Op00, DAG); if (Tmp1.getNode()) { SDValue Tmp1Op0 = Tmp1.getOperand(0); assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT && "This optimization is invalid without a VZEXT."); return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0)); } // If the above didn't work, then just use Shift-Left + Shift-Right. Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, Op0, ShAmt, DAG); return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG); } } } static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); AtomicOrdering FenceOrdering = static_cast( cast(Op.getOperand(1))->getZExtValue()); SynchronizationScope FenceScope = static_cast( cast(Op.getOperand(2))->getZExtValue()); // The only fence that needs an instruction is a sequentially-consistent // cross-thread fence. if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) { // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for // no-sse2). There isn't any reason to disable it if the target processor // supports it. if (Subtarget->hasSSE2() || Subtarget->is64Bit()) return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); SDValue Chain = Op.getOperand(0); SDValue Zero = DAG.getConstant(0, MVT::i32); SDValue Ops[] = { DAG.getRegister(X86::ESP, MVT::i32), // Base DAG.getTargetConstant(1, MVT::i8), // Scale DAG.getRegister(0, MVT::i32), // Index DAG.getTargetConstant(0, MVT::i32), // Disp DAG.getRegister(0, MVT::i32), // Segment. Zero, Chain }; SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops); return SDValue(Res, 0); } // MEMBARRIER is a compiler barrier; it codegens to a no-op. return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); } static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { EVT T = Op.getValueType(); DebugLoc DL = Op.getDebugLoc(); unsigned Reg = 0; unsigned size = 0; switch(T.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid value type!"); case MVT::i8: Reg = X86::AL; size = 1; break; case MVT::i16: Reg = X86::AX; size = 2; break; case MVT::i32: Reg = X86::EAX; size = 4; break; case MVT::i64: assert(Subtarget->is64Bit() && "Node not type legal!"); Reg = X86::RAX; size = 8; break; } SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg, Op.getOperand(2), SDValue()); SDValue Ops[] = { cpIn.getValue(0), Op.getOperand(1), Op.getOperand(3), DAG.getTargetConstant(size, MVT::i8), cpIn.getValue(1) }; SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); MachineMemOperand *MMO = cast(Op)->getMemOperand(); SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys, Ops, array_lengthof(Ops), T, MMO); SDValue cpOut = DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1)); return cpOut; } static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(Subtarget->is64Bit() && "Result not type legalized?"); SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue TheChain = Op.getOperand(0); DebugLoc dl = Op.getDebugLoc(); SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1)); SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64, rax.getValue(2)); SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx, DAG.getConstant(32, MVT::i8)); SDValue Ops[] = { DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp), rdx.getValue(1) }; return DAG.getMergeValues(Ops, array_lengthof(Ops), dl); } SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { EVT SrcVT = Op.getOperand(0).getValueType(); EVT DstVT = Op.getValueType(); assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() && Subtarget->hasMMX() && "Unexpected custom BITCAST"); assert((DstVT == MVT::i64 || (DstVT.isVector() && DstVT.getSizeInBits()==64)) && "Unexpected custom BITCAST"); // i64 <=> MMX conversions are Legal. if (SrcVT==MVT::i64 && DstVT.isVector()) return Op; if (DstVT==MVT::i64 && SrcVT.isVector()) return Op; // MMX <=> MMX conversions are Legal. if (SrcVT.isVector() && DstVT.isVector()) return Op; // All other conversions need to be expanded. return SDValue(); } static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) { SDNode *Node = Op.getNode(); DebugLoc dl = Node->getDebugLoc(); EVT T = Node->getValueType(0); SDValue negOp = DAG.getNode(ISD::SUB, dl, T, DAG.getConstant(0, T), Node->getOperand(2)); return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, cast(Node)->getMemoryVT(), Node->getOperand(0), Node->getOperand(1), negOp, cast(Node)->getSrcValue(), cast(Node)->getAlignment(), cast(Node)->getOrdering(), cast(Node)->getSynchScope()); } static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) { SDNode *Node = Op.getNode(); DebugLoc dl = Node->getDebugLoc(); EVT VT = cast(Node)->getMemoryVT(); // Convert seq_cst store -> xchg // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b) // FIXME: On 32-bit, store -> fist or movq would be more efficient // (The only way to get a 16-byte store is cmpxchg16b) // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment. if (cast(Node)->getOrdering() == SequentiallyConsistent || !DAG.getTargetLoweringInfo().isTypeLegal(VT)) { SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, cast(Node)->getMemoryVT(), Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), cast(Node)->getMemOperand(), cast(Node)->getOrdering(), cast(Node)->getSynchScope()); return Swap.getValue(1); } // Other atomic stores have a simple pattern. return Op; } static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getNode()->getValueType(0); // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); SDVTList VTs = DAG.getVTList(VT, MVT::i32); unsigned Opc; bool ExtraOp = false; switch (Op.getOpcode()) { default: llvm_unreachable("Invalid code"); case ISD::ADDC: Opc = X86ISD::ADD; break; case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break; case ISD::SUBC: Opc = X86ISD::SUB; break; case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break; } if (!ExtraOp) return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0), Op.getOperand(1)); return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0), Op.getOperand(1), Op.getOperand(2)); } SDValue X86TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit()); // For MacOSX, we want to call an alternative entry point: __sincos_stret, // which returns the values as { float, float } (in XMM0) or // { double, double } (which is returned in XMM0, XMM1). DebugLoc dl = Op.getDebugLoc(); SDValue Arg = Op.getOperand(0); EVT ArgVT = Arg.getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); ArgListTy Args; ArgListEntry Entry; Entry.Node = Arg; Entry.Ty = ArgTy; Entry.isSExt = false; Entry.isZExt = false; Args.push_back(Entry); bool isF64 = ArgVT == MVT::f64; // Only optimize x86_64 for now. i386 is a bit messy. For f32, // the small struct {f32, f32} is returned in (eax, edx). For f64, // the results are returned via SRet in memory. const char *LibcallName = isF64 ? "__sincos_stret" : "__sincosf_stret"; SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy()); Type *RetTy = isF64 ? (Type*)StructType::get(ArgTy, ArgTy, NULL) : (Type*)VectorType::get(ArgTy, 4); TargetLowering:: CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, false, false, false, false, 0, CallingConv::C, /*isTaillCall=*/false, /*doesNotRet=*/false, /*isReturnValueUsed*/true, Callee, Args, DAG, dl); std::pair CallResult = LowerCallTo(CLI); if (isF64) // Returned in xmm0 and xmm1. return CallResult.first; // Returned in bits 0:31 and 32:64 xmm0. SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, CallResult.first, DAG.getIntPtrConstant(0)); SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, CallResult.first, DAG.getIntPtrConstant(1)); SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal); } /// LowerOperation - Provide custom lowering hooks for some operations. /// SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Should not custom lower this!"); case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG); case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG); case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op, Subtarget, DAG); case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG); case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG); case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG); case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::SHL_PARTS: case ISD::SRA_PARTS: case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, DAG); case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG); case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); case ISD::FABS: return LowerFABS(Op, DAG); case ISD::FNEG: return LowerFNEG(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::VAARG: return LowerVAARG(Op, DAG); case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); case ISD::CTLZ: return LowerCTLZ(Op, DAG); case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, DAG); case ISD::CTTZ: return LowerCTTZ(Op, DAG); case ISD::MUL: return LowerMUL(Op, Subtarget, DAG); case ISD::SRA: case ISD::SRL: case ISD::SHL: return LowerShift(Op, DAG); case ISD::SADDO: case ISD::UADDO: case ISD::SSUBO: case ISD::USUBO: case ISD::SMULO: case ISD::UMULO: return LowerXALUO(Op, DAG); case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG); case ISD::BITCAST: return LowerBITCAST(Op, DAG); case ISD::ADDC: case ISD::ADDE: case ISD::SUBC: case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); case ISD::ADD: return LowerADD(Op, DAG); case ISD::SUB: return LowerSUB(Op, DAG); case ISD::SDIV: return LowerSDIV(Op, DAG); case ISD::FSINCOS: return LowerFSINCOS(Op, DAG); // @LOCALMOD-BEGIN case ISD::NACL_TP_TLS_OFFSET: return LowerNaClTpTlsOffset(Op, DAG); case ISD::NACL_TP_TDB_OFFSET: return LowerNaClTpTdbOffset(Op, DAG); case ISD::NACL_TARGET_ARCH: return LowerNaClTargetArch(Op, DAG); // @LOCALMOD-END } } static void ReplaceATOMIC_LOAD(SDNode *Node, SmallVectorImpl &Results, SelectionDAG &DAG) { DebugLoc dl = Node->getDebugLoc(); EVT VT = cast(Node)->getMemoryVT(); // Convert wide load -> cmpxchg8b/cmpxchg16b // FIXME: On 32-bit, load -> fild or movq would be more efficient // (The only way to get a 16-byte load is cmpxchg16b) // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment. SDValue Zero = DAG.getConstant(0, VT); SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT, Node->getOperand(0), Node->getOperand(1), Zero, Zero, cast(Node)->getMemOperand(), cast(Node)->getOrdering(), cast(Node)->getSynchScope()); Results.push_back(Swap.getValue(0)); Results.push_back(Swap.getValue(1)); } static void ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl&Results, SelectionDAG &DAG, unsigned NewOp) { DebugLoc dl = Node->getDebugLoc(); assert (Node->getValueType(0) == MVT::i64 && "Only know how to expand i64 atomics"); SDValue Chain = Node->getOperand(0); SDValue In1 = Node->getOperand(1); SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Node->getOperand(2), DAG.getIntPtrConstant(0)); SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Node->getOperand(2), DAG.getIntPtrConstant(1)); SDValue Ops[] = { Chain, In1, In2L, In2H }; SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); SDValue Result = DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, array_lengthof(Ops), MVT::i64, cast(Node)->getMemOperand()); SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)}; Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); Results.push_back(Result.getValue(2)); } /// ReplaceNodeResults - Replace a node with an illegal result type /// with a new node built out of custom code. void X86TargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const { DebugLoc dl = N->getDebugLoc(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); switch (N->getOpcode()) { default: llvm_unreachable("Do not know how to custom type legalize this operation!"); case ISD::SIGN_EXTEND_INREG: case ISD::ADDC: case ISD::ADDE: case ISD::SUBC: case ISD::SUBE: // We don't want to expand or promote these. return; case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: { bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType())) return; std::pair Vals = FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true); SDValue FIST = Vals.first, StackSlot = Vals.second; if (FIST.getNode() != 0) { EVT VT = N->getValueType(0); // Return a load from the stack slot. if (StackSlot.getNode() != 0) Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, MachinePointerInfo(), false, false, false, 0)); else Results.push_back(FIST); } return; } case ISD::UINT_TO_FP: { assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); if (N->getOperand(0).getValueType() != MVT::v2i32 || N->getValueType(0) != MVT::v2f32) return; SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, N->getOperand(0)); SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), MVT::f64); SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias); SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn, DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias)); Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or); SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias); Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub)); return; } case ISD::FP_ROUND: { if (!TLI.isTypeLegal(N->getOperand(0).getValueType())) return; SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0)); Results.push_back(V); return; } case ISD::READCYCLECOUNTER: { SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue TheChain = N->getOperand(0); SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32, rd.getValue(1)); SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32, eax.getValue(2)); // Use a buildpair to merge the two 32-bit values into a 64-bit one. SDValue Ops[] = { eax, edx }; Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, array_lengthof(Ops))); Results.push_back(edx.getValue(1)); return; } case ISD::ATOMIC_CMP_SWAP: { EVT T = N->getValueType(0); assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair"); bool Regs64bit = T == MVT::i128; EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32; SDValue cpInL, cpInH; cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), DAG.getConstant(0, HalfT)); cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), DAG.getConstant(1, HalfT)); cpInL = DAG.getCopyToReg(N->getOperand(0), dl, Regs64bit ? X86::RAX : X86::EAX, cpInL, SDValue()); cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, Regs64bit ? X86::RDX : X86::EDX, cpInH, cpInL.getValue(1)); SDValue swapInL, swapInH; swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), DAG.getConstant(0, HalfT)); swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), DAG.getConstant(1, HalfT)); swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, Regs64bit ? X86::RBX : X86::EBX, swapInL, cpInH.getValue(1)); swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, Regs64bit ? X86::RCX : X86::ECX, swapInH, swapInL.getValue(1)); SDValue Ops[] = { swapInH.getValue(0), N->getOperand(1), swapInH.getValue(1) }; SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); MachineMemOperand *MMO = cast(N)->getMemOperand(); unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG : X86ISD::LCMPXCHG8_DAG; SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, array_lengthof(Ops), T, MMO); SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, Regs64bit ? X86::RAX : X86::EAX, HalfT, Result.getValue(1)); SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, Regs64bit ? X86::RDX : X86::EDX, HalfT, cpOutL.getValue(2)); SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2)); Results.push_back(cpOutH.getValue(1)); return; } case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_UMAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_SWAP: { unsigned Opc; switch (N->getOpcode()) { default: llvm_unreachable("Unexpected opcode"); case ISD::ATOMIC_LOAD_ADD: Opc = X86ISD::ATOMADD64_DAG; break; case ISD::ATOMIC_LOAD_AND: Opc = X86ISD::ATOMAND64_DAG; break; case ISD::ATOMIC_LOAD_NAND: Opc = X86ISD::ATOMNAND64_DAG; break; case ISD::ATOMIC_LOAD_OR: Opc = X86ISD::ATOMOR64_DAG; break; case ISD::ATOMIC_LOAD_SUB: Opc = X86ISD::ATOMSUB64_DAG; break; case ISD::ATOMIC_LOAD_XOR: Opc = X86ISD::ATOMXOR64_DAG; break; case ISD::ATOMIC_LOAD_MAX: Opc = X86ISD::ATOMMAX64_DAG; break; case ISD::ATOMIC_LOAD_MIN: Opc = X86ISD::ATOMMIN64_DAG; break; case ISD::ATOMIC_LOAD_UMAX: Opc = X86ISD::ATOMUMAX64_DAG; break; case ISD::ATOMIC_LOAD_UMIN: Opc = X86ISD::ATOMUMIN64_DAG; break; case ISD::ATOMIC_SWAP: Opc = X86ISD::ATOMSWAP64_DAG; break; } ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc); return; } case ISD::ATOMIC_LOAD: ReplaceATOMIC_LOAD(N, Results, DAG); } } const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return NULL; case X86ISD::BSF: return "X86ISD::BSF"; case X86ISD::BSR: return "X86ISD::BSR"; case X86ISD::SHLD: return "X86ISD::SHLD"; case X86ISD::SHRD: return "X86ISD::SHRD"; case X86ISD::FAND: return "X86ISD::FAND"; case X86ISD::FOR: return "X86ISD::FOR"; case X86ISD::FXOR: return "X86ISD::FXOR"; case X86ISD::FSRL: return "X86ISD::FSRL"; case X86ISD::FILD: return "X86ISD::FILD"; case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; case X86ISD::FLD: return "X86ISD::FLD"; case X86ISD::FST: return "X86ISD::FST"; case X86ISD::CALL: return "X86ISD::CALL"; case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; case X86ISD::BT: return "X86ISD::BT"; case X86ISD::CMP: return "X86ISD::CMP"; case X86ISD::COMI: return "X86ISD::COMI"; case X86ISD::UCOMI: return "X86ISD::UCOMI"; case X86ISD::SETCC: return "X86ISD::SETCC"; case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY"; case X86ISD::FSETCCsd: return "X86ISD::FSETCCsd"; case X86ISD::FSETCCss: return "X86ISD::FSETCCss"; case X86ISD::CMOV: return "X86ISD::CMOV"; case X86ISD::BRCOND: return "X86ISD::BRCOND"; case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; case X86ISD::Wrapper: return "X86ISD::Wrapper"; case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP"; case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; case X86ISD::PINSRB: return "X86ISD::PINSRB"; case X86ISD::PINSRW: return "X86ISD::PINSRW"; case X86ISD::PSHUFB: return "X86ISD::PSHUFB"; case X86ISD::ANDNP: return "X86ISD::ANDNP"; case X86ISD::PSIGN: return "X86ISD::PSIGN"; case X86ISD::BLENDV: return "X86ISD::BLENDV"; case X86ISD::BLENDI: return "X86ISD::BLENDI"; case X86ISD::SUBUS: return "X86ISD::SUBUS"; case X86ISD::HADD: return "X86ISD::HADD"; case X86ISD::HSUB: return "X86ISD::HSUB"; case X86ISD::FHADD: return "X86ISD::FHADD"; case X86ISD::FHSUB: return "X86ISD::FHSUB"; case X86ISD::UMAX: return "X86ISD::UMAX"; case X86ISD::UMIN: return "X86ISD::UMIN"; case X86ISD::SMAX: return "X86ISD::SMAX"; case X86ISD::SMIN: return "X86ISD::SMIN"; case X86ISD::FMAX: return "X86ISD::FMAX"; case X86ISD::FMIN: return "X86ISD::FMIN"; case X86ISD::FMAXC: return "X86ISD::FMAXC"; case X86ISD::FMINC: return "X86ISD::FMINC"; case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; case X86ISD::FRCP: return "X86ISD::FRCP"; case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR"; case X86ISD::TLSCALL: return "X86ISD::TLSCALL"; case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP"; case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP"; case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r"; case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG"; case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG"; case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG"; case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG"; case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG"; case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG"; case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; case X86ISD::VSEXT_MOVL: return "X86ISD::VSEXT_MOVL"; case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; case X86ISD::VZEXT: return "X86ISD::VZEXT"; case X86ISD::VSEXT: return "X86ISD::VSEXT"; case X86ISD::VFPEXT: return "X86ISD::VFPEXT"; case X86ISD::VFPROUND: return "X86ISD::VFPROUND"; case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ"; case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ"; case X86ISD::VSHL: return "X86ISD::VSHL"; case X86ISD::VSRL: return "X86ISD::VSRL"; case X86ISD::VSRA: return "X86ISD::VSRA"; case X86ISD::VSHLI: return "X86ISD::VSHLI"; case X86ISD::VSRLI: return "X86ISD::VSRLI"; case X86ISD::VSRAI: return "X86ISD::VSRAI"; case X86ISD::CMPP: return "X86ISD::CMPP"; case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ"; case X86ISD::PCMPGT: return "X86ISD::PCMPGT"; case X86ISD::ADD: return "X86ISD::ADD"; case X86ISD::SUB: return "X86ISD::SUB"; case X86ISD::ADC: return "X86ISD::ADC"; case X86ISD::SBB: return "X86ISD::SBB"; case X86ISD::SMUL: return "X86ISD::SMUL"; case X86ISD::UMUL: return "X86ISD::UMUL"; case X86ISD::INC: return "X86ISD::INC"; case X86ISD::DEC: return "X86ISD::DEC"; case X86ISD::OR: return "X86ISD::OR"; case X86ISD::XOR: return "X86ISD::XOR"; case X86ISD::AND: return "X86ISD::AND"; case X86ISD::BLSI: return "X86ISD::BLSI"; case X86ISD::BLSMSK: return "X86ISD::BLSMSK"; case X86ISD::BLSR: return "X86ISD::BLSR"; case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; case X86ISD::PTEST: return "X86ISD::PTEST"; case X86ISD::TESTP: return "X86ISD::TESTP"; case X86ISD::PALIGNR: return "X86ISD::PALIGNR"; case X86ISD::PSHUFD: return "X86ISD::PSHUFD"; case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW"; case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW"; case X86ISD::SHUFP: return "X86ISD::SHUFP"; case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS"; case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD"; case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS"; case X86ISD::MOVLPS: return "X86ISD::MOVLPS"; case X86ISD::MOVLPD: return "X86ISD::MOVLPD"; case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP"; case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP"; case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP"; case X86ISD::MOVSD: return "X86ISD::MOVSD"; case X86ISD::MOVSS: return "X86ISD::MOVSS"; case X86ISD::UNPCKL: return "X86ISD::UNPCKL"; case X86ISD::UNPCKH: return "X86ISD::UNPCKH"; case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST"; case X86ISD::VPERMILP: return "X86ISD::VPERMILP"; case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128"; case X86ISD::VPERMV: return "X86ISD::VPERMV"; case X86ISD::VPERMI: return "X86ISD::VPERMI"; case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ"; case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; case X86ISD::VAARG_64: return "X86ISD::VAARG_64"; case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA"; case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER"; case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA"; case X86ISD::WIN_FTOL: return "X86ISD::WIN_FTOL"; case X86ISD::SAHF: return "X86ISD::SAHF"; case X86ISD::RDRAND: return "X86ISD::RDRAND"; case X86ISD::RDSEED: return "X86ISD::RDSEED"; case X86ISD::FMADD: return "X86ISD::FMADD"; case X86ISD::FMSUB: return "X86ISD::FMSUB"; case X86ISD::FNMADD: return "X86ISD::FNMADD"; case X86ISD::FNMSUB: return "X86ISD::FNMSUB"; case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB"; case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD"; case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI"; case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI"; case X86ISD::XTEST: return "X86ISD::XTEST"; } } // isLegalAddressingMode - Return true if the addressing mode represented // by AM is legal for this target, for a load/store of the specified type. bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const { // X86 supports extremely general addressing modes. CodeModel::Model M = getTargetMachine().getCodeModel(); Reloc::Model R = getTargetMachine().getRelocationModel(); // X86 allows a sign-extended 32-bit immediate field as a displacement. if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL)) return false; if (AM.BaseGV) { unsigned GVFlags = Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); // If a reference to this global requires an extra load, we can't fold it. if (isGlobalStubReference(GVFlags)) return false; // If BaseGV requires a register for the PIC base, we cannot also have a // BaseReg specified. if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) return false; // If lower 4G is not available, then we must use rip-relative addressing. if ((M != CodeModel::Small || R != Reloc::Static) && Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1)) return false; } switch (AM.Scale) { case 0: case 1: case 2: case 4: case 8: // These scales always work. break; case 3: case 5: case 9: // These scales are formed with basereg+scalereg. Only accept if there is // no basereg yet. if (AM.HasBaseReg) return false; break; default: // Other stuff never works. return false; } return true; } bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); return NumBits1 > NumBits2; } bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; if (!isTypeLegal(EVT::getEVT(Ty1))) return false; assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); // Assuming the caller doesn't have a zeroext or signext return parameter, // truncation all the way down to i1 is valid. return true; } bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const { return isInt<32>(Imm); } bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const { // Can also use sub to handle negated immediates. return isInt<32>(Imm); } bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { if (!VT1.isInteger() || !VT2.isInteger()) return false; unsigned NumBits1 = VT1.getSizeInBits(); unsigned NumBits2 = VT2.getSizeInBits(); return NumBits1 > NumBits2; } bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit(); } bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); } bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { EVT VT1 = Val.getValueType(); if (isZExtFree(VT1, VT2)) return true; if (Val.getOpcode() != ISD::LOAD) return false; if (!VT1.isSimple() || !VT1.isInteger() || !VT2.isSimple() || !VT2.isInteger()) return false; switch (VT1.getSimpleVT().SimpleTy) { default: break; case MVT::i8: case MVT::i16: case MVT::i32: // X86 has 8, 16, and 32-bit zero-extending loads. return true; } return false; } bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { // i16 instructions are longer (0x66 prefix) and potentially slower. return !(VT1 == MVT::i32 && VT2 == MVT::i16); } /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values /// are assumed to be legal. bool X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl &M, EVT VT) const { // Very little shuffling can be done for 64-bit vectors right now. if (VT.getSizeInBits() == 64) return false; // FIXME: pshufb, blends, shifts. return (VT.getVectorNumElements() == 2 || ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isMOVLMask(M, VT) || isSHUFPMask(M, VT, Subtarget->hasFp256()) || isPSHUFDMask(M, VT) || isPSHUFHWMask(M, VT, Subtarget->hasInt256()) || isPSHUFLWMask(M, VT, Subtarget->hasInt256()) || isPALIGNRMask(M, VT, Subtarget) || isUNPCKLMask(M, VT, Subtarget->hasInt256()) || isUNPCKHMask(M, VT, Subtarget->hasInt256()) || isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) || isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256())); } bool X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl &Mask, EVT VT) const { unsigned NumElts = VT.getVectorNumElements(); // FIXME: This collection of masks seems suspect. if (NumElts == 2) return true; if (NumElts == 4 && VT.is128BitVector()) { return (isMOVLMask(Mask, VT) || isCommutedMOVLMask(Mask, VT, true) || isSHUFPMask(Mask, VT, Subtarget->hasFp256()) || isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true)); } return false; } //===----------------------------------------------------------------------===// // X86 Scheduler Hooks //===----------------------------------------------------------------------===// /// Utility function to emit xbegin specifying the start of an RTM region. static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB, const TargetInstrInfo *TII) { DebugLoc DL = MI->getDebugLoc(); const BasicBlock *BB = MBB->getBasicBlock(); MachineFunction::iterator I = MBB; ++I; // For the v = xbegin(), we generate // // thisMBB: // xbegin sinkMBB // // mainMBB: // eax = -1 // // sinkMBB: // v = eax MachineBasicBlock *thisMBB = MBB; MachineFunction *MF = MBB->getParent(); MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); MF->insert(I, mainMBB); MF->insert(I, sinkMBB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); // thisMBB: // xbegin sinkMBB // # fallthrough to mainMBB // # abortion to sinkMBB BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB); thisMBB->addSuccessor(mainMBB); thisMBB->addSuccessor(sinkMBB); // mainMBB: // EAX = -1 BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1); mainMBB->addSuccessor(sinkMBB); // sinkMBB: // EAX is live into the sinkMBB sinkMBB->addLiveIn(X86::EAX); BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) .addReg(X86::EAX); MI->eraseFromParent(); return sinkMBB; } // Get CMPXCHG opcode for the specified data type. static unsigned getCmpXChgOpcode(EVT VT) { switch (VT.getSimpleVT().SimpleTy) { case MVT::i8: return X86::LCMPXCHG8; case MVT::i16: return X86::LCMPXCHG16; case MVT::i32: return X86::LCMPXCHG32; case MVT::i64: return X86::LCMPXCHG64; default: break; } llvm_unreachable("Invalid operand size!"); } // Get LOAD opcode for the specified data type. static unsigned getLoadOpcode(EVT VT) { switch (VT.getSimpleVT().SimpleTy) { case MVT::i8: return X86::MOV8rm; case MVT::i16: return X86::MOV16rm; case MVT::i32: return X86::MOV32rm; case MVT::i64: return X86::MOV64rm; default: break; } llvm_unreachable("Invalid operand size!"); } // Get opcode of the non-atomic one from the specified atomic instruction. static unsigned getNonAtomicOpcode(unsigned Opc) { switch (Opc) { case X86::ATOMAND8: return X86::AND8rr; case X86::ATOMAND16: return X86::AND16rr; case X86::ATOMAND32: return X86::AND32rr; case X86::ATOMAND64: return X86::AND64rr; case X86::ATOMOR8: return X86::OR8rr; case X86::ATOMOR16: return X86::OR16rr; case X86::ATOMOR32: return X86::OR32rr; case X86::ATOMOR64: return X86::OR64rr; case X86::ATOMXOR8: return X86::XOR8rr; case X86::ATOMXOR16: return X86::XOR16rr; case X86::ATOMXOR32: return X86::XOR32rr; case X86::ATOMXOR64: return X86::XOR64rr; } llvm_unreachable("Unhandled atomic-load-op opcode!"); } // Get opcode of the non-atomic one from the specified atomic instruction with // extra opcode. static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc, unsigned &ExtraOpc) { switch (Opc) { case X86::ATOMNAND8: ExtraOpc = X86::NOT8r; return X86::AND8rr; case X86::ATOMNAND16: ExtraOpc = X86::NOT16r; return X86::AND16rr; case X86::ATOMNAND32: ExtraOpc = X86::NOT32r; return X86::AND32rr; case X86::ATOMNAND64: ExtraOpc = X86::NOT64r; return X86::AND64rr; case X86::ATOMMAX8: ExtraOpc = X86::CMP8rr; return X86::CMOVL32rr; case X86::ATOMMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr; case X86::ATOMMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr; case X86::ATOMMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr; case X86::ATOMMIN8: ExtraOpc = X86::CMP8rr; return X86::CMOVG32rr; case X86::ATOMMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr; case X86::ATOMMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr; case X86::ATOMMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr; case X86::ATOMUMAX8: ExtraOpc = X86::CMP8rr; return X86::CMOVB32rr; case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr; case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr; case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr; case X86::ATOMUMIN8: ExtraOpc = X86::CMP8rr; return X86::CMOVA32rr; case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr; case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr; case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr; } llvm_unreachable("Unhandled atomic-load-op opcode!"); } // Get opcode of the non-atomic one from the specified atomic instruction for // 64-bit data type on 32-bit target. static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) { switch (Opc) { case X86::ATOMAND6432: HiOpc = X86::AND32rr; return X86::AND32rr; case X86::ATOMOR6432: HiOpc = X86::OR32rr; return X86::OR32rr; case X86::ATOMXOR6432: HiOpc = X86::XOR32rr; return X86::XOR32rr; case X86::ATOMADD6432: HiOpc = X86::ADC32rr; return X86::ADD32rr; case X86::ATOMSUB6432: HiOpc = X86::SBB32rr; return X86::SUB32rr; case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr; case X86::ATOMMAX6432: HiOpc = X86::SETLr; return X86::SETLr; case X86::ATOMMIN6432: HiOpc = X86::SETGr; return X86::SETGr; case X86::ATOMUMAX6432: HiOpc = X86::SETBr; return X86::SETBr; case X86::ATOMUMIN6432: HiOpc = X86::SETAr; return X86::SETAr; } llvm_unreachable("Unhandled atomic-load-op opcode!"); } // Get opcode of the non-atomic one from the specified atomic instruction for // 64-bit data type on 32-bit target with extra opcode. static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc, unsigned &HiOpc, unsigned &ExtraOpc) { switch (Opc) { case X86::ATOMNAND6432: ExtraOpc = X86::NOT32r; HiOpc = X86::AND32rr; return X86::AND32rr; } llvm_unreachable("Unhandled atomic-load-op opcode!"); } // Get pseudo CMOV opcode from the specified data type. static unsigned getPseudoCMOVOpc(EVT VT) { switch (VT.getSimpleVT().SimpleTy) { case MVT::i8: return X86::CMOV_GR8; case MVT::i16: return X86::CMOV_GR16; case MVT::i32: return X86::CMOV_GR32; default: break; } llvm_unreachable("Unknown CMOV opcode!"); } // EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions. // They will be translated into a spin-loop or compare-exchange loop from // // ... // dst = atomic-fetch-op MI.addr, MI.val // ... // // to // // ... // t1 = LOAD MI.addr // loop: // t4 = phi(t1, t3 / loop) // t2 = OP MI.val, t4 // EAX = t4 // LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined] // t3 = EAX // JNE loop // sink: // dst = t3 // ... MachineBasicBlock * X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI, MachineBasicBlock *MBB) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); const BasicBlock *BB = MBB->getBasicBlock(); MachineFunction::iterator I = MBB; ++I; assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 && "Unexpected number of operands"); assert(MI->hasOneMemOperand() && "Expected atomic-load-op to have one memoperand"); // Memory Reference MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); unsigned DstReg, SrcReg; unsigned MemOpndSlot; unsigned CurOp = 0; DstReg = MI->getOperand(CurOp++).getReg(); MemOpndSlot = CurOp; CurOp += X86::AddrNumOperands; SrcReg = MI->getOperand(CurOp++).getReg(); const TargetRegisterClass *RC = MRI.getRegClass(DstReg); MVT::SimpleValueType VT = *RC->vt_begin(); unsigned t1 = MRI.createVirtualRegister(RC); unsigned t2 = MRI.createVirtualRegister(RC); unsigned t3 = MRI.createVirtualRegister(RC); unsigned t4 = MRI.createVirtualRegister(RC); unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT); unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT); unsigned LOADOpc = getLoadOpcode(VT); // For the atomic load-arith operator, we generate // // thisMBB: // t1 = LOAD [MI.addr] // mainMBB: // t4 = phi(t1 / thisMBB, t3 / mainMBB) // t1 = OP MI.val, EAX // EAX = t4 // LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined] // t3 = EAX // JNE mainMBB // sinkMBB: // dst = t3 MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); MF->insert(I, mainMBB); MF->insert(I, sinkMBB); MachineInstrBuilder MIB; // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); // thisMBB: MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); if (NewMO.isReg()) NewMO.setIsKill(false); MIB.addOperand(NewMO); } for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) { unsigned flags = (*MMOI)->getFlags(); flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad; MachineMemOperand *MMO = MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags, (*MMOI)->getSize(), (*MMOI)->getBaseAlignment(), (*MMOI)->getTBAAInfo(), (*MMOI)->getRanges()); MIB.addMemOperand(MMO); } thisMBB->addSuccessor(mainMBB); // mainMBB: MachineBasicBlock *origMainMBB = mainMBB; // Add a PHI. MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4) .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB); unsigned Opc = MI->getOpcode(); switch (Opc) { default: llvm_unreachable("Unhandled atomic-load-op opcode!"); case X86::ATOMAND8: case X86::ATOMAND16: case X86::ATOMAND32: case X86::ATOMAND64: case X86::ATOMOR8: case X86::ATOMOR16: case X86::ATOMOR32: case X86::ATOMOR64: case X86::ATOMXOR8: case X86::ATOMXOR16: case X86::ATOMXOR32: case X86::ATOMXOR64: { unsigned ARITHOpc = getNonAtomicOpcode(Opc); BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg) .addReg(t4); break; } case X86::ATOMNAND8: case X86::ATOMNAND16: case X86::ATOMNAND32: case X86::ATOMNAND64: { unsigned Tmp = MRI.createVirtualRegister(RC); unsigned NOTOpc; unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc); BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg) .addReg(t4); BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp); break; } case X86::ATOMMAX8: case X86::ATOMMAX16: case X86::ATOMMAX32: case X86::ATOMMAX64: case X86::ATOMMIN8: case X86::ATOMMIN16: case X86::ATOMMIN32: case X86::ATOMMIN64: case X86::ATOMUMAX8: case X86::ATOMUMAX16: case X86::ATOMUMAX32: case X86::ATOMUMAX64: case X86::ATOMUMIN8: case X86::ATOMUMIN16: case X86::ATOMUMIN32: case X86::ATOMUMIN64: { unsigned CMPOpc; unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc); BuildMI(mainMBB, DL, TII->get(CMPOpc)) .addReg(SrcReg) .addReg(t4); if (Subtarget->hasCMov()) { if (VT != MVT::i8) { // Native support BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2) .addReg(SrcReg) .addReg(t4); } else { // Promote i8 to i32 to use CMOV32 const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo(); const TargetRegisterClass *RC32 = TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit); unsigned SrcReg32 = MRI.createVirtualRegister(RC32); unsigned AccReg32 = MRI.createVirtualRegister(RC32); unsigned Tmp = MRI.createVirtualRegister(RC32); unsigned Undef = MRI.createVirtualRegister(RC32); BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef); BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32) .addReg(Undef) .addReg(SrcReg) .addImm(X86::sub_8bit); BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32) .addReg(Undef) .addReg(t4) .addImm(X86::sub_8bit); BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp) .addReg(SrcReg32) .addReg(AccReg32); BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2) .addReg(Tmp, 0, X86::sub_8bit); } } else { // Use pseudo select and lower them. assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && "Invalid atomic-load-op transformation!"); unsigned SelOpc = getPseudoCMOVOpc(VT); X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc); assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!"); MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2) .addReg(SrcReg).addReg(t4) .addImm(CC); mainMBB = EmitLoweredSelect(MIB, mainMBB); // Replace the original PHI node as mainMBB is changed after CMOV // lowering. BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4) .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB); Phi->eraseFromParent(); } break; } } // Copy PhyReg back from virtual register. BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg) .addReg(t4); MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc)); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); if (NewMO.isReg()) NewMO.setIsKill(false); MIB.addOperand(NewMO); } MIB.addReg(t2); MIB.setMemRefs(MMOBegin, MMOEnd); // Copy PhyReg back to virtual register. BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3) .addReg(PhyReg); BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB); mainMBB->addSuccessor(origMainMBB); mainMBB->addSuccessor(sinkMBB); // sinkMBB: BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) .addReg(t3); MI->eraseFromParent(); return sinkMBB; } // EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic // instructions. They will be translated into a spin-loop or compare-exchange // loop from // // ... // dst = atomic-fetch-op MI.addr, MI.val // ... // // to // // ... // t1L = LOAD [MI.addr + 0] // t1H = LOAD [MI.addr + 4] // loop: // t4L = phi(t1L, t3L / loop) // t4H = phi(t1H, t3H / loop) // t2L = OP MI.val.lo, t4L // t2H = OP MI.val.hi, t4H // EAX = t4L // EDX = t4H // EBX = t2L // ECX = t2H // LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined] // t3L = EAX // t3H = EDX // JNE loop // sink: // dstL = t3L // dstH = t3H // ... MachineBasicBlock * X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI, MachineBasicBlock *MBB) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); const BasicBlock *BB = MBB->getBasicBlock(); MachineFunction::iterator I = MBB; ++I; assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 && "Unexpected number of operands"); assert(MI->hasOneMemOperand() && "Expected atomic-load-op32 to have one memoperand"); // Memory Reference MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); unsigned DstLoReg, DstHiReg; unsigned SrcLoReg, SrcHiReg; unsigned MemOpndSlot; unsigned CurOp = 0; DstLoReg = MI->getOperand(CurOp++).getReg(); DstHiReg = MI->getOperand(CurOp++).getReg(); MemOpndSlot = CurOp; CurOp += X86::AddrNumOperands; SrcLoReg = MI->getOperand(CurOp++).getReg(); SrcHiReg = MI->getOperand(CurOp++).getReg(); const TargetRegisterClass *RC = &X86::GR32RegClass; const TargetRegisterClass *RC8 = &X86::GR8RegClass; unsigned t1L = MRI.createVirtualRegister(RC); unsigned t1H = MRI.createVirtualRegister(RC); unsigned t2L = MRI.createVirtualRegister(RC); unsigned t2H = MRI.createVirtualRegister(RC); unsigned t3L = MRI.createVirtualRegister(RC); unsigned t3H = MRI.createVirtualRegister(RC); unsigned t4L = MRI.createVirtualRegister(RC); unsigned t4H = MRI.createVirtualRegister(RC); unsigned LCMPXCHGOpc = X86::LCMPXCHG8B; unsigned LOADOpc = X86::MOV32rm; // For the atomic load-arith operator, we generate // // thisMBB: // t1L = LOAD [MI.addr + 0] // t1H = LOAD [MI.addr + 4] // mainMBB: // t4L = phi(t1L / thisMBB, t3L / mainMBB) // t4H = phi(t1H / thisMBB, t3H / mainMBB) // t2L = OP MI.val.lo, t4L // t2H = OP MI.val.hi, t4H // EBX = t2L // ECX = t2H // LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined] // t3L = EAX // t3H = EDX // JNE loop // sinkMBB: // dstL = t3L // dstH = t3H MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); MF->insert(I, mainMBB); MF->insert(I, sinkMBB); MachineInstrBuilder MIB; // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); // thisMBB: // Lo MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); if (NewMO.isReg()) NewMO.setIsKill(false); MIB.addOperand(NewMO); } for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) { unsigned flags = (*MMOI)->getFlags(); flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad; MachineMemOperand *MMO = MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags, (*MMOI)->getSize(), (*MMOI)->getBaseAlignment(), (*MMOI)->getTBAAInfo(), (*MMOI)->getRanges()); MIB.addMemOperand(MMO); }; MachineInstr *LowMI = MIB; // Hi MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { if (i == X86::AddrDisp) { MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32) } else { MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); if (NewMO.isReg()) NewMO.setIsKill(false); MIB.addOperand(NewMO); } } MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end()); thisMBB->addSuccessor(mainMBB); // mainMBB: MachineBasicBlock *origMainMBB = mainMBB; // Add PHIs. MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L) .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB); MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H) .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB); unsigned Opc = MI->getOpcode(); switch (Opc) { default: llvm_unreachable("Unhandled atomic-load-op6432 opcode!"); case X86::ATOMAND6432: case X86::ATOMOR6432: case X86::ATOMXOR6432: case X86::ATOMADD6432: case X86::ATOMSUB6432: { unsigned HiOpc; unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc); BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L) .addReg(SrcLoReg); BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H) .addReg(SrcHiReg); break; } case X86::ATOMNAND6432: { unsigned HiOpc, NOTOpc; unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc); unsigned TmpL = MRI.createVirtualRegister(RC); unsigned TmpH = MRI.createVirtualRegister(RC); BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg) .addReg(t4L); BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg) .addReg(t4H); BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL); BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH); break; } case X86::ATOMMAX6432: case X86::ATOMMIN6432: case X86::ATOMUMAX6432: case X86::ATOMUMIN6432: { unsigned HiOpc; unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc); unsigned cL = MRI.createVirtualRegister(RC8); unsigned cH = MRI.createVirtualRegister(RC8); unsigned cL32 = MRI.createVirtualRegister(RC); unsigned cH32 = MRI.createVirtualRegister(RC); unsigned cc = MRI.createVirtualRegister(RC); // cl := cmp src_lo, lo BuildMI(mainMBB, DL, TII->get(X86::CMP32rr)) .addReg(SrcLoReg).addReg(t4L); BuildMI(mainMBB, DL, TII->get(LoOpc), cL); BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL); // ch := cmp src_hi, hi BuildMI(mainMBB, DL, TII->get(X86::CMP32rr)) .addReg(SrcHiReg).addReg(t4H); BuildMI(mainMBB, DL, TII->get(HiOpc), cH); BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH); // cc := if (src_hi == hi) ? cl : ch; if (Subtarget->hasCMov()) { BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc) .addReg(cH32).addReg(cL32); } else { MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc) .addReg(cH32).addReg(cL32) .addImm(X86::COND_E); mainMBB = EmitLoweredSelect(MIB, mainMBB); } BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc); if (Subtarget->hasCMov()) { BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L) .addReg(SrcLoReg).addReg(t4L); BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H) .addReg(SrcHiReg).addReg(t4H); } else { MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L) .addReg(SrcLoReg).addReg(t4L) .addImm(X86::COND_NE); mainMBB = EmitLoweredSelect(MIB, mainMBB); // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the // 2nd CMOV lowering. mainMBB->addLiveIn(X86::EFLAGS); MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H) .addReg(SrcHiReg).addReg(t4H) .addImm(X86::COND_NE); mainMBB = EmitLoweredSelect(MIB, mainMBB); // Replace the original PHI node as mainMBB is changed after CMOV // lowering. BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L) .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB); BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H) .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB); PhiL->eraseFromParent(); PhiH->eraseFromParent(); } break; } case X86::ATOMSWAP6432: { unsigned HiOpc; unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc); BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg); BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg); break; } } // Copy EDX:EAX back from HiReg:LoReg BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L); BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H); // Copy ECX:EBX from t1H:t1L BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L); BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H); MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc)); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); if (NewMO.isReg()) NewMO.setIsKill(false); MIB.addOperand(NewMO); } MIB.setMemRefs(MMOBegin, MMOEnd); // Copy EDX:EAX back to t3H:t3L BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX); BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX); BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB); mainMBB->addSuccessor(origMainMBB); mainMBB->addSuccessor(sinkMBB); // sinkMBB: BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(TargetOpcode::COPY), DstLoReg) .addReg(t3L); BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(TargetOpcode::COPY), DstHiReg) .addReg(t3H); MI->eraseFromParent(); return sinkMBB; } // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 // or XMM0_V32I8 in AVX all of this code can be replaced with that // in the .td file. static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB, const TargetInstrInfo *TII) { unsigned Opc; switch (MI->getOpcode()) { default: llvm_unreachable("illegal opcode!"); case X86::PCMPISTRM128REG: Opc = X86::PCMPISTRM128rr; break; case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break; case X86::PCMPISTRM128MEM: Opc = X86::PCMPISTRM128rm; break; case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break; case X86::PCMPESTRM128REG: Opc = X86::PCMPESTRM128rr; break; case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break; case X86::PCMPESTRM128MEM: Opc = X86::PCMPESTRM128rm; break; case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break; } DebugLoc dl = MI->getDebugLoc(); MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); unsigned NumArgs = MI->getNumOperands(); for (unsigned i = 1; i < NumArgs; ++i) { MachineOperand &Op = MI->getOperand(i); if (!(Op.isReg() && Op.isImplicit())) MIB.addOperand(Op); } if (MI->hasOneMemOperand()) MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) .addReg(X86::XMM0); MI->eraseFromParent(); return BB; } // FIXME: Custom handling because TableGen doesn't support multiple implicit // defs in an instruction pattern static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB, const TargetInstrInfo *TII) { unsigned Opc; switch (MI->getOpcode()) { default: llvm_unreachable("illegal opcode!"); case X86::PCMPISTRIREG: Opc = X86::PCMPISTRIrr; break; case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break; case X86::PCMPISTRIMEM: Opc = X86::PCMPISTRIrm; break; case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break; case X86::PCMPESTRIREG: Opc = X86::PCMPESTRIrr; break; case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break; case X86::PCMPESTRIMEM: Opc = X86::PCMPESTRIrm; break; case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break; } DebugLoc dl = MI->getDebugLoc(); MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); unsigned NumArgs = MI->getNumOperands(); // remove the results for (unsigned i = 1; i < NumArgs; ++i) { MachineOperand &Op = MI->getOperand(i); if (!(Op.isReg() && Op.isImplicit())) MIB.addOperand(Op); } if (MI->hasOneMemOperand()) MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) .addReg(X86::ECX); MI->eraseFromParent(); return BB; } static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB, const TargetInstrInfo *TII, const X86Subtarget* Subtarget) { DebugLoc dl = MI->getDebugLoc(); // Address into RAX/EAX, other two args into ECX, EDX. unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); for (int i = 0; i < X86::AddrNumOperands; ++i) MIB.addOperand(MI->getOperand(i)); unsigned ValOps = X86::AddrNumOperands; BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) .addReg(MI->getOperand(ValOps).getReg()); BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX) .addReg(MI->getOperand(ValOps+1).getReg()); // The instruction doesn't actually take any operands though. BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr)); MI->eraseFromParent(); // The pseudo is gone now. return BB; } MachineBasicBlock * X86TargetLowering::EmitVAARG64WithCustomInserter( MachineInstr *MI, MachineBasicBlock *MBB) const { // Emit va_arg instruction on X86-64. // Operands to this pseudo-instruction: // 0 ) Output : destination address (reg) // 1-5) Input : va_list address (addr, i64mem) // 6 ) ArgSize : Size (in bytes) of vararg type // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset // 8 ) Align : Alignment of type // 9 ) EFLAGS (implicit-def) assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!"); assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands"); unsigned DestReg = MI->getOperand(0).getReg(); MachineOperand &Base = MI->getOperand(1); MachineOperand &Scale = MI->getOperand(2); MachineOperand &Index = MI->getOperand(3); MachineOperand &Disp = MI->getOperand(4); MachineOperand &Segment = MI->getOperand(5); unsigned ArgSize = MI->getOperand(6).getImm(); unsigned ArgMode = MI->getOperand(7).getImm(); unsigned Align = MI->getOperand(8).getImm(); // Memory Reference assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand"); MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); // Machine Information bool IsNaCl = Subtarget->isTargetNaCl(); // @LOCALMOD const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); const TargetRegisterClass *AddrRegClass = getRegClassFor(getPointerTy()); // @LOCALMOD const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32); DebugLoc DL = MI->getDebugLoc(); // struct va_list { // i32 gp_offset // i32 fp_offset // i64 overflow_area (address) // i64 reg_save_area (address) // } // sizeof(va_list) = 24 // alignment(va_list) = 8 unsigned TotalNumIntRegs = 6; unsigned TotalNumXMMRegs = 8; bool UseGPOffset = (ArgMode == 1); bool UseFPOffset = (ArgMode == 2); unsigned MaxOffset = TotalNumIntRegs * 8 + (UseFPOffset ? TotalNumXMMRegs * 16 : 0); /* Align ArgSize to a multiple of 8 */ unsigned ArgSizeA8 = (ArgSize + 7) & ~7; bool NeedsAlign = (Align > 8); MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *overflowMBB; MachineBasicBlock *offsetMBB; MachineBasicBlock *endMBB; unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB unsigned OffsetReg = 0; if (!UseGPOffset && !UseFPOffset) { // If we only pull from the overflow region, we don't create a branch. // We don't need to alter control flow. OffsetDestReg = 0; // unused OverflowDestReg = DestReg; offsetMBB = NULL; overflowMBB = thisMBB; endMBB = thisMBB; } else { // First emit code to check if gp_offset (or fp_offset) is below the bound. // If so, pull the argument from reg_save_area. (branch to offsetMBB) // If not, pull from overflow_area. (branch to overflowMBB) // // thisMBB // | . // | . // offsetMBB overflowMBB // | . // | . // endMBB // Registers for the PHI in endMBB OffsetDestReg = MRI.createVirtualRegister(AddrRegClass); OverflowDestReg = MRI.createVirtualRegister(AddrRegClass); const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineFunction *MF = MBB->getParent(); overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB); offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB); endMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator MBBIter = MBB; ++MBBIter; // Insert the new basic blocks MF->insert(MBBIter, offsetMBB); MF->insert(MBBIter, overflowMBB); MF->insert(MBBIter, endMBB); // Transfer the remainder of MBB and its successor edges to endMBB. endMBB->splice(endMBB->begin(), thisMBB, llvm::next(MachineBasicBlock::iterator(MI)), thisMBB->end()); endMBB->transferSuccessorsAndUpdatePHIs(thisMBB); // Make offsetMBB and overflowMBB successors of thisMBB thisMBB->addSuccessor(offsetMBB); thisMBB->addSuccessor(overflowMBB); // endMBB is a successor of both offsetMBB and overflowMBB offsetMBB->addSuccessor(endMBB); overflowMBB->addSuccessor(endMBB); // Load the offset value into a register OffsetReg = MRI.createVirtualRegister(OffsetRegClass); BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, UseFPOffset ? 4 : 0) .addOperand(Segment) .setMemRefs(MMOBegin, MMOEnd); // Check if there is enough room left to pull this argument. BuildMI(thisMBB, DL, TII->get(X86::CMP32ri)) .addReg(OffsetReg) .addImm(MaxOffset + 8 - ArgSizeA8); // Branch to "overflowMBB" if offset >= max // Fall through to "offsetMBB" otherwise BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE))) .addMBB(overflowMBB); } // In offsetMBB, emit code to use the reg_save_area. unsigned Opc; // @LOCALMOD if (offsetMBB) { assert(OffsetReg != 0); // Read the reg_save_area address. unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass); Opc = IsNaCl ? X86::MOV32rm : X86::MOV64rm; // @LOCALMOD BuildMI(offsetMBB, DL, TII->get(Opc), RegSaveReg) // @LOCALMOD .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, 8+TD->getPointerSize(0)) // @LOCALMOD .addOperand(Segment) .setMemRefs(MMOBegin, MMOEnd); // Zero-extend the offset // @LOCALMOD-BEGIN unsigned OffsetRegExt; if (IsNaCl) { OffsetRegExt = OffsetReg; } else { OffsetRegExt = MRI.createVirtualRegister(AddrRegClass); BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetRegExt) .addImm(0) .addReg(OffsetReg) .addImm(X86::sub_32bit); } // @LOCALMOD-END // Add the offset to the reg_save_area to get the final address. Opc = IsNaCl ? X86::ADD32rr : X86::ADD64rr; // @LOCALMOD BuildMI(offsetMBB, DL, TII->get(Opc), OffsetDestReg) .addReg(OffsetRegExt) // @LOCALMOD .addReg(RegSaveReg); // Compute the offset for the next argument unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass); BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg) .addReg(OffsetReg) .addImm(UseFPOffset ? 16 : 8); // Store it back into the va_list. BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr)) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, UseFPOffset ? 4 : 0) .addOperand(Segment) .addReg(NextOffsetReg) .setMemRefs(MMOBegin, MMOEnd); // Jump to endMBB BuildMI(offsetMBB, DL, TII->get(X86::JMP_4)) .addMBB(endMBB); } // // Emit code to use overflow area // // Load the overflow_area address into a register. unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass); Opc = IsNaCl ? X86::MOV32rm : X86::MOV64rm; // @LOCALMOD BuildMI(overflowMBB, DL, TII->get(Opc), OverflowAddrReg) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, 8) .addOperand(Segment) .setMemRefs(MMOBegin, MMOEnd); // If we need to align it, do so. Otherwise, just copy the address // to OverflowDestReg. if (NeedsAlign) { // Align the overflow address assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2"); unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass); // aligned_addr = (addr + (align-1)) & ~(align-1) Opc = IsNaCl ? X86::ADD32ri : X86::ADD64ri32; // @LOCALMOD BuildMI(overflowMBB, DL, TII->get(Opc), TmpReg) .addReg(OverflowAddrReg) .addImm(Align-1); Opc = IsNaCl ? X86::AND32ri : X86::AND64ri32; // @LOCALMOD BuildMI(overflowMBB, DL, TII->get(Opc), OverflowDestReg) .addReg(TmpReg) .addImm(~(uint64_t)(Align-1)); } else { BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg) .addReg(OverflowAddrReg); } // Compute the next overflow address after this argument. // (the overflow address should be kept 8-byte aligned) unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass); Opc = IsNaCl ? X86::ADD32ri : X86::ADD64ri32; // @LOCALMOD BuildMI(overflowMBB, DL, TII->get(Opc), NextAddrReg) .addReg(OverflowDestReg) .addImm(ArgSizeA8); // Store the new overflow address. Opc = IsNaCl ? X86::MOV32mr : X86::MOV64mr; // @LOCALMOD BuildMI(overflowMBB, DL, TII->get(Opc)) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, 8) .addOperand(Segment) .addReg(NextAddrReg) .setMemRefs(MMOBegin, MMOEnd); // If we branched, emit the PHI to the front of endMBB. if (offsetMBB) { BuildMI(*endMBB, endMBB->begin(), DL, TII->get(X86::PHI), DestReg) .addReg(OffsetDestReg).addMBB(offsetMBB) .addReg(OverflowDestReg).addMBB(overflowMBB); } // Erase the pseudo instruction MI->eraseFromParent(); return endMBB; } MachineBasicBlock * X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( MachineInstr *MI, MachineBasicBlock *MBB) const { // Emit code to save XMM registers to the stack. The ABI says that the // number of registers to save is given in %al, so it's theoretically // possible to do an indirect jump trick to avoid saving all of them, // however this code takes a simpler approach and just executes all // of the stores if %al is non-zero. It's less code, and it's probably // easier on the hardware branch predictor, and stores aren't all that // expensive anyway. // Create the new basic blocks. One block contains all the XMM stores, // and one block is the final destination regardless of whether any // stores were performed. const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineFunction *F = MBB->getParent(); MachineFunction::iterator MBBIter = MBB; ++MBBIter; MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(MBBIter, XMMSaveMBB); F->insert(MBBIter, EndMBB); // Transfer the remainder of MBB and its successor edges to EndMBB. EndMBB->splice(EndMBB->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); EndMBB->transferSuccessorsAndUpdatePHIs(MBB); // The original block will now fall through to the XMM save block. MBB->addSuccessor(XMMSaveMBB); // The XMMSaveMBB will fall through to the end block. XMMSaveMBB->addSuccessor(EndMBB); // Now add the instructions. const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); unsigned CountReg = MI->getOperand(0).getReg(); int64_t RegSaveFrameIndex = MI->getOperand(1).getImm(); int64_t VarArgsFPOffset = MI->getOperand(2).getImm(); if (!Subtarget->isTargetWin64()) { // If %al is 0, branch around the XMM save block. BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB); MBB->addSuccessor(EndMBB); } unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr; // In the XMM save block, save all the XMM argument registers. for (int i = 3, e = MI->getNumOperands(); i != e; ++i) { int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; MachineMemOperand *MMO = F->getMachineMemOperand( MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset), MachineMemOperand::MOStore, /*Size=*/16, /*Align=*/16); BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc)) .addFrameIndex(RegSaveFrameIndex) .addImm(/*Scale=*/1) .addReg(/*IndexReg=*/0) .addImm(/*Disp=*/Offset) .addReg(/*Segment=*/0) .addReg(MI->getOperand(i).getReg()) .addMemOperand(MMO); } MI->eraseFromParent(); // The pseudo instruction is gone now. return EndMBB; } // The EFLAGS operand of SelectItr might be missing a kill marker // because there were multiple uses of EFLAGS, and ISel didn't know // which to mark. Figure out whether SelectItr should have had a // kill marker, and set it if it should. Returns the correct kill // marker value. static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr, MachineBasicBlock* BB, const TargetRegisterInfo* TRI) { // Scan forward through BB for a use/def of EFLAGS. MachineBasicBlock::iterator miI(llvm::next(SelectItr)); for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) { const MachineInstr& mi = *miI; if (mi.readsRegister(X86::EFLAGS)) return false; if (mi.definesRegister(X86::EFLAGS)) break; // Should have kill-flag - update below. } // If we hit the end of the block, check whether EFLAGS is live into a // successor. if (miI == BB->end()) { for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(), sEnd = BB->succ_end(); sItr != sEnd; ++sItr) { MachineBasicBlock* succ = *sItr; if (succ->isLiveIn(X86::EFLAGS)) return false; } } // We found a def, or hit the end of the basic block and EFLAGS wasn't live // out. SelectMI should have a kill flag on EFLAGS. SelectItr->addRegisterKilled(X86::EFLAGS, TRI); return true; } MachineBasicBlock * X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // If the EFLAGS register isn't dead in the terminator, then claim that it's // live into the sink and copy blocks. const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo(); if (!MI->killsRegister(X86::EFLAGS) && !checkAndUpdateEFLAGSKill(MI, BB, TRI)) { copy0MBB->addLiveIn(X86::EFLAGS); sinkMBB->addLiveIn(X86::EFLAGS); } // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); // Add the true and fallthrough blocks as its successors. BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // Create the conditional branch instruction. unsigned Opc = X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB copy0MBB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return sinkMBB; } MachineBasicBlock * X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB, bool Is64Bit) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); MachineFunction *MF = BB->getParent(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); assert(getTargetMachine().Options.EnableSegmentedStacks); unsigned TlsReg = Is64Bit ? X86::FS : X86::GS; unsigned TlsOffset = Is64Bit ? 0x70 : 0x30; // BB: // ... [Till the alloca] // If stacklet is not large enough, jump to mallocMBB // // bumpMBB: // Allocate by subtracting from RSP // Jump to continueMBB // // mallocMBB: // Allocate by call to runtime // // continueMBB: // ... // [rest of original BB] // MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineRegisterInfo &MRI = MF->getRegInfo(); const TargetRegisterClass *AddrRegClass = getRegClassFor(Is64Bit ? MVT::i64:MVT::i32); unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass), bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass), tmpSPVReg = MRI.createVirtualRegister(AddrRegClass), SPLimitVReg = MRI.createVirtualRegister(AddrRegClass), sizeVReg = MI->getOperand(1).getReg(), physSPReg = Is64Bit ? X86::RSP : X86::ESP; MachineFunction::iterator MBBIter = BB; ++MBBIter; MF->insert(MBBIter, bumpMBB); MF->insert(MBBIter, mallocMBB); MF->insert(MBBIter, continueMBB); continueMBB->splice(continueMBB->begin(), BB, llvm::next (MachineBasicBlock::iterator(MI)), BB->end()); continueMBB->transferSuccessorsAndUpdatePHIs(BB); // Add code to the main basic block to check if the stack limit has been hit, // and if so, jump to mallocMBB otherwise to bumpMBB. BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg); BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg) .addReg(tmpSPVReg).addReg(sizeVReg); BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr)) .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg) .addReg(SPLimitVReg); BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB); // bumpMBB simply decreases the stack pointer, since we know the current // stacklet has enough space. BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg) .addReg(SPLimitVReg); BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg) .addReg(SPLimitVReg); BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB); // Calls into a routine in libgcc to allocate more space from the heap. const uint32_t *RegMask = getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C); if (Is64Bit) { BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI) .addReg(sizeVReg); BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) .addExternalSymbol("__morestack_allocate_stack_space") .addRegMask(RegMask) .addReg(X86::RDI, RegState::Implicit) .addReg(X86::RAX, RegState::ImplicitDefine); } else { BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg) .addImm(12); BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg); BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32)) .addExternalSymbol("__morestack_allocate_stack_space") .addRegMask(RegMask) .addReg(X86::EAX, RegState::ImplicitDefine); } if (!Is64Bit) BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg) .addImm(16); BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg) .addReg(Is64Bit ? X86::RAX : X86::EAX); BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB); // Set up the CFG correctly. BB->addSuccessor(bumpMBB); BB->addSuccessor(mallocMBB); mallocMBB->addSuccessor(continueMBB); bumpMBB->addSuccessor(continueMBB); // Take care of the PHI nodes. BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI), MI->getOperand(0).getReg()) .addReg(mallocPtrVReg).addMBB(mallocMBB) .addReg(bumpSPPtrVReg).addMBB(bumpMBB); // Delete the original pseudo instruction. MI->eraseFromParent(); // And we're done. return continueMBB; } MachineBasicBlock * X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); assert(!Subtarget->isTargetEnvMacho()); // The lowering is pretty easy: we're just emitting the call to _alloca. The // non-trivial part is impdef of ESP. if (Subtarget->isTargetWin64()) { if (Subtarget->isTargetCygMing()) { // ___chkstk(Mingw64): // Clobbers R10, R11, RAX and EFLAGS. // Updates RSP. BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA)) .addExternalSymbol("___chkstk") .addReg(X86::RAX, RegState::Implicit) .addReg(X86::RSP, RegState::Implicit) .addReg(X86::RAX, RegState::Define | RegState::Implicit) .addReg(X86::RSP, RegState::Define | RegState::Implicit) .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); } else { // __chkstk(MSVCRT): does not update stack pointer. // Clobbers R10, R11 and EFLAGS. // FIXME: RAX(allocated size) might be reused and not killed. BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA)) .addExternalSymbol("__chkstk") .addReg(X86::RAX, RegState::Implicit) .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); // RAX has the offset to subtracted from RSP. BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP) .addReg(X86::RSP) .addReg(X86::RAX); } } else { const char *StackProbeSymbol = Subtarget->isTargetWindows() ? "_chkstk" : "_alloca"; BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32)) .addExternalSymbol(StackProbeSymbol) .addReg(X86::EAX, RegState::Implicit) .addReg(X86::ESP, RegState::Implicit) .addReg(X86::EAX, RegState::Define | RegState::Implicit) .addReg(X86::ESP, RegState::Define | RegState::Implicit) .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); } MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } // @LOCALMOD-BEGIN MachineBasicBlock * X86TargetLowering::EmitLoweredThreadPointerFromGs(MachineInstr *MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); // This generates "movl %gs:0, %DEST", which fetches the thread // pointer on x86-32. BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), MI->getOperand(0).getReg()) .addReg(/*Base=*/0) .addImm(/*Scale=*/1) .addReg(/*IndexReg=*/0) .addImm(/*Disp=*/0) .addReg(/*Segment=*/X86::GS); MI->eraseFromParent(); return BB; } // @LOCALMOD-END MachineBasicBlock * X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI, MachineBasicBlock *BB) const { // This is pretty easy. We're taking the value that we received from // our load from the relocation, sticking it in either RDI (x86-64) // or EAX and doing an indirect call. The return value will then // be in the normal return register. const X86InstrInfo *TII = static_cast(getTargetMachine().getInstrInfo()); DebugLoc DL = MI->getDebugLoc(); MachineFunction *F = BB->getParent(); assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?"); assert(MI->getOperand(3).isGlobal() && "This should be a global"); // Get a register mask for the lowered call. // FIXME: The 32-bit calls have non-standard calling conventions. Use a // proper register mask. const uint32_t *RegMask = getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C); if (Subtarget->is64Bit()) { MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII->get(X86::MOV64rm), X86::RDI) .addReg(X86::RIP) .addImm(0).addReg(0) .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, MI->getOperand(3).getTargetFlags()) .addReg(0); MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m)); addDirectMem(MIB, X86::RDI); MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask); } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) { MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX) .addReg(0) .addImm(0).addReg(0) .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, MI->getOperand(3).getTargetFlags()) .addReg(0); MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); addDirectMem(MIB, X86::EAX); MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); } else { MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX) .addReg(TII->getGlobalBaseReg(F)) .addImm(0).addReg(0) .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, MI->getOperand(3).getTargetFlags()) .addReg(0); MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); addDirectMem(MIB, X86::EAX); MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); } MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } MachineBasicBlock * X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, MachineBasicBlock *MBB) const { DebugLoc DL = MI->getDebugLoc(); const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); const BasicBlock *BB = MBB->getBasicBlock(); MachineFunction::iterator I = MBB; ++I; // Memory Reference MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); unsigned DstReg; unsigned MemOpndSlot = 0; unsigned CurOp = 0; DstReg = MI->getOperand(CurOp++).getReg(); const TargetRegisterClass *RC = MRI.getRegClass(DstReg); assert(RC->hasType(MVT::i32) && "Invalid destination!"); unsigned mainDstReg = MRI.createVirtualRegister(RC); unsigned restoreDstReg = MRI.createVirtualRegister(RC); MemOpndSlot = CurOp; MVT PVT = getPointerTy(); assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!"); // For v = setjmp(buf), we generate // // thisMBB: // buf[LabelOffset] = restoreMBB // SjLjSetup restoreMBB // // mainMBB: // v_main = 0 // // sinkMBB: // v = phi(main, restore) // // restoreMBB: // v_restore = 1 MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB); MF->insert(I, mainMBB); MF->insert(I, sinkMBB); MF->push_back(restoreMBB); MachineInstrBuilder MIB; // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); // thisMBB: unsigned PtrStoreOpc = 0; unsigned LabelReg = 0; const int64_t LabelOffset = 1 * PVT.getStoreSize(); Reloc::Model RM = getTargetMachine().getRelocationModel(); bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) && (RM == Reloc::Static || RM == Reloc::DynamicNoPIC); // Prepare IP either in reg or imm. if (!UseImmLabel) { PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr; const TargetRegisterClass *PtrRC = getRegClassFor(PVT); LabelReg = MRI.createVirtualRegister(PtrRC); if (Subtarget->is64Bit()) { MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg) .addReg(X86::RIP) .addImm(0) .addReg(0) .addMBB(restoreMBB) .addReg(0); } else { const X86InstrInfo *XII = static_cast(TII); MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg) .addReg(XII->getGlobalBaseReg(MF)) .addImm(0) .addReg(0) .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference()) .addReg(0); } } else PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi; // Store IP MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc)); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { if (i == X86::AddrDisp) MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset); else MIB.addOperand(MI->getOperand(MemOpndSlot + i)); } if (!UseImmLabel) MIB.addReg(LabelReg); else MIB.addMBB(restoreMBB); MIB.setMemRefs(MMOBegin, MMOEnd); // Setup MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup)) .addMBB(restoreMBB); MIB.addRegMask(RegInfo->getNoPreservedMask()); thisMBB->addSuccessor(mainMBB); thisMBB->addSuccessor(restoreMBB); // mainMBB: // EAX = 0 BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg); mainMBB->addSuccessor(sinkMBB); // sinkMBB: BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI), DstReg) .addReg(mainDstReg).addMBB(mainMBB) .addReg(restoreDstReg).addMBB(restoreMBB); // restoreMBB: BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1); BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB); restoreMBB->addSuccessor(sinkMBB); MI->eraseFromParent(); return sinkMBB; } MachineBasicBlock * X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, MachineBasicBlock *MBB) const { DebugLoc DL = MI->getDebugLoc(); const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); // Memory Reference MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); MVT PVT = getPointerTy(); assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!"); const TargetRegisterClass *RC = (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass; unsigned Tmp = MRI.createVirtualRegister(RC); // Since FP is only updated here but NOT referenced, it's treated as GPR. unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP; unsigned SP = RegInfo->getStackRegister(); MachineInstrBuilder MIB; const int64_t LabelOffset = 1 * PVT.getStoreSize(); const int64_t SPOffset = 2 * PVT.getStoreSize(); unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm; unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r; // Reload FP MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) MIB.addOperand(MI->getOperand(i)); MIB.setMemRefs(MMOBegin, MMOEnd); // Reload IP MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { if (i == X86::AddrDisp) MIB.addDisp(MI->getOperand(i), LabelOffset); else MIB.addOperand(MI->getOperand(i)); } MIB.setMemRefs(MMOBegin, MMOEnd); // Reload SP MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { if (i == X86::AddrDisp) MIB.addDisp(MI->getOperand(i), SPOffset); else MIB.addOperand(MI->getOperand(i)); } MIB.setMemRefs(MMOBegin, MMOEnd); // Jump BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp); MI->eraseFromParent(); return MBB; } MachineBasicBlock * X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { switch (MI->getOpcode()) { default: llvm_unreachable("Unexpected instr type to insert"); case X86::TAILJMPd64: case X86::TAILJMPr64: case X86::TAILJMPm64: llvm_unreachable("TAILJMP64 would not be touched here."); case X86::TCRETURNdi64: case X86::TCRETURNri64: case X86::TCRETURNmi64: return BB; case X86::WIN_ALLOCA: return EmitLoweredWinAlloca(MI, BB); case X86::SEG_ALLOCA_32: return EmitLoweredSegAlloca(MI, BB, false); case X86::SEG_ALLOCA_64: return EmitLoweredSegAlloca(MI, BB, true); // @LOCALMOD-BEGIN case X86::THREAD_POINTER_FROM_GS: return EmitLoweredThreadPointerFromGs(MI, BB); // @LOCALMOD-END case X86::TLSCall_32: case X86::TLSCall_64: return EmitLoweredTLSCall(MI, BB); case X86::CMOV_GR8: case X86::CMOV_FR32: case X86::CMOV_FR64: case X86::CMOV_V4F32: case X86::CMOV_V2F64: case X86::CMOV_V2I64: case X86::CMOV_V8F32: case X86::CMOV_V4F64: case X86::CMOV_V4I64: case X86::CMOV_GR16: case X86::CMOV_GR32: case X86::CMOV_RFP32: case X86::CMOV_RFP64: case X86::CMOV_RFP80: return EmitLoweredSelect(MI, BB); case X86::FP32_TO_INT16_IN_MEM: case X86::FP32_TO_INT32_IN_MEM: case X86::FP32_TO_INT64_IN_MEM: case X86::FP64_TO_INT16_IN_MEM: case X86::FP64_TO_INT32_IN_MEM: case X86::FP64_TO_INT64_IN_MEM: case X86::FP80_TO_INT16_IN_MEM: case X86::FP80_TO_INT32_IN_MEM: case X86::FP80_TO_INT64_IN_MEM: { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); // Change the floating point control register to use "round towards zero" // mode when truncating to an integer value. MachineFunction *F = BB->getParent(); int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx); // Load the old value of the high byte of the control word... unsigned OldCW = F->getRegInfo().createVirtualRegister(&X86::GR16RegClass); addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW), CWFrameIdx); // Set the high part to be round to zero... addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx) .addImm(0xC7F); // Reload the modified control word now... addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); // Restore the memory image of control word to original value addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx) .addReg(OldCW); // Get the X86 opcode to use. unsigned Opc; switch (MI->getOpcode()) { default: llvm_unreachable("illegal opcode!"); case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; } X86AddressMode AM; MachineOperand &Op = MI->getOperand(0); if (Op.isReg()) { AM.BaseType = X86AddressMode::RegBase; AM.Base.Reg = Op.getReg(); } else { AM.BaseType = X86AddressMode::FrameIndexBase; AM.Base.FrameIndex = Op.getIndex(); } Op = MI->getOperand(1); if (Op.isImm()) AM.Scale = Op.getImm(); Op = MI->getOperand(2); if (Op.isImm()) AM.IndexReg = Op.getImm(); Op = MI->getOperand(3); if (Op.isGlobal()) { AM.GV = Op.getGlobal(); } else { AM.Disp = Op.getImm(); } addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM) .addReg(MI->getOperand(X86::AddrNumOperands).getReg()); // Reload the original control word now. addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } // String/text processing lowering. case X86::PCMPISTRM128REG: case X86::VPCMPISTRM128REG: case X86::PCMPISTRM128MEM: case X86::VPCMPISTRM128MEM: case X86::PCMPESTRM128REG: case X86::VPCMPESTRM128REG: case X86::PCMPESTRM128MEM: case X86::VPCMPESTRM128MEM: assert(Subtarget->hasSSE42() && "Target must have SSE4.2 or AVX features enabled"); return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo()); // String/text processing lowering. case X86::PCMPISTRIREG: case X86::VPCMPISTRIREG: case X86::PCMPISTRIMEM: case X86::VPCMPISTRIMEM: case X86::PCMPESTRIREG: case X86::VPCMPESTRIREG: case X86::PCMPESTRIMEM: case X86::VPCMPESTRIMEM: assert(Subtarget->hasSSE42() && "Target must have SSE4.2 or AVX features enabled"); return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo()); // Thread synchronization. case X86::MONITOR: return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget); // xbegin case X86::XBEGIN: return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo()); // Atomic Lowering. case X86::ATOMAND8: case X86::ATOMAND16: case X86::ATOMAND32: case X86::ATOMAND64: // Fall through case X86::ATOMOR8: case X86::ATOMOR16: case X86::ATOMOR32: case X86::ATOMOR64: // Fall through case X86::ATOMXOR16: case X86::ATOMXOR8: case X86::ATOMXOR32: case X86::ATOMXOR64: // Fall through case X86::ATOMNAND8: case X86::ATOMNAND16: case X86::ATOMNAND32: case X86::ATOMNAND64: // Fall through case X86::ATOMMAX8: case X86::ATOMMAX16: case X86::ATOMMAX32: case X86::ATOMMAX64: // Fall through case X86::ATOMMIN8: case X86::ATOMMIN16: case X86::ATOMMIN32: case X86::ATOMMIN64: // Fall through case X86::ATOMUMAX8: case X86::ATOMUMAX16: case X86::ATOMUMAX32: case X86::ATOMUMAX64: // Fall through case X86::ATOMUMIN8: case X86::ATOMUMIN16: case X86::ATOMUMIN32: case X86::ATOMUMIN64: return EmitAtomicLoadArith(MI, BB); // This group does 64-bit operations on a 32-bit host. case X86::ATOMAND6432: case X86::ATOMOR6432: case X86::ATOMXOR6432: case X86::ATOMNAND6432: case X86::ATOMADD6432: case X86::ATOMSUB6432: case X86::ATOMMAX6432: case X86::ATOMMIN6432: case X86::ATOMUMAX6432: case X86::ATOMUMIN6432: case X86::ATOMSWAP6432: return EmitAtomicLoadArith6432(MI, BB); case X86::VASTART_SAVE_XMM_REGS: return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); case X86::VAARG_64: case X86::NACL_CG_VAARG_64: // @LOCALMOD return EmitVAARG64WithCustomInserter(MI, BB); case X86::EH_SjLj_SetJmp32: case X86::EH_SjLj_SetJmp64: return emitEHSjLjSetJmp(MI, BB); case X86::EH_SjLj_LongJmp32: case X86::EH_SjLj_LongJmp64: return emitEHSjLjLongJmp(MI, BB); } } //===----------------------------------------------------------------------===// // X86 Optimization Hooks //===----------------------------------------------------------------------===// void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { unsigned BitWidth = KnownZero.getBitWidth(); unsigned Opc = Op.getOpcode(); assert((Opc >= ISD::BUILTIN_OP_END || Opc == ISD::INTRINSIC_WO_CHAIN || Opc == ISD::INTRINSIC_W_CHAIN || Opc == ISD::INTRINSIC_VOID) && "Should use MaskedValueIsZero if you don't know whether Op" " is a target node!"); KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. switch (Opc) { default: break; case X86ISD::ADD: case X86ISD::SUB: case X86ISD::ADC: case X86ISD::SBB: case X86ISD::SMUL: case X86ISD::UMUL: case X86ISD::INC: case X86ISD::DEC: case X86ISD::OR: case X86ISD::XOR: case X86ISD::AND: // These nodes' second result is a boolean. if (Op.getResNo() == 0) break; // Fallthrough case X86ISD::SETCC: KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); break; case ISD::INTRINSIC_WO_CHAIN: { unsigned IntId = cast(Op.getOperand(0))->getZExtValue(); unsigned NumLoBits = 0; switch (IntId) { default: break; case Intrinsic::x86_sse_movmsk_ps: case Intrinsic::x86_avx_movmsk_ps_256: case Intrinsic::x86_sse2_movmsk_pd: case Intrinsic::x86_avx_movmsk_pd_256: case Intrinsic::x86_mmx_pmovmskb: case Intrinsic::x86_sse2_pmovmskb_128: case Intrinsic::x86_avx2_pmovmskb: { // High bits of movmskp{s|d}, pmovmskb are known zero. switch (IntId) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break; case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break; case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break; case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break; case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break; case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break; case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break; } KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits); break; } } break; } } } unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, unsigned Depth) const { // SETCC_CARRY sets the dest to ~0 for true or 0 for false. if (Op.getOpcode() == X86ISD::SETCC_CARRY) return Op.getValueType().getScalarType().getSizeInBits(); // Fallback case. return 1; } /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the /// node is a GlobalAddress + offset. bool X86TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const { if (N->getOpcode() == X86ISD::Wrapper) { if (isa(N->getOperand(0))) { GA = cast(N->getOperand(0))->getGlobal(); Offset = cast(N->getOperand(0))->getOffset(); return true; } } return TargetLowering::isGAPlusOffset(N, GA, Offset); } /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the /// same as extracting the high 128-bit part of 256-bit vector and then /// inserting the result into the low part of a new 256-bit vector static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) { EVT VT = SVOp->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j) if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || SVOp->getMaskElt(j) >= 0) return false; return true; } /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the /// same as extracting the low 128-bit part of 256-bit vector and then /// inserting the result into the high part of a new 256-bit vector static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) { EVT VT = SVOp->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); // vector_shuffle or for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j) if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || SVOp->getMaskElt(j) >= 0) return false; return true; } /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors. static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget* Subtarget) { DebugLoc dl = N->getDebugLoc(); ShuffleVectorSDNode *SVOp = cast(N); SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); EVT VT = SVOp->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); if (V1.getOpcode() == ISD::CONCAT_VECTORS && V2.getOpcode() == ISD::CONCAT_VECTORS) { // // 0,0,0,... // | // V UNDEF BUILD_VECTOR UNDEF // \ / \ / // CONCAT_VECTOR CONCAT_VECTOR // \ / // \ / // RESULT: V + zero extended // if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR || V2.getOperand(1).getOpcode() != ISD::UNDEF || V1.getOperand(1).getOpcode() != ISD::UNDEF) return SDValue(); if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode())) return SDValue(); // To match the shuffle mask, the first half of the mask should // be exactly the first vector, and all the rest a splat with the // first element of the second one. for (unsigned i = 0; i != NumElems/2; ++i) if (!isUndefOrEqual(SVOp->getMaskElt(i), i) || !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems)) return SDValue(); // If V1 is coming from a vector load then just fold to a VZEXT_LOAD. if (LoadSDNode *Ld = dyn_cast(V1.getOperand(0))) { if (Ld->hasNUsesOfValue(1, 0)) { SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other); SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() }; SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, array_lengthof(Ops), Ld->getMemoryVT(), Ld->getPointerInfo(), Ld->getAlignment(), false/*isVolatile*/, true/*ReadMem*/, false/*WriteMem*/); // Make sure the newly-created LOAD is in the same position as Ld in // terms of dependency. We create a TokenFactor for Ld and ResNode, // and update uses of Ld's output chain to use the TokenFactor. if (Ld->hasAnyUseOfValue(1)) { SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SDValue(Ld, 1), SDValue(ResNode.getNode(), 1)); DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain); DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1), SDValue(ResNode.getNode(), 1)); } return DAG.getNode(ISD::BITCAST, dl, VT, ResNode); } } // Emit a zeroed vector and insert the desired subvector on its // first half. SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl); return DCI.CombineTo(N, InsV); } //===--------------------------------------------------------------------===// // Combine some shuffles into subvector extracts and inserts: // // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> if (isShuffleHigh128VectorInsertLow(SVOp)) { SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl); SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl); return DCI.CombineTo(N, InsV); } // vector_shuffle or if (isShuffleLow128VectorInsertHigh(SVOp)) { SDValue V = Extract128BitVector(V1, 0, DAG, dl); SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl); return DCI.CombineTo(N, InsV); } return SDValue(); } /// PerformShuffleCombine - Performs several different shuffle combines. static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { DebugLoc dl = N->getDebugLoc(); EVT VT = N->getValueType(0); // Don't create instructions with illegal types after legalize types has run. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType())) return SDValue(); // Combine 256-bit vector shuffles. This is only profitable when in AVX mode if (Subtarget->hasFp256() && VT.is256BitVector() && N->getOpcode() == ISD::VECTOR_SHUFFLE) return PerformShuffleCombine256(N, DAG, DCI, Subtarget); // Only handle 128 wide vector from here on. if (!VT.is128BitVector()) return SDValue(); // Combine a vector_shuffle that is equal to build_vector load1, load2, load3, // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are // consecutive, non-overlapping, and in the right order. SmallVector Elts; for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) Elts.push_back(getShuffleScalarElt(N, i, DAG, 0)); return EltsFromConsecutiveLoads(VT, Elts, dl, DAG); } /// PerformTruncateCombine - Converts truncate operation to /// a sequence of vector shuffle operations. /// It is possible when we truncate 256-bit vector to 128-bit vector static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { return SDValue(); } /// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target /// specific shuffle of a load can be folded into a single element load. /// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but /// shuffles have been customed lowered so we need to handle those here. static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SDValue InVec = N->getOperand(0); SDValue EltNo = N->getOperand(1); if (!isa(EltNo)) return SDValue(); EVT VT = InVec.getValueType(); bool HasShuffleIntoBitcast = false; if (InVec.getOpcode() == ISD::BITCAST) { // Don't duplicate a load with other uses. if (!InVec.hasOneUse()) return SDValue(); EVT BCVT = InVec.getOperand(0).getValueType(); if (BCVT.getVectorNumElements() != VT.getVectorNumElements()) return SDValue(); InVec = InVec.getOperand(0); HasShuffleIntoBitcast = true; } if (!isTargetShuffle(InVec.getOpcode())) return SDValue(); // Don't duplicate a load with other uses. if (!InVec.hasOneUse()) return SDValue(); SmallVector ShuffleMask; bool UnaryShuffle; if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask, UnaryShuffle)) return SDValue(); // Select the input vector, guarding against out of range extract vector. unsigned NumElems = VT.getVectorNumElements(); int Elt = cast(EltNo)->getZExtValue(); int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt]; SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); // If inputs to shuffle are the same for both ops, then allow 2 uses unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1; if (LdNode.getOpcode() == ISD::BITCAST) { // Don't duplicate a load with other uses. if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0)) return SDValue(); AllowedUses = 1; // only allow 1 load use if we have a bitcast LdNode = LdNode.getOperand(0); } if (!ISD::isNormalLoad(LdNode.getNode())) return SDValue(); LoadSDNode *LN0 = cast(LdNode); if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile()) return SDValue(); if (HasShuffleIntoBitcast) { // If there's a bitcast before the shuffle, check if the load type and // alignment is valid. unsigned Align = LN0->getAlignment(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned NewAlign = TLI.getDataLayout()-> getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext())); if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT)) return SDValue(); } // All checks match so transform back to vector_shuffle so that DAG combiner // can finish the job DebugLoc dl = N->getDebugLoc(); // Create shuffle node taking into account the case that its a unary shuffle SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1); Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl, InVec.getOperand(0), Shuffle, &ShuffleMask[0]); Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle, EltNo); } /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index /// generation and convert it from being a bunch of shuffles and extracts /// to a simple store and scalar loads to extract the elements. static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI); if (NewOp.getNode()) return NewOp; SDValue InputVector = N->getOperand(0); // Detect whether we are trying to convert from mmx to i32 and the bitcast // from mmx to v2i32 has a single usage. if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST && InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx && InputVector.hasOneUse() && N->getValueType(0) == MVT::i32) return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(), N->getValueType(0), InputVector.getNode()->getOperand(0)); // Only operate on vectors of 4 elements, where the alternative shuffling // gets to be more expensive. if (InputVector.getValueType() != MVT::v4i32) return SDValue(); // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a // single use which is a sign-extend or zero-extend, and all elements are // used. SmallVector Uses; unsigned ExtractedElements = 0; for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(), UE = InputVector.getNode()->use_end(); UI != UE; ++UI) { if (UI.getUse().getResNo() != InputVector.getResNo()) return SDValue(); SDNode *Extract = *UI; if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); if (Extract->getValueType(0) != MVT::i32) return SDValue(); if (!Extract->hasOneUse()) return SDValue(); if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND && Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND) return SDValue(); if (!isa(Extract->getOperand(1))) return SDValue(); // Record which element was extracted. ExtractedElements |= 1 << cast(Extract->getOperand(1))->getZExtValue(); Uses.push_back(Extract); } // If not all the elements were used, this may not be worthwhile. if (ExtractedElements != 15) return SDValue(); // Ok, we've now decided to do the transformation. DebugLoc dl = InputVector.getDebugLoc(); // Store the value to a temporary stack slot. SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType()); SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, MachinePointerInfo(), false, false, 0); // Replace each use (extract) with a load of the appropriate element. for (SmallVectorImpl::iterator UI = Uses.begin(), UE = Uses.end(); UI != UE; ++UI) { SDNode *Extract = *UI; // cOMpute the element's address. SDValue Idx = Extract->getOperand(1); unsigned EltSize = InputVector.getValueType().getVectorElementType().getSizeInBits()/8; uint64_t Offset = EltSize * cast(Idx)->getZExtValue(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy()); SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), StackPtr, OffsetVal); // Load the scalar. SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, ScalarAddr, MachinePointerInfo(), false, false, false, 0); // Replace the exact with the load. DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar); } // The replacement was made in place; don't return anything. return SDValue(); } /// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match. static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const X86Subtarget *Subtarget) { if (!VT.isVector()) return 0; switch (VT.getSimpleVT().SimpleTy) { default: return 0; case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: if (!Subtarget->hasAVX2()) return 0; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: if (!Subtarget->hasSSE2()) return 0; } // SSE2 has only a small subset of the operations. bool hasUnsigned = Subtarget->hasSSE41() || (Subtarget->hasSSE2() && VT == MVT::v16i8); bool hasSigned = Subtarget->hasSSE41() || (Subtarget->hasSSE2() && VT == MVT::v8i16); ISD::CondCode CC = cast(Cond.getOperand(2))->get(); // Check for x CC y ? x : y. if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && DAG.isEqualTo(RHS, Cond.getOperand(1))) { switch (CC) { default: break; case ISD::SETULT: case ISD::SETULE: return hasUnsigned ? X86ISD::UMIN : 0; case ISD::SETUGT: case ISD::SETUGE: return hasUnsigned ? X86ISD::UMAX : 0; case ISD::SETLT: case ISD::SETLE: return hasSigned ? X86ISD::SMIN : 0; case ISD::SETGT: case ISD::SETGE: return hasSigned ? X86ISD::SMAX : 0; } // Check for x CC y ? y : x -- a min/max with reversed arms. } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && DAG.isEqualTo(RHS, Cond.getOperand(0))) { switch (CC) { default: break; case ISD::SETULT: case ISD::SETULE: return hasUnsigned ? X86ISD::UMAX : 0; case ISD::SETUGT: case ISD::SETUGE: return hasUnsigned ? X86ISD::UMIN : 0; case ISD::SETLT: case ISD::SETLE: return hasSigned ? X86ISD::SMAX : 0; case ISD::SETGT: case ISD::SETGE: return hasSigned ? X86ISD::SMIN : 0; } } return 0; } /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT /// nodes. static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { DebugLoc DL = N->getDebugLoc(); SDValue Cond = N->getOperand(0); // Get the LHS/RHS of the select. SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); EVT VT = LHS.getValueType(); // If we have SSE[12] support, try to form min/max nodes. SSE min/max // instructions match the semantics of the common C idiom xhasSSE2() || (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) { ISD::CondCode CC = cast(Cond.getOperand(2))->get(); unsigned Opcode = 0; // Check for x CC y ? x : y. if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && DAG.isEqualTo(RHS, Cond.getOperand(1))) { switch (CC) { default: break; case ISD::SETULT: // Converting this to a min would handle NaNs incorrectly, and swapping // the operands would cause it to handle comparisons between positive // and negative zero incorrectly. if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { if (!DAG.getTarget().Options.UnsafeFPMath && !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) break; std::swap(LHS, RHS); } Opcode = X86ISD::FMIN; break; case ISD::SETOLE: // Converting this to a min would handle comparisons between positive // and negative zero incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) break; Opcode = X86ISD::FMIN; break; case ISD::SETULE: // Converting this to a min would handle both negative zeros and NaNs // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOLT: case ISD::SETLT: case ISD::SETLE: Opcode = X86ISD::FMIN; break; case ISD::SETOGE: // Converting this to a max would handle comparisons between positive // and negative zero incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) break; Opcode = X86ISD::FMAX; break; case ISD::SETUGT: // Converting this to a max would handle NaNs incorrectly, and swapping // the operands would cause it to handle comparisons between positive // and negative zero incorrectly. if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { if (!DAG.getTarget().Options.UnsafeFPMath && !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) break; std::swap(LHS, RHS); } Opcode = X86ISD::FMAX; break; case ISD::SETUGE: // Converting this to a max would handle both negative zeros and NaNs // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOGT: case ISD::SETGT: case ISD::SETGE: Opcode = X86ISD::FMAX; break; } // Check for x CC y ? y : x -- a min/max with reversed arms. } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && DAG.isEqualTo(RHS, Cond.getOperand(0))) { switch (CC) { default: break; case ISD::SETOGE: // Converting this to a min would handle comparisons between positive // and negative zero incorrectly, and swapping the operands would // cause it to handle NaNs incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) { if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) break; std::swap(LHS, RHS); } Opcode = X86ISD::FMIN; break; case ISD::SETUGT: // Converting this to a min would handle NaNs incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) break; Opcode = X86ISD::FMIN; break; case ISD::SETUGE: // Converting this to a min would handle both negative zeros and NaNs // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOGT: case ISD::SETGT: case ISD::SETGE: Opcode = X86ISD::FMIN; break; case ISD::SETULT: // Converting this to a max would handle NaNs incorrectly. if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) break; Opcode = X86ISD::FMAX; break; case ISD::SETOLE: // Converting this to a max would handle comparisons between positive // and negative zero incorrectly, and swapping the operands would // cause it to handle NaNs incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) { if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) break; std::swap(LHS, RHS); } Opcode = X86ISD::FMAX; break; case ISD::SETULE: // Converting this to a max would handle both negative zeros and NaNs // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOLT: case ISD::SETLT: case ISD::SETLE: Opcode = X86ISD::FMAX; break; } } if (Opcode) return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); } // If this is a select between two integer constants, try to do some // optimizations. if (ConstantSDNode *TrueC = dyn_cast(LHS)) { if (ConstantSDNode *FalseC = dyn_cast(RHS)) // Don't do this for crazy integer types. if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { // If this is efficiently invertible, canonicalize the LHSC/RHSC values // so that TrueC (the true value) is larger than FalseC. bool NeedsCondInvert = false; if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && // Efficiently invertible. (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible. (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible. isa(Cond.getOperand(1))))) { NeedsCondInvert = true; std::swap(TrueC, FalseC); } // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0. if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { if (NeedsCondInvert) // Invert the condition if needed. Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, DAG.getConstant(1, Cond.getValueType())); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); unsigned ShAmt = TrueC->getAPIntValue().logBase2(); return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, DAG.getConstant(ShAmt, MVT::i8)); } // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { if (NeedsCondInvert) // Invert the condition if needed. Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, DAG.getConstant(1, Cond.getValueType())); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); } // Optimize cases that will turn into an LEA instruction. This requires // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; bool isFastMultiplier = false; if (Diff < 10) { switch ((unsigned char)Diff) { default: break; case 1: // result = add base, cond case 2: // result = lea base( , cond*2) case 3: // result = lea base(cond, cond*2) case 4: // result = lea base( , cond*4) case 5: // result = lea base(cond, cond*4) case 8: // result = lea base( , cond*8) case 9: // result = lea base(cond, cond*8) isFastMultiplier = true; break; } } if (isFastMultiplier) { APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); if (NeedsCondInvert) // Invert the condition if needed. Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, DAG.getConstant(1, Cond.getValueType())); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); // Scale the condition by the difference. if (Diff != 1) Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, DAG.getConstant(Diff, Cond.getValueType())); // Add the base if non-zero. if (FalseC->getAPIntValue() != 0) Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); return Cond; } } } } // Canonicalize max and min: // (x > y) ? x : y -> (x >= y) ? x : y // (x < y) ? x : y -> (x <= y) ? x : y // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates // the need for an extra compare // against zero. e.g. // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0 // subl %esi, %edi // testl %edi, %edi // movl $0, %eax // cmovgl %edi, %eax // => // xorl %eax, %eax // subl %esi, $edi // cmovsl %eax, %edi if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC && DAG.isEqualTo(LHS, Cond.getOperand(0)) && DAG.isEqualTo(RHS, Cond.getOperand(1))) { ISD::CondCode CC = cast(Cond.getOperand(2))->get(); switch (CC) { default: break; case ISD::SETLT: case ISD::SETGT: { ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE; Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(), Cond.getOperand(0), Cond.getOperand(1), NewCC); return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS); } } } // Match VSELECTs into subs with unsigned saturation. if (!DCI.isBeforeLegalize() && N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC && // psubus is available in SSE2 and AVX2 for i8 and i16 vectors. ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) || (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) { ISD::CondCode CC = cast(Cond.getOperand(2))->get(); // Check if one of the arms of the VSELECT is a zero vector. If it's on the // left side invert the predicate to simplify logic below. SDValue Other; if (ISD::isBuildVectorAllZeros(LHS.getNode())) { Other = RHS; CC = ISD::getSetCCInverse(CC, true); } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) { Other = LHS; } if (Other.getNode() && Other->getNumOperands() == 2 && DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) { SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1); SDValue CondRHS = Cond->getOperand(1); // Look for a general sub with unsigned saturation first. // x >= y ? x-y : 0 --> subus x, y // x > y ? x-y : 0 --> subus x, y if ((CC == ISD::SETUGE || CC == ISD::SETUGT) && Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS)) return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS); // If the RHS is a constant we have to reverse the const canonicalization. // x > C-1 ? x+-C : 0 --> subus x, C if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD && isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) { APInt A = cast(OpRHS.getOperand(0))->getAPIntValue(); if (CondRHS.getConstantOperandVal(0) == -A-1) return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, DAG.getConstant(-A, VT)); } // Another special case: If C was a sign bit, the sub has been // canonicalized into a xor. // FIXME: Would it be better to use ComputeMaskedBits to determine whether // it's safe to decanonicalize the xor? // x s< 0 ? x^C : 0 --> subus x, C if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR && ISD::isBuildVectorAllZeros(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) { APInt A = cast(OpRHS.getOperand(0))->getAPIntValue(); if (A.isSignBit()) return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS); } } } // Try to match a min/max vector operation. if (!DCI.isBeforeLegalize() && N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget)) return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS); // Simplify vector selection if the selector will be produced by CMPP*/PCMP*. if (!DCI.isBeforeLegalize() && N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) { assert(Cond.getValueType().isVector() && "vector select expects a vector selector!"); EVT IntVT = Cond.getValueType(); bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode()); bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); if (!TValIsAllOnes && !FValIsAllZeros) { // Try invert the condition if true value is not all 1s and false value // is not all 0s. bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode()); bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode()); if (TValIsAllZeros || FValIsAllOnes) { SDValue CC = Cond.getOperand(2); ISD::CondCode NewCC = ISD::getSetCCInverse(cast(CC)->get(), Cond.getOperand(0).getValueType().isInteger()); Cond = DAG.getSetCC(DL, IntVT, Cond.getOperand(0), Cond.getOperand(1), NewCC); std::swap(LHS, RHS); TValIsAllOnes = FValIsAllOnes; FValIsAllZeros = TValIsAllZeros; } } if (TValIsAllOnes || FValIsAllZeros) { SDValue Ret; if (TValIsAllOnes && FValIsAllZeros) Ret = Cond; else if (TValIsAllOnes) Ret = DAG.getNode(ISD::OR, DL, IntVT, Cond, DAG.getNode(ISD::BITCAST, DL, IntVT, RHS)); else if (FValIsAllZeros) Ret = DAG.getNode(ISD::AND, DL, IntVT, Cond, DAG.getNode(ISD::BITCAST, DL, IntVT, LHS)); return DAG.getNode(ISD::BITCAST, DL, VT, Ret); } } // If we know that this node is legal then we know that it is going to be // matched by one of the SSE/AVX BLEND instructions. These instructions only // depend on the highest bit in each word. Try to use SimplifyDemandedBits // to simplify previous instructions. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() && !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) { unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits(); // Don't optimize vector selects that map to mask-registers. if (BitWidth == 1) return SDValue(); assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size"); APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(), DCI.isBeforeLegalizeOps()); if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) || TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO)) DCI.CommitTargetLoweringOpt(TLO); } return SDValue(); } // Check whether a boolean test is testing a boolean value generated by // X86ISD::SETCC. If so, return the operand of that SETCC and proper condition // code. // // Simplify the following patterns: // (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or // (Op (CMP (SETCC Cond EFLAGS) 0) NEQ) // to (Op EFLAGS Cond) // // (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or // (Op (CMP (SETCC Cond EFLAGS) 1) NEQ) // to (Op EFLAGS !Cond) // // where Op could be BRCOND or CMOV. // static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) { // Quit if not CMP and SUB with its value result used. if (Cmp.getOpcode() != X86ISD::CMP && (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0))) return SDValue(); // Quit if not used as a boolean value. if (CC != X86::COND_E && CC != X86::COND_NE) return SDValue(); // Check CMP operands. One of them should be 0 or 1 and the other should be // an SetCC or extended from it. SDValue Op1 = Cmp.getOperand(0); SDValue Op2 = Cmp.getOperand(1); SDValue SetCC; const ConstantSDNode* C = 0; bool needOppositeCond = (CC == X86::COND_E); bool checkAgainstTrue = false; // Is it a comparison against 1? if ((C = dyn_cast(Op1))) SetCC = Op2; else if ((C = dyn_cast(Op2))) SetCC = Op1; else // Quit if all operands are not constants. return SDValue(); if (C->getZExtValue() == 1) { needOppositeCond = !needOppositeCond; checkAgainstTrue = true; } else if (C->getZExtValue() != 0) // Quit if the constant is neither 0 or 1. return SDValue(); bool truncatedToBoolWithAnd = false; // Skip (zext $x), (trunc $x), or (and $x, 1) node. while (SetCC.getOpcode() == ISD::ZERO_EXTEND || SetCC.getOpcode() == ISD::TRUNCATE || SetCC.getOpcode() == ISD::AND) { if (SetCC.getOpcode() == ISD::AND) { int OpIdx = -1; ConstantSDNode *CS; if ((CS = dyn_cast(SetCC.getOperand(0))) && CS->getZExtValue() == 1) OpIdx = 1; if ((CS = dyn_cast(SetCC.getOperand(1))) && CS->getZExtValue() == 1) OpIdx = 0; if (OpIdx == -1) break; SetCC = SetCC.getOperand(OpIdx); truncatedToBoolWithAnd = true; } else SetCC = SetCC.getOperand(0); } switch (SetCC.getOpcode()) { case X86ISD::SETCC_CARRY: // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1, // i.e. it's a comparison against true but the result of SETCC_CARRY is not // truncated to i1 using 'and'. if (checkAgainstTrue && !truncatedToBoolWithAnd) break; assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B && "Invalid use of SETCC_CARRY!"); // FALL THROUGH case X86ISD::SETCC: // Set the condition code or opposite one if necessary. CC = X86::CondCode(SetCC.getConstantOperandVal(0)); if (needOppositeCond) CC = X86::GetOppositeBranchCondition(CC); return SetCC.getOperand(1); case X86ISD::CMOV: { // Check whether false/true value has canonical one, i.e. 0 or 1. ConstantSDNode *FVal = dyn_cast(SetCC.getOperand(0)); ConstantSDNode *TVal = dyn_cast(SetCC.getOperand(1)); // Quit if true value is not a constant. if (!TVal) return SDValue(); // Quit if false value is not a constant. if (!FVal) { SDValue Op = SetCC.getOperand(0); // Skip 'zext' or 'trunc' node. if (Op.getOpcode() == ISD::ZERO_EXTEND || Op.getOpcode() == ISD::TRUNCATE) Op = Op.getOperand(0); // A special case for rdrand/rdseed, where 0 is set if false cond is // found. if ((Op.getOpcode() != X86ISD::RDRAND && Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0) return SDValue(); } // Quit if false value is not the constant 0 or 1. bool FValIsFalse = true; if (FVal && FVal->getZExtValue() != 0) { if (FVal->getZExtValue() != 1) return SDValue(); // If FVal is 1, opposite cond is needed. needOppositeCond = !needOppositeCond; FValIsFalse = false; } // Quit if TVal is not the constant opposite of FVal. if (FValIsFalse && TVal->getZExtValue() != 1) return SDValue(); if (!FValIsFalse && TVal->getZExtValue() != 0) return SDValue(); CC = X86::CondCode(SetCC.getConstantOperandVal(2)); if (needOppositeCond) CC = X86::GetOppositeBranchCondition(CC); return SetCC.getOperand(3); } } return SDValue(); } /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { DebugLoc DL = N->getDebugLoc(); // If the flag operand isn't dead, don't touch this CMOV. if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) return SDValue(); SDValue FalseOp = N->getOperand(0); SDValue TrueOp = N->getOperand(1); X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); SDValue Cond = N->getOperand(3); if (CC == X86::COND_E || CC == X86::COND_NE) { switch (Cond.getOpcode()) { default: break; case X86ISD::BSR: case X86ISD::BSF: // If operand of BSR / BSF are proven never zero, then ZF cannot be set. if (DAG.isKnownNeverZero(Cond.getOperand(0))) return (CC == X86::COND_E) ? FalseOp : TrueOp; } } SDValue Flags; Flags = checkBoolTestSetCCCombine(Cond, CC); if (Flags.getNode() && // Extra check as FCMOV only supports a subset of X86 cond. (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) { SDValue Ops[] = { FalseOp, TrueOp, DAG.getConstant(CC, MVT::i8), Flags }; return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops, array_lengthof(Ops)); } // If this is a select between two integer constants, try to do some // optimizations. Note that the operands are ordered the opposite of SELECT // operands. if (ConstantSDNode *TrueC = dyn_cast(TrueOp)) { if (ConstantSDNode *FalseC = dyn_cast(FalseOp)) { // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is // larger than FalseC (the false value). if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { CC = X86::GetOppositeBranchCondition(CC); std::swap(TrueC, FalseC); std::swap(TrueOp, FalseOp); } // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0. // This is efficient for any integer data type (including i8/i16) and // shift amount. if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(CC, MVT::i8), Cond); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); unsigned ShAmt = TrueC->getAPIntValue().logBase2(); Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, DAG.getConstant(ShAmt, MVT::i8)); if (N->getNumValues() == 2) // Dead flag value? return DCI.CombineTo(N, Cond, SDValue()); return Cond; } // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient // for any integer data type, including i8/i16. if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(CC, MVT::i8), Cond); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); if (N->getNumValues() == 2) // Dead flag value? return DCI.CombineTo(N, Cond, SDValue()); return Cond; } // Optimize cases that will turn into an LEA instruction. This requires // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; bool isFastMultiplier = false; if (Diff < 10) { switch ((unsigned char)Diff) { default: break; case 1: // result = add base, cond case 2: // result = lea base( , cond*2) case 3: // result = lea base(cond, cond*2) case 4: // result = lea base( , cond*4) case 5: // result = lea base(cond, cond*4) case 8: // result = lea base( , cond*8) case 9: // result = lea base(cond, cond*8) isFastMultiplier = true; break; } } if (isFastMultiplier) { APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(CC, MVT::i8), Cond); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); // Scale the condition by the difference. if (Diff != 1) Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, DAG.getConstant(Diff, Cond.getValueType())); // Add the base if non-zero. if (FalseC->getAPIntValue() != 0) Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); if (N->getNumValues() == 2) // Dead flag value? return DCI.CombineTo(N, Cond, SDValue()); return Cond; } } } } // Handle these cases: // (select (x != c), e, c) -> select (x != c), e, x), // (select (x == c), c, e) -> select (x == c), x, e) // where the c is an integer constant, and the "select" is the combination // of CMOV and CMP. // // The rationale for this change is that the conditional-move from a constant // needs two instructions, however, conditional-move from a register needs // only one instruction. // // CAVEAT: By replacing a constant with a symbolic value, it may obscure // some instruction-combining opportunities. This opt needs to be // postponed as late as possible. // if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) { // the DCI.xxxx conditions are provided to postpone the optimization as // late as possible. ConstantSDNode *CmpAgainst = 0; if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) && (CmpAgainst = dyn_cast(Cond.getOperand(1))) && !isa(Cond.getOperand(0))) { if (CC == X86::COND_NE && CmpAgainst == dyn_cast(FalseOp)) { CC = X86::GetOppositeBranchCondition(CC); std::swap(TrueOp, FalseOp); } if (CC == X86::COND_E && CmpAgainst == dyn_cast(TrueOp)) { SDValue Ops[] = { FalseOp, Cond.getOperand(0), DAG.getConstant(CC, MVT::i8), Cond }; return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops, array_lengthof(Ops)); } } } return SDValue(); } /// PerformMulCombine - Optimize a single multiply with constant into two /// in order to implement it with two cheaper instructions, e.g. /// LEA + SHL, LEA + LEA. static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); EVT VT = N->getValueType(0); if (VT != MVT::i64) return SDValue(); ConstantSDNode *C = dyn_cast(N->getOperand(1)); if (!C) return SDValue(); uint64_t MulAmt = C->getZExtValue(); if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) return SDValue(); uint64_t MulAmt1 = 0; uint64_t MulAmt2 = 0; if ((MulAmt % 9) == 0) { MulAmt1 = 9; MulAmt2 = MulAmt / 9; } else if ((MulAmt % 5) == 0) { MulAmt1 = 5; MulAmt2 = MulAmt / 5; } else if ((MulAmt % 3) == 0) { MulAmt1 = 3; MulAmt2 = MulAmt / 3; } if (MulAmt2 && (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ DebugLoc DL = N->getDebugLoc(); if (isPowerOf2_64(MulAmt2) && !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) // If second multiplifer is pow2, issue it first. We want the multiply by // 3, 5, or 9 to be folded into the addressing mode unless the lone use // is an add. std::swap(MulAmt1, MulAmt2); SDValue NewMul; if (isPowerOf2_64(MulAmt1)) NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), DAG.getConstant(Log2_64(MulAmt1), MVT::i8)); else NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), DAG.getConstant(MulAmt1, VT)); if (isPowerOf2_64(MulAmt2)) NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, DAG.getConstant(Log2_64(MulAmt2), MVT::i8)); else NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, DAG.getConstant(MulAmt2, VT)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, NewMul, false); } return SDValue(); } static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N1); EVT VT = N0.getValueType(); // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) // since the result of setcc_c is all zero's or all ones. if (VT.isInteger() && !VT.isVector() && N1C && N0.getOpcode() == ISD::AND && N0.getOperand(1).getOpcode() == ISD::Constant) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == X86ISD::SETCC_CARRY || ((N00.getOpcode() == ISD::ANY_EXTEND || N00.getOpcode() == ISD::ZERO_EXTEND) && N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) { APInt Mask = cast(N0.getOperand(1))->getAPIntValue(); APInt ShAmt = N1C->getAPIntValue(); Mask = Mask.shl(ShAmt); if (Mask != 0) return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N00, DAG.getConstant(Mask, VT)); } } // Hardware support for vector shifts is sparse which makes us scalarize the // vector operations in many cases. Also, on sandybridge ADD is faster than // shl. // (shl V, 1) -> add V,V if (isSplatVector(N1.getNode())) { assert(N0.getValueType().isVector() && "Invalid vector shift type"); ConstantSDNode *N1C = dyn_cast(N1->getOperand(0)); // We shift all of the values by one. In many cases we do not have // hardware support for this operation. This is better expressed as an ADD // of two values. if (N1C && (1 == N1C->getZExtValue())) { return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0); } } return SDValue(); } /// PerformShiftCombine - Combine shifts. static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { if (N->getOpcode() == ISD::SHL) { SDValue V = PerformSHLCombine(N, DAG); if (V.getNode()) return V; } return SDValue(); } // CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..)) // where both setccs reference the same FP CMP, and rewrite for CMPEQSS // and friends. Likewise for OR -> CMPNEQSS. static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { unsigned opcode; // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but // we're requiring SSE2 for both. if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue CMP0 = N0->getOperand(1); SDValue CMP1 = N1->getOperand(1); DebugLoc DL = N->getDebugLoc(); // The SETCCs should both refer to the same CMP. if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1) return SDValue(); SDValue CMP00 = CMP0->getOperand(0); SDValue CMP01 = CMP0->getOperand(1); EVT VT = CMP00.getValueType(); if (VT == MVT::f32 || VT == MVT::f64) { bool ExpectingFlags = false; // Check for any users that want flags: for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); !ExpectingFlags && UI != UE; ++UI) switch (UI->getOpcode()) { default: case ISD::BR_CC: case ISD::BRCOND: case ISD::SELECT: ExpectingFlags = true; break; case ISD::CopyToReg: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: break; } if (!ExpectingFlags) { enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0); enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0); if (cc1 == X86::COND_E || cc1 == X86::COND_NE) { X86::CondCode tmp = cc0; cc0 = cc1; cc1 = tmp; } if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) || (cc0 == X86::COND_NE && cc1 == X86::COND_P)) { bool is64BitFP = (CMP00.getValueType() == MVT::f64); X86ISD::NodeType NTOperator = is64BitFP ? X86ISD::FSETCCsd : X86ISD::FSETCCss; // FIXME: need symbolic constants for these magic numbers. // See X86ATTInstPrinter.cpp:printSSECC(). unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4; SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01, DAG.getConstant(x86cc, MVT::i8)); SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32, OnesOrZeroesF); SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI, DAG.getConstant(1, MVT::i32)); SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed); return OneBitOfTruth; } } } } return SDValue(); } /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector /// so it can be folded inside ANDNP. static bool CanFoldXORWithAllOnes(const SDNode *N) { EVT VT = N->getValueType(0); // Match direct AllOnes for 128 and 256-bit vectors if (ISD::isBuildVectorAllOnes(N)) return true; // Look through a bit convert. if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0).getNode(); // Sometimes the operand may come from a insert_subvector building a 256-bit // allones vector if (VT.is256BitVector() && N->getOpcode() == ISD::INSERT_SUBVECTOR) { SDValue V1 = N->getOperand(0); SDValue V2 = N->getOperand(1); if (V1.getOpcode() == ISD::INSERT_SUBVECTOR && V1.getOperand(0).getOpcode() == ISD::UNDEF && ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) && ISD::isBuildVectorAllOnes(V2.getNode())) return true; } return false; } // On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized // register. In most cases we actually compare or select YMM-sized registers // and mixing the two types creates horrible code. This method optimizes // some of the transition sequences. static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (!VT.is256BitVector()) return SDValue(); assert((N->getOpcode() == ISD::ANY_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node"); SDValue Narrow = N->getOperand(0); EVT NarrowVT = Narrow->getValueType(0); if (!NarrowVT.is128BitVector()) return SDValue(); if (Narrow->getOpcode() != ISD::XOR && Narrow->getOpcode() != ISD::AND && Narrow->getOpcode() != ISD::OR) return SDValue(); SDValue N0 = Narrow->getOperand(0); SDValue N1 = Narrow->getOperand(1); DebugLoc DL = Narrow->getDebugLoc(); // The Left side has to be a trunc. if (N0.getOpcode() != ISD::TRUNCATE) return SDValue(); // The type of the truncated inputs. EVT WideVT = N0->getOperand(0)->getValueType(0); if (WideVT != VT) return SDValue(); // The right side has to be a 'trunc' or a constant vector. bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE; bool RHSConst = (isSplatVector(N1.getNode()) && isa(N1->getOperand(0))); if (!RHSTrunc && !RHSConst) return SDValue(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT)) return SDValue(); // Set N0 and N1 to hold the inputs to the new wide operation. N0 = N0->getOperand(0); if (RHSConst) { N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(), N1->getOperand(0)); SmallVector C(WideVT.getVectorNumElements(), N1); N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size()); } else if (RHSTrunc) { N1 = N1->getOperand(0); } // Generate the wide operation. SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1); unsigned Opcode = N->getOpcode(); switch (Opcode) { case ISD::ANY_EXTEND: return Op; case ISD::ZERO_EXTEND: { unsigned InBits = NarrowVT.getScalarType().getSizeInBits(); APInt Mask = APInt::getAllOnesValue(InBits); Mask = Mask.zext(VT.getScalarType().getSizeInBits()); return DAG.getNode(ISD::AND, DL, VT, Op, DAG.getConstant(Mask, VT)); } case ISD::SIGN_EXTEND: return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, DAG.getValueType(NarrowVT)); default: llvm_unreachable("Unexpected opcode"); } } static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (DCI.isBeforeLegalizeOps()) return SDValue(); SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget); if (R.getNode()) return R; // Create BLSI, and BLSR instructions // BLSI is X & (-X) // BLSR is X & (X-1) if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); DebugLoc DL = N->getDebugLoc(); // Check LHS for neg if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 && isZero(N0.getOperand(0))) return DAG.getNode(X86ISD::BLSI, DL, VT, N1); // Check RHS for neg if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 && isZero(N1.getOperand(0))) return DAG.getNode(X86ISD::BLSI, DL, VT, N0); // Check LHS for X-1 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 && isAllOnes(N0.getOperand(1))) return DAG.getNode(X86ISD::BLSR, DL, VT, N1); // Check RHS for X-1 if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 && isAllOnes(N1.getOperand(1))) return DAG.getNode(X86ISD::BLSR, DL, VT, N0); return SDValue(); } // Want to form ANDNP nodes: // 1) In the hopes of then easily combining them with OR and AND nodes // to form PBLEND/PSIGN. // 2) To match ANDN packed intrinsics if (VT != MVT::v2i64 && VT != MVT::v4i64) return SDValue(); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); DebugLoc DL = N->getDebugLoc(); // Check LHS for vnot if (N0.getOpcode() == ISD::XOR && //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode())) CanFoldXORWithAllOnes(N0.getOperand(1).getNode())) return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1); // Check RHS for vnot if (N1.getOpcode() == ISD::XOR && //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode())) CanFoldXORWithAllOnes(N1.getOperand(1).getNode())) return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0); return SDValue(); } static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (DCI.isBeforeLegalizeOps()) return SDValue(); SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget); if (R.getNode()) return R; SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // look for psign/blend if (VT == MVT::v2i64 || VT == MVT::v4i64) { if (!Subtarget->hasSSSE3() || (VT == MVT::v4i64 && !Subtarget->hasInt256())) return SDValue(); // Canonicalize pandn to RHS if (N0.getOpcode() == X86ISD::ANDNP) std::swap(N0, N1); // or (and (m, y), (pandn m, x)) if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) { SDValue Mask = N1.getOperand(0); SDValue X = N1.getOperand(1); SDValue Y; if (N0.getOperand(0) == Mask) Y = N0.getOperand(1); if (N0.getOperand(1) == Mask) Y = N0.getOperand(0); // Check to see if the mask appeared in both the AND and ANDNP and if (!Y.getNode()) return SDValue(); // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them. // Look through mask bitcast. if (Mask.getOpcode() == ISD::BITCAST) Mask = Mask.getOperand(0); if (X.getOpcode() == ISD::BITCAST) X = X.getOperand(0); if (Y.getOpcode() == ISD::BITCAST) Y = Y.getOperand(0); EVT MaskVT = Mask.getValueType(); // Validate that the Mask operand is a vector sra node. // FIXME: what to do for bytes, since there is a psignb/pblendvb, but // there is no psrai.b unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits(); unsigned SraAmt = ~0; if (Mask.getOpcode() == ISD::SRA) { SDValue Amt = Mask.getOperand(1); if (isSplatVector(Amt.getNode())) { SDValue SclrAmt = Amt->getOperand(0); if (ConstantSDNode *C = dyn_cast(SclrAmt)) SraAmt = C->getZExtValue(); } } else if (Mask.getOpcode() == X86ISD::VSRAI) { SDValue SraC = Mask.getOperand(1); SraAmt = cast(SraC)->getZExtValue(); } if ((SraAmt + 1) != EltBits) return SDValue(); DebugLoc DL = N->getDebugLoc(); // Now we know we at least have a plendvb with the mask val. See if // we can form a psignb/w/d. // psign = x.type == y.type == mask.type && y = sub(0, x); if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X && ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) && X.getValueType() == MaskVT && Y.getValueType() == MaskVT) { assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && "Unsupported VT for PSIGN"); Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0)); return DAG.getNode(ISD::BITCAST, DL, VT, Mask); } // PBLENDVB only available on SSE 4.1 if (!Subtarget->hasSSE41()) return SDValue(); EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8; X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X); Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y); Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask); Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X); return DAG.getNode(ISD::BITCAST, DL, VT, Mask); } } if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) return SDValue(); // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) std::swap(N0, N1); if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) return SDValue(); if (!N0.hasOneUse() || !N1.hasOneUse()) return SDValue(); SDValue ShAmt0 = N0.getOperand(1); if (ShAmt0.getValueType() != MVT::i8) return SDValue(); SDValue ShAmt1 = N1.getOperand(1); if (ShAmt1.getValueType() != MVT::i8) return SDValue(); if (ShAmt0.getOpcode() == ISD::TRUNCATE) ShAmt0 = ShAmt0.getOperand(0); if (ShAmt1.getOpcode() == ISD::TRUNCATE) ShAmt1 = ShAmt1.getOperand(0); DebugLoc DL = N->getDebugLoc(); unsigned Opc = X86ISD::SHLD; SDValue Op0 = N0.getOperand(0); SDValue Op1 = N1.getOperand(0); if (ShAmt0.getOpcode() == ISD::SUB) { Opc = X86ISD::SHRD; std::swap(Op0, Op1); std::swap(ShAmt0, ShAmt1); } unsigned Bits = VT.getSizeInBits(); // @LOCALMOD-START // Due to a limitation in NaCl's 32-bit validator, // 16-bit shld instructions are illegal in 32-bit NaCl. if (Subtarget->isTargetNaCl() && !Subtarget->is64Bit() && Bits == 16) return SDValue(); // @LOCALMOD-END if (ShAmt1.getOpcode() == ISD::SUB) { SDValue Sum = ShAmt1.getOperand(0); if (ConstantSDNode *SumC = dyn_cast(Sum)) { SDValue ShAmt1Op1 = ShAmt1.getOperand(1); if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE) ShAmt1Op1 = ShAmt1Op1.getOperand(0); if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0) return DAG.getNode(Opc, DL, VT, Op0, Op1, DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0)); } } else if (ConstantSDNode *ShAmt1C = dyn_cast(ShAmt1)) { ConstantSDNode *ShAmt0C = dyn_cast(ShAmt0); if (ShAmt0C && ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits) return DAG.getNode(Opc, DL, VT, N0.getOperand(0), N1.getOperand(0), DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0)); } return SDValue(); } // Generate NEG and CMOV for integer abs. static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); // Since X86 does not have CMOV for 8-bit integer, we don't convert // 8-bit integer abs to NEG and CMOV. if (VT.isInteger() && VT.getSizeInBits() == 8) return SDValue(); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); DebugLoc DL = N->getDebugLoc(); // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) // and change it to SUB and CMOV. if (VT.isInteger() && N->getOpcode() == ISD::XOR && N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) if (ConstantSDNode *Y1C = dyn_cast(N1.getOperand(1))) if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) { // Generate SUB & CMOV. SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32), DAG.getConstant(0, VT), N0.getOperand(0)); SDValue Ops[] = { N0.getOperand(0), Neg, DAG.getConstant(X86::COND_GE, MVT::i8), SDValue(Neg.getNode(), 1) }; return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops, array_lengthof(Ops)); } return SDValue(); } // PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (DCI.isBeforeLegalizeOps()) return SDValue(); if (Subtarget->hasCMov()) { SDValue RV = performIntegerAbsCombine(N, DAG); if (RV.getNode()) return RV; } // Try forming BMI if it is available. if (!Subtarget->hasBMI()) return SDValue(); if (VT != MVT::i32 && VT != MVT::i64) return SDValue(); assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions"); // Create BLSMSK instructions by finding X ^ (X-1) SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); DebugLoc DL = N->getDebugLoc(); if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 && isAllOnes(N0.getOperand(1))) return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1); if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 && isAllOnes(N1.getOperand(1))) return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0); return SDValue(); } /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes. static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { LoadSDNode *Ld = cast(N); EVT RegVT = Ld->getValueType(0); EVT MemVT = Ld->getMemoryVT(); DebugLoc dl = Ld->getDebugLoc(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned RegSz = RegVT.getSizeInBits(); // On Sandybridge unaligned 256bit loads are inefficient. ISD::LoadExtType Ext = Ld->getExtensionType(); unsigned Alignment = Ld->getAlignment(); bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8; if (RegVT.is256BitVector() && !Subtarget->hasInt256() && !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) { unsigned NumElems = RegVT.getVectorNumElements(); if (NumElems < 2) return SDValue(); SDValue Ptr = Ld->getBasePtr(); SDValue Increment = DAG.getConstant(16, TLI.getPointerTy()); EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), NumElems/2); SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Alignment); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), std::min(16U, Alignment)); SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Load1.getValue(1), Load2.getValue(1)); SDValue NewVec = DAG.getUNDEF(RegVT); NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl); NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl); return DCI.CombineTo(N, NewVec, TF, true); } // If this is a vector EXT Load then attempt to optimize it using a // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the // expansion is still better than scalar code. // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll // emit a shuffle and a arithmetic shift. // TODO: It is possible to support ZExt by zeroing the undef values // during the shuffle phase or after the shuffle. if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() && (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) { assert(MemVT != RegVT && "Cannot extend to the same type"); assert(MemVT.isVector() && "Must load a vector from memory"); unsigned NumElems = RegVT.getVectorNumElements(); unsigned MemSz = MemVT.getSizeInBits(); assert(RegSz > MemSz && "Register size must be greater than the mem size"); if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) return SDValue(); // All sizes must be a power of two. if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue(); // Attempt to load the original value using scalar loads. // Find the largest scalar type that divides the total loaded size. MVT SclrLoadTy = MVT::i8; for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE; tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) { MVT Tp = (MVT::SimpleValueType)tp; if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) { SclrLoadTy = Tp; } } // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 && (64 <= MemSz)) SclrLoadTy = MVT::f64; // Calculate the number of scalar loads that we need to perform // in order to load our vector from memory. unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits(); if (Ext == ISD::SEXTLOAD && NumLoads > 1) return SDValue(); unsigned loadRegZize = RegSz; if (Ext == ISD::SEXTLOAD && RegSz == 256) loadRegZize /= 2; // Represent our vector as a sequence of elements which are the // largest scalar that we can load. EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy, loadRegZize/SclrLoadTy.getSizeInBits()); // Represent the data using the same element type that is stored in // memory. In practice, we ''widen'' MemVT. EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), loadRegZize/MemVT.getScalarType().getSizeInBits()); assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() && "Invalid vector type"); // We can't shuffle using an illegal type. if (!TLI.isTypeLegal(WideVecVT)) return SDValue(); SmallVector Chains; SDValue Ptr = Ld->getBasePtr(); SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8, TLI.getPointerTy()); SDValue Res = DAG.getUNDEF(LoadUnitVecVT); for (unsigned i = 0; i < NumLoads; ++i) { // Perform a single load. SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); Chains.push_back(ScalarLoad.getValue(1)); // Create the first element type using SCALAR_TO_VECTOR in order to avoid // another round of DAGCombining. if (i == 0) Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad); else Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res, ScalarLoad, DAG.getIntPtrConstant(i)); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); } SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], Chains.size()); // Bitcast the loaded value to a vector of the original element type, in // the size of the target vector type. SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res); unsigned SizeRatio = RegSz/MemSz; if (Ext == ISD::SEXTLOAD) { // If we have SSE4.1 we can directly emit a VSEXT node. if (Subtarget->hasSSE41()) { SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec); return DCI.CombineTo(N, Sext, TF, true); } // Otherwise we'll shuffle the small elements in the high bits of the // larger type and perform an arithmetic shift. If the shift is not legal // it's better to scalarize. if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT)) return SDValue(); // Redistribute the loaded elements into the different locations. SmallVector ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i*SizeRatio + SizeRatio-1] = i; SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff); // Build the arithmetic shift. unsigned Amt = RegVT.getVectorElementType().getSizeInBits() - MemVT.getVectorElementType().getSizeInBits(); Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff, DAG.getConstant(Amt, RegVT)); return DCI.CombineTo(N, Shuff, TF, true); } // Redistribute the loaded elements into the different locations. SmallVector ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i*SizeRatio] = i; SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); // Bitcast to the requested type. Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff); // Replace the original load with the new sequence // and return the new chain. return DCI.CombineTo(N, Shuff, TF, true); } return SDValue(); } /// PerformSTORECombine - Do target-specific dag combines on STORE nodes. static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { StoreSDNode *St = cast(N); EVT VT = St->getValue().getValueType(); EVT StVT = St->getMemoryVT(); DebugLoc dl = St->getDebugLoc(); SDValue StoredVal = St->getOperand(1); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // If we are saving a concatenation of two XMM registers, perform two stores. // On Sandy Bridge, 256-bit memory operations are executed by two // 128-bit ports. However, on Haswell it is better to issue a single 256-bit // memory operation. unsigned Alignment = St->getAlignment(); bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8; if (VT.is256BitVector() && !Subtarget->hasInt256() && StVT == VT && !IsAligned) { unsigned NumElems = VT.getVectorNumElements(); if (NumElems < 2) return SDValue(); SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl); SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl); SDValue Stride = DAG.getConstant(16, TLI.getPointerTy()); SDValue Ptr0 = St->getBasePtr(); SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride); SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), Alignment); SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), std::min(16U, Alignment)); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1); } // Optimize trunc store (of multiple scalars) to shuffle and store. // First, pack all of the elements in one place. Next, store to memory // in fewer chunks. if (St->isTruncatingStore() && VT.isVector()) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned NumElems = VT.getVectorNumElements(); assert(StVT != VT && "Cannot truncate to the same type"); unsigned FromSz = VT.getVectorElementType().getSizeInBits(); unsigned ToSz = StVT.getVectorElementType().getSizeInBits(); // From, To sizes and ElemCount must be pow of two if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue(); // We are going to use the original vector elt for storing. // Accumulated smaller vector elements must be a multiple of the store size. if (0 != (NumElems * FromSz) % ToSz) return SDValue(); unsigned SizeRatio = FromSz / ToSz; assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); // Create a type on which we perform the shuffle EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), NumElems*SizeRatio); assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue()); SmallVector ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i] = i * SizeRatio; // Can't shuffle using an illegal type. if (!TLI.isTypeLegal(WideVecVT)) return SDValue(); SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); // At this point all of the data is stored at the bottom of the // register. We now need to save it to mem. // Find the largest store unit MVT StoreType = MVT::i8; for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE; tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) { MVT Tp = (MVT::SimpleValueType)tp; if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz) StoreType = Tp; } // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 && (64 <= NumElems * ToSz)) StoreType = MVT::f64; // Bitcast the original vector into a vector of store-size units EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), StoreType, VT.getSizeInBits()/StoreType.getSizeInBits()); assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff); SmallVector Chains; SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8, TLI.getPointerTy()); SDValue Ptr = St->getBasePtr(); // Perform one or more big stores into memory. for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) { SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, StoreType, ShuffWide, DAG.getIntPtrConstant(i)); SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); Chains.push_back(Ch); } return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], Chains.size()); } // Turn load->store of MMX types into GPR load/stores. This avoids clobbering // the FP state in cases where an emms may be missing. // A preferable solution to the general problem is to figure out the right // places to insert EMMS. This qualifies as a quick hack. // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. if (VT.getSizeInBits() != 64) return SDValue(); const Function *F = DAG.getMachineFunction().getFunction(); bool NoImplicitFloatOps = F->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat); bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps && Subtarget->hasSSE2(); if ((VT.isVector() || (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && isa(St->getValue()) && !cast(St->getValue())->isVolatile() && St->getChain().hasOneUse() && !St->isVolatile()) { SDNode* LdVal = St->getValue().getNode(); LoadSDNode *Ld = 0; int TokenFactorIndex = -1; SmallVector Ops; SDNode* ChainVal = St->getChain().getNode(); // Must be a store of a load. We currently handle two cases: the load // is a direct child, and it's under an intervening TokenFactor. It is // possible to dig deeper under nested TokenFactors. if (ChainVal == LdVal) Ld = cast(St->getChain()); else if (St->getValue().hasOneUse() && ChainVal->getOpcode() == ISD::TokenFactor) { for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) { if (ChainVal->getOperand(i).getNode() == LdVal) { TokenFactorIndex = i; Ld = cast(St->getValue()); } else Ops.push_back(ChainVal->getOperand(i)); } } if (!Ld || !ISD::isNormalLoad(Ld)) return SDValue(); // If this is not the MMX case, i.e. we are just turning i64 load/store // into f64 load/store, avoid the transformation if there are multiple // uses of the loaded value. if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) return SDValue(); DebugLoc LdDL = Ld->getDebugLoc(); DebugLoc StDL = N->getDebugLoc(); // If we are a 64-bit capable x86, lower to a single movq load/store pair. // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store // pair instead. if (Subtarget->is64Bit() || F64IsLegal) { EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); SDValue NewChain = NewLd.getValue(1); if (TokenFactorIndex != -1) { Ops.push_back(NewChain); NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], Ops.size()); } return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); } // Otherwise, lower to two pairs of 32-bit loads / stores. SDValue LoAddr = Ld->getBasePtr(); SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, DAG.getConstant(4, MVT::i32)); SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, Ld->getPointerInfo().getWithOffset(4), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), MinAlign(Ld->getAlignment(), 4)); SDValue NewChain = LoLd.getValue(1); if (TokenFactorIndex != -1) { Ops.push_back(LoLd); Ops.push_back(HiLd); NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], Ops.size()); } LoAddr = St->getBasePtr(); HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, DAG.getConstant(4, MVT::i32)); SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, St->getPointerInfo().getWithOffset(4), St->isVolatile(), St->isNonTemporal(), MinAlign(St->getAlignment(), 4)); return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); } return SDValue(); } /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal" /// and return the operands for the horizontal operation in LHS and RHS. A /// horizontal operation performs the binary operation on successive elements /// of its first operand, then on successive elements of its second operand, /// returning the resulting values in a vector. For example, if /// A = < float a0, float a1, float a2, float a3 > /// and /// B = < float b0, float b1, float b2, float b3 > /// then the result of doing a horizontal operation on A and B is /// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >. /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form /// A horizontal-op B, for some already available A and B, and if so then LHS is /// set to A, RHS to B, and the routine returns 'true'. /// Note that the binary operation should have the property that if one of the /// operands is UNDEF then the result is UNDEF. static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) { // Look for the following pattern: if // A = < float a0, float a1, float a2, float a3 > // B = < float b0, float b1, float b2, float b3 > // and // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6> // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7> // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 > // which is A horizontal-op B. // At least one of the operands should be a vector shuffle. if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE && RHS.getOpcode() != ISD::VECTOR_SHUFFLE) return false; EVT VT = LHS.getValueType(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for horizontal add/sub"); // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to // operate independently on 128-bit lanes. unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts / NumLanes; assert((NumLaneElts % 2 == 0) && "Vector type should have an even number of elements in each lane"); unsigned HalfLaneElts = NumLaneElts/2; // View LHS in the form // LHS = VECTOR_SHUFFLE A, B, LMask // If LHS is not a shuffle then pretend it is the shuffle // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1> // NOTE: in what follows a default initialized SDValue represents an UNDEF of // type VT. SDValue A, B; SmallVector LMask(NumElts); if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) { if (LHS.getOperand(0).getOpcode() != ISD::UNDEF) A = LHS.getOperand(0); if (LHS.getOperand(1).getOpcode() != ISD::UNDEF) B = LHS.getOperand(1); ArrayRef Mask = cast(LHS.getNode())->getMask(); std::copy(Mask.begin(), Mask.end(), LMask.begin()); } else { if (LHS.getOpcode() != ISD::UNDEF) A = LHS; for (unsigned i = 0; i != NumElts; ++i) LMask[i] = i; } // Likewise, view RHS in the form // RHS = VECTOR_SHUFFLE C, D, RMask SDValue C, D; SmallVector RMask(NumElts); if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) { if (RHS.getOperand(0).getOpcode() != ISD::UNDEF) C = RHS.getOperand(0); if (RHS.getOperand(1).getOpcode() != ISD::UNDEF) D = RHS.getOperand(1); ArrayRef Mask = cast(RHS.getNode())->getMask(); std::copy(Mask.begin(), Mask.end(), RMask.begin()); } else { if (RHS.getOpcode() != ISD::UNDEF) C = RHS; for (unsigned i = 0; i != NumElts; ++i) RMask[i] = i; } // Check that the shuffles are both shuffling the same vectors. if (!(A == C && B == D) && !(A == D && B == C)) return false; // If everything is UNDEF then bail out: it would be better to fold to UNDEF. if (!A.getNode() && !B.getNode()) return false; // If A and B occur in reverse order in RHS, then "swap" them (which means // rewriting the mask). if (A != C) CommuteVectorShuffleMask(RMask, NumElts); // At this point LHS and RHS are equivalent to // LHS = VECTOR_SHUFFLE A, B, LMask // RHS = VECTOR_SHUFFLE A, B, RMask // Check that the masks correspond to performing a horizontal operation. for (unsigned i = 0; i != NumElts; ++i) { int LIdx = LMask[i], RIdx = RMask[i]; // Ignore any UNDEF components. if (LIdx < 0 || RIdx < 0 || (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) || (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts))) continue; // Check that successive elements are being operated on. If not, this is // not a horizontal operation. unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs unsigned LaneStart = (i/NumLaneElts) * NumLaneElts; int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart; if (!(LIdx == Index && RIdx == Index + 1) && !(IsCommutative && LIdx == Index + 1 && RIdx == Index)) return false; } LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it. RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it. return true; } /// PerformFADDCombine - Do target-specific dag combines on floating point adds. static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // Try to synthesize horizontal adds from adds of shuffles. if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && isHorizontalBinOp(LHS, RHS, true)) return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS); return SDValue(); } /// PerformFSUBCombine - Do target-specific dag combines on floating point subs. static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // Try to synthesize horizontal subs from subs of shuffles. if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && isHorizontalBinOp(LHS, RHS, false)) return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS); return SDValue(); } /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and /// X86ISD::FXOR nodes. static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) { assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); // F[X]OR(0.0, x) -> x // F[X]OR(x, 0.0) -> x if (ConstantFPSDNode *C = dyn_cast(N->getOperand(0))) if (C->getValueAPF().isPosZero()) return N->getOperand(1); if (ConstantFPSDNode *C = dyn_cast(N->getOperand(1))) if (C->getValueAPF().isPosZero()) return N->getOperand(0); return SDValue(); } /// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and /// X86ISD::FMAX nodes. static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) { assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX); // Only perform optimizations if UnsafeMath is used. if (!DAG.getTarget().Options.UnsafeFPMath) return SDValue(); // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes // into FMINC and FMAXC, which are Commutative operations. unsigned NewOp = 0; switch (N->getOpcode()) { default: llvm_unreachable("unknown opcode"); case X86ISD::FMIN: NewOp = X86ISD::FMINC; break; case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break; } return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0), N->getOperand(0), N->getOperand(1)); } /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { // FAND(0.0, x) -> 0.0 // FAND(x, 0.0) -> 0.0 if (ConstantFPSDNode *C = dyn_cast(N->getOperand(0))) if (C->getValueAPF().isPosZero()) return N->getOperand(0); if (ConstantFPSDNode *C = dyn_cast(N->getOperand(1))) if (C->getValueAPF().isPosZero()) return N->getOperand(1); return SDValue(); } static SDValue PerformBTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { // BT ignores high bits in the bit index operand. SDValue Op1 = N->getOperand(1); if (Op1.hasOneUse()) { unsigned BitWidth = Op1.getValueSizeInBits(); APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), !DCI.isBeforeLegalizeOps()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) DCI.CommitTargetLoweringOpt(TLO); } return SDValue(); } static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { SDValue Op = N->getOperand(0); if (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); EVT VT = N->getValueType(0), OpVT = Op.getValueType(); if (Op.getOpcode() == X86ISD::VZEXT_LOAD && VT.getVectorElementType().getSizeInBits() == OpVT.getVectorElementType().getSizeInBits()) { return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op); } return SDValue(); } static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (!VT.isVector()) return SDValue(); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT ExtraVT = cast(N1)->getVT(); DebugLoc dl = N->getDebugLoc(); // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the // both SSE and AVX2 since there is no sign-extended shift right // operation on a vector with 64-bit elements. //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) -> // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT))) if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND)) { SDValue N00 = N0.getOperand(0); // EXTLOAD has a better solution on AVX2, // it may be replaced with X86ISD::VSEXT node. if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256()) if (!ISD::isNormalLoad(N00.getNode())) return SDValue(); if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) { SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, N00, N1); return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp); } } return SDValue(); } static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { if (!DCI.isBeforeLegalizeOps()) return SDValue(); if (!Subtarget->hasFp256()) return SDValue(); EVT VT = N->getValueType(0); if (VT.isVector() && VT.getSizeInBits() == 256) { SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget); if (R.getNode()) return R; } return SDValue(); } static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget* Subtarget) { DebugLoc dl = N->getDebugLoc(); EVT VT = N->getValueType(0); // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); EVT ScalarVT = VT.getScalarType(); if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || (!Subtarget->hasFMA() && !Subtarget->hasFMA4())) return SDValue(); SDValue A = N->getOperand(0); SDValue B = N->getOperand(1); SDValue C = N->getOperand(2); bool NegA = (A.getOpcode() == ISD::FNEG); bool NegB = (B.getOpcode() == ISD::FNEG); bool NegC = (C.getOpcode() == ISD::FNEG); // Negative multiplication when NegA xor NegB bool NegMul = (NegA != NegB); if (NegA) A = A.getOperand(0); if (NegB) B = B.getOperand(0); if (NegC) C = C.getOperand(0); unsigned Opcode; if (!NegMul) Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB; else Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB; return DAG.getNode(Opcode, dl, VT, A, B, C); } static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { // (i32 zext (and (i8 x86isd::setcc_carry), 1)) -> // (and (i32 x86isd::setcc_carry), 1) // This eliminates the zext. This transformation is necessary because // ISD::SETCC is always legalized to i8. DebugLoc dl = N->getDebugLoc(); SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); if (N0.getOpcode() == ISD::AND && N0.hasOneUse() && N0.getOperand(0).hasOneUse()) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == X86ISD::SETCC_CARRY) { ConstantSDNode *C = dyn_cast(N0.getOperand(1)); if (!C || C->getZExtValue() != 1) return SDValue(); return DAG.getNode(ISD::AND, dl, VT, DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, N00.getOperand(0), N00.getOperand(1)), DAG.getConstant(1, VT)); } } if (VT.is256BitVector()) { SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget); if (R.getNode()) return R; } return SDValue(); } // Optimize x == -y --> x+y == 0 // x != -y --> x+y != 0 static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) { ISD::CondCode CC = cast(N->getOperand(2))->get(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB) if (ConstantSDNode *C = dyn_cast(LHS.getOperand(0))) if (C->getAPIntValue() == 0 && LHS.hasOneUse()) { SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(), LHS.getValueType(), RHS, LHS.getOperand(1)); return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0), addV, DAG.getConstant(0, addV.getValueType()), CC); } if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB) if (ConstantSDNode *C = dyn_cast(RHS.getOperand(0))) if (C->getAPIntValue() == 0 && RHS.hasOneUse()) { SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(), RHS.getValueType(), LHS, RHS.getOperand(1)); return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0), addV, DAG.getConstant(0, addV.getValueType()), CC); } return SDValue(); } // Helper function of PerformSETCCCombine. It is to materialize "setb reg" // as "sbb reg,reg", since it can be extended without zext and produces // an all-ones bit which is more useful than 0/1 in some cases. static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) { return DAG.getNode(ISD::AND, DL, MVT::i8, DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS), DAG.getConstant(1, MVT::i8)); } // Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { DebugLoc DL = N->getDebugLoc(); X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0)); SDValue EFLAGS = N->getOperand(1); if (CC == X86::COND_A) { // Try to convert COND_A into COND_B in an attempt to facilitate // materializing "setb reg". // // Do not flip "e > c", where "c" is a constant, because Cmp instruction // cannot take an immediate as its first operand. // if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() && EFLAGS.getValueType().isInteger() && !isa(EFLAGS.getOperand(1))) { SDValue NewSub = DAG.getNode(X86ISD::SUB, EFLAGS.getDebugLoc(), EFLAGS.getNode()->getVTList(), EFLAGS.getOperand(1), EFLAGS.getOperand(0)); SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo()); return MaterializeSETB(DL, NewEFLAGS, DAG); } } // Materialize "setb reg" as "sbb reg,reg", since it can be extended without // a zext and produces an all-ones bit which is more useful than 0/1 in some // cases. if (CC == X86::COND_B) return MaterializeSETB(DL, EFLAGS, DAG); SDValue Flags; Flags = checkBoolTestSetCCCombine(EFLAGS, CC); if (Flags.getNode()) { SDValue Cond = DAG.getConstant(CC, MVT::i8); return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags); } return SDValue(); } // Optimize branch condition evaluation. // static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { DebugLoc DL = N->getDebugLoc(); SDValue Chain = N->getOperand(0); SDValue Dest = N->getOperand(1); SDValue EFLAGS = N->getOperand(3); X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2)); SDValue Flags; Flags = checkBoolTestSetCCCombine(EFLAGS, CC); if (Flags.getNode()) { SDValue Cond = DAG.getConstant(CC, MVT::i8); return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond, Flags); } return SDValue(); } static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, const X86TargetLowering *XTLI) { SDValue Op0 = N->getOperand(0); EVT InVT = Op0->getValueType(0); // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32)) if (InVT == MVT::v8i8 || InVT == MVT::v4i8) { DebugLoc dl = N->getDebugLoc(); MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32; SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0); return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P); } // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have // a 32-bit target where SSE doesn't support i64->FP operations. if (Op0.getOpcode() == ISD::LOAD) { LoadSDNode *Ld = cast(Op0.getNode()); EVT VT = Ld->getValueType(0); if (!Ld->isVolatile() && !N->getValueType(0).isVector() && ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() && !XTLI->getSubtarget()->is64Bit() && !DAG.getTargetLoweringInfo().isTypeLegal(VT)) { SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0), Ld->getChain(), Op0, DAG); DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1)); return FILDChain; } } return SDValue(); } // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG, X86TargetLowering::DAGCombinerInfo &DCI) { // If the LHS and RHS of the ADC node are zero, then it can't overflow and // the result is either zero or one (depending on the input carry bit). // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1. if (X86::isZeroNode(N->getOperand(0)) && X86::isZeroNode(N->getOperand(1)) && // We don't have a good way to replace an EFLAGS use, so only do this when // dead right now. SDValue(N, 1).use_empty()) { DebugLoc DL = N->getDebugLoc(); EVT VT = N->getValueType(0); SDValue CarryOut = DAG.getConstant(0, N->getValueType(1)); SDValue Res1 = DAG.getNode(ISD::AND, DL, VT, DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, DAG.getConstant(X86::COND_B,MVT::i8), N->getOperand(2)), DAG.getConstant(1, VT)); return DCI.CombineTo(N, Res1, CarryOut); } return SDValue(); } // fold (add Y, (sete X, 0)) -> adc 0, Y // (add Y, (setne X, 0)) -> sbb -1, Y // (sub (sete X, 0), Y) -> sbb 0, Y // (sub (setne X, 0), Y) -> adc -1, Y static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) { DebugLoc DL = N->getDebugLoc(); // Look through ZExts. SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0); if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse()) return SDValue(); SDValue SetCC = Ext.getOperand(0); if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse()) return SDValue(); X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0); if (CC != X86::COND_E && CC != X86::COND_NE) return SDValue(); SDValue Cmp = SetCC.getOperand(1); if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() || !X86::isZeroNode(Cmp.getOperand(1)) || !Cmp.getOperand(0).getValueType().isInteger()) return SDValue(); SDValue CmpOp0 = Cmp.getOperand(0); SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0, DAG.getConstant(1, CmpOp0.getValueType())); SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1); if (CC == X86::COND_NE) return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB, DL, OtherVal.getValueType(), OtherVal, DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp); return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC, DL, OtherVal.getValueType(), OtherVal, DAG.getConstant(0, OtherVal.getValueType()), NewCmp); } /// PerformADDCombine - Do target-specific dag combines on integer adds. static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); // Try to synthesize horizontal adds from adds of shuffles. if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && isHorizontalBinOp(Op0, Op1, true)) return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1); return OptimizeConditionalInDecrement(N, DAG); } static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); // X86 can't encode an immediate LHS of a sub. See if we can push the // negation into a preceding instruction. if (ConstantSDNode *C = dyn_cast(Op0)) { // If the RHS of the sub is a XOR with one use and a constant, invert the // immediate. Then add one to the LHS of the sub so we can turn // X-Y -> X+~Y+1, saving one register. if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR && isa(Op1.getOperand(1))) { APInt XorC = cast(Op1.getOperand(1))->getAPIntValue(); EVT VT = Op0.getValueType(); SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT, Op1.getOperand(0), DAG.getConstant(~XorC, VT)); return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor, DAG.getConstant(C->getAPIntValue()+1, VT)); } } // Try to synthesize horizontal adds from adds of shuffles. EVT VT = N->getValueType(0); if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && isHorizontalBinOp(Op0, Op1, true)) return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1); return OptimizeConditionalInDecrement(N, DAG); } /// performVZEXTCombine - Performs build vector combines static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { // (vzext (bitcast (vzext (x)) -> (vzext x) SDValue In = N->getOperand(0); while (In.getOpcode() == ISD::BITCAST) In = In.getOperand(0); if (In.getOpcode() != X86ISD::VZEXT) return SDValue(); return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0), In.getOperand(0)); } SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; switch (N->getOpcode()) { default: break; case ISD::EXTRACT_VECTOR_ELT: return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI); case ISD::VSELECT: case ISD::SELECT: return PerformSELECTCombine(N, DAG, DCI, Subtarget); case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI, Subtarget); case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget); case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget); case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI); case ISD::MUL: return PerformMulCombine(N, DAG, DCI); case ISD::SHL: case ISD::SRA: case ISD::SRL: return PerformShiftCombine(N, DAG, DCI, Subtarget); case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget); case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget); case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget); case ISD::LOAD: return PerformLOADCombine(N, DAG, DCI, Subtarget); case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget); case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this); case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget); case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget); case X86ISD::FXOR: case X86ISD::FOR: return PerformFORCombine(N, DAG); case X86ISD::FMIN: case X86ISD::FMAX: return PerformFMinFMaxCombine(N, DAG); case X86ISD::FAND: return PerformFANDCombine(N, DAG); case X86ISD::BT: return PerformBTCombine(N, DAG, DCI); case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG); case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG, DCI, Subtarget); case ISD::SIGN_EXTEND: return PerformSExtCombine(N, DAG, DCI, Subtarget); case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); case ISD::TRUNCATE: return PerformTruncateCombine(N, DAG,DCI,Subtarget); case ISD::SETCC: return PerformISDSETCCCombine(N, DAG); case X86ISD::SETCC: return PerformSETCCCombine(N, DAG, DCI, Subtarget); case X86ISD::BRCOND: return PerformBrCondCombine(N, DAG, DCI, Subtarget); case X86ISD::VZEXT: return performVZEXTCombine(N, DAG, DCI, Subtarget); case X86ISD::SHUFP: // Handle all target specific shuffles case X86ISD::PALIGNR: case X86ISD::UNPCKH: case X86ISD::UNPCKL: case X86ISD::MOVHLPS: case X86ISD::MOVLHPS: case X86ISD::PSHUFD: case X86ISD::PSHUFHW: case X86ISD::PSHUFLW: case X86ISD::MOVSS: case X86ISD::MOVSD: case X86ISD::VPERMILP: case X86ISD::VPERM2X128: case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget); case ISD::FMA: return PerformFMACombine(N, DAG, Subtarget); } return SDValue(); } /// isTypeDesirableForOp - Return true if the target has native support for /// the specified value type and it is 'desirable' to use the type for the /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 /// instruction encodings are longer and some i16 instructions are slow. bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const { if (!isTypeLegal(VT)) return false; if (VT != MVT::i16) return true; switch (Opc) { default: return true; case ISD::LOAD: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: case ISD::SHL: case ISD::SRL: case ISD::SUB: case ISD::ADD: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: return false; } } /// IsDesirableToPromoteOp - This method query the target whether it is /// beneficial for dag combiner to promote the specified node. If true, it /// should return the desired promotion type by reference. bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const { EVT VT = Op.getValueType(); if (VT != MVT::i16) return false; bool Promote = false; bool Commute = false; switch (Op.getOpcode()) { default: break; case ISD::LOAD: { LoadSDNode *LD = cast(Op); // If the non-extending load has a single use and it's not live out, then it // might be folded. if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&& Op.hasOneUse()*/) { for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) { // The only case where we'd want to promote LOAD (rather then it being // promoted as an operand is when it's only use is liveout. if (UI->getOpcode() != ISD::CopyToReg) return false; } } Promote = true; break; } case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: Promote = true; break; case ISD::SHL: case ISD::SRL: { SDValue N0 = Op.getOperand(0); // Look out for (store (shl (load), x)). if (MayFoldLoad(N0) && MayFoldIntoStore(Op)) return false; Promote = true; break; } case ISD::ADD: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: Commute = true; // fallthrough case ISD::SUB: { SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); if (!Commute && MayFoldLoad(N1)) return false; // Avoid disabling potential load folding opportunities. if (MayFoldLoad(N0) && (!isa(N1) || MayFoldIntoStore(Op))) return false; if (MayFoldLoad(N1) && (!isa(N0) || MayFoldIntoStore(Op))) return false; Promote = true; } } PVT = MVT::i32; return Promote; } //===----------------------------------------------------------------------===// // X86 Inline Assembly Support //===----------------------------------------------------------------------===// namespace { // Helper to match a string separated by whitespace. bool matchAsmImpl(StringRef s, ArrayRef args) { s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace. for (unsigned i = 0, e = args.size(); i != e; ++i) { StringRef piece(*args[i]); if (!s.startswith(piece)) // Check if the piece matches. return false; s = s.substr(piece.size()); StringRef::size_type pos = s.find_first_not_of(" \t"); if (pos == 0) // We matched a prefix. return false; s = s.substr(pos); } return s.empty(); } const VariadicFunction1 matchAsm={}; } bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { InlineAsm *IA = cast(CI->getCalledValue()); std::string AsmStr = IA->getAsmString(); IntegerType *Ty = dyn_cast(CI->getType()); if (!Ty || Ty->getBitWidth() % 16 != 0) return false; // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" SmallVector AsmPieces; SplitString(AsmStr, AsmPieces, ";\n"); switch (AsmPieces.size()) { default: return false; case 1: // FIXME: this should verify that we are targeting a 486 or better. If not, // we will turn this bswap into something that will be lowered to logical // ops instead of emitting the bswap asm. For now, we don't support 486 or // lower so don't worry about this. // bswap $0 if (matchAsm(AsmPieces[0], "bswap", "$0") || matchAsm(AsmPieces[0], "bswapl", "$0") || matchAsm(AsmPieces[0], "bswapq", "$0") || matchAsm(AsmPieces[0], "bswap", "${0:q}") || matchAsm(AsmPieces[0], "bswapl", "${0:q}") || matchAsm(AsmPieces[0], "bswapq", "${0:q}")) { // No need to check constraints, nothing other than the equivalent of // "=r,0" would be valid here. return IntrinsicLowering::LowerToByteSwap(CI); } // rorw $$8, ${0:w} --> llvm.bswap.i16 if (CI->getType()->isIntegerTy(16) && IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") || matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) { AsmPieces.clear(); const std::string &ConstraintsStr = IA->getConstraintString(); SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); array_pod_sort(AsmPieces.begin(), AsmPieces.end()); if (AsmPieces.size() == 4 && AsmPieces[0] == "~{cc}" && AsmPieces[1] == "~{dirflag}" && AsmPieces[2] == "~{flags}" && AsmPieces[3] == "~{fpsr}") return IntrinsicLowering::LowerToByteSwap(CI); } break; case 3: if (CI->getType()->isIntegerTy(32) && IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") && matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") && matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) { AsmPieces.clear(); const std::string &ConstraintsStr = IA->getConstraintString(); SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); array_pod_sort(AsmPieces.begin(), AsmPieces.end()); if (AsmPieces.size() == 4 && AsmPieces[0] == "~{cc}" && AsmPieces[1] == "~{dirflag}" && AsmPieces[2] == "~{flags}" && AsmPieces[3] == "~{fpsr}") return IntrinsicLowering::LowerToByteSwap(CI); } if (CI->getType()->isIntegerTy(64)) { InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); if (Constraints.size() >= 2 && Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64 if (matchAsm(AsmPieces[0], "bswap", "%eax") && matchAsm(AsmPieces[1], "bswap", "%edx") && matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx")) return IntrinsicLowering::LowerToByteSwap(CI); } } break; } return false; } /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. X86TargetLowering::ConstraintType X86TargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'R': case 'q': case 'Q': case 'f': case 't': case 'u': case 'y': case 'x': case 'Y': case 'l': return C_RegisterClass; case 'a': case 'b': case 'c': case 'd': case 'S': case 'D': case 'A': return C_Register; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'G': case 'C': case 'e': case 'Z': return C_Other; default: break; } } return TargetLowering::getConstraintType(Constraint); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight X86TargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (CallOperandVal == NULL) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); case 'R': case 'q': case 'Q': case 'a': case 'b': case 'c': case 'd': case 'S': case 'D': case 'A': if (CallOperandVal->getType()->isIntegerTy()) weight = CW_SpecificReg; break; case 'f': case 't': case 'u': if (type->isFloatingPointTy()) weight = CW_SpecificReg; break; case 'y': if (type->isX86_MMXTy() && Subtarget->hasMMX()) weight = CW_SpecificReg; break; case 'x': case 'Y': if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) || ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256())) weight = CW_Register; break; case 'I': if (ConstantInt *C = dyn_cast(info.CallOperandVal)) { if (C->getZExtValue() <= 31) weight = CW_Constant; } break; case 'J': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if (C->getZExtValue() <= 63) weight = CW_Constant; } break; case 'K': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f)) weight = CW_Constant; } break; case 'L': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff)) weight = CW_Constant; } break; case 'M': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if (C->getZExtValue() <= 3) weight = CW_Constant; } break; case 'N': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if (C->getZExtValue() <= 0xff) weight = CW_Constant; } break; case 'G': case 'C': if (dyn_cast(CallOperandVal)) { weight = CW_Constant; } break; case 'e': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if ((C->getSExtValue() >= -0x80000000LL) && (C->getSExtValue() <= 0x7fffffffLL)) weight = CW_Constant; } break; case 'Z': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if (C->getZExtValue() <= 0xffffffff) weight = CW_Constant; } break; } return weight; } /// LowerXConstraint - try to replace an X constraint, which matches anything, /// with another that has more specific requirements based on the type of the /// corresponding operand. const char *X86TargetLowering:: LowerXConstraint(EVT ConstraintVT) const { // FP X constraints get lowered to SSE1/2 registers if available, otherwise // 'f' like normal targets. if (ConstraintVT.isFloatingPoint()) { if (Subtarget->hasSSE2()) return "Y"; if (Subtarget->hasSSE1()) return "x"; } return TargetLowering::LowerXConstraint(ConstraintVT); } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector&Ops, SelectionDAG &DAG) const { SDValue Result(0, 0); // Only support length 1 constraints for now. if (Constraint.length() > 1) return; char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { default: break; case 'I': if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() <= 31) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'J': if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() <= 63) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'K': if (ConstantSDNode *C = dyn_cast(Op)) { if (isInt<8>(C->getSExtValue())) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'N': if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() <= 255) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'e': { // 32-bit signed value if (ConstantSDNode *C = dyn_cast(Op)) { if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), C->getSExtValue())) { // Widen to 64 bits here to get it sign extended. Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64); break; } // FIXME gcc accepts some relocatable values here too, but only in certain // memory models; it's complicated. } return; } case 'Z': { // 32-bit unsigned value if (ConstantSDNode *C = dyn_cast(Op)) { if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), C->getZExtValue())) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } // FIXME gcc accepts some relocatable values here too, but only in certain // memory models; it's complicated. return; } case 'i': { // Literal immediates are always ok. if (ConstantSDNode *CST = dyn_cast(Op)) { // Widen to 64 bits here to get it sign extended. Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64); break; } // In any sort of PIC mode addresses need to be computed at runtime by // adding in a register or some sort of table lookup. These can't // be used as immediates. if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC()) return; // If we are in non-pic codegen mode, we allow the address of a global (with // an optional displacement) to be used with 'i'. GlobalAddressSDNode *GA = 0; int64_t Offset = 0; // Match either (GA), (GA+C), (GA+C1+C2), etc. while (1) { if ((GA = dyn_cast(Op))) { Offset += GA->getOffset(); break; } else if (Op.getOpcode() == ISD::ADD) { if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { Offset += C->getZExtValue(); Op = Op.getOperand(0); continue; } } else if (Op.getOpcode() == ISD::SUB) { if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { Offset += -C->getZExtValue(); Op = Op.getOperand(0); continue; } } // Otherwise, this isn't something we can handle, reject it. return; } const GlobalValue *GV = GA->getGlobal(); // If we require an extra load to get this address, as in PIC mode, we // can't accept it. if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV, getTargetMachine()))) return; Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(), GA->getValueType(0), Offset); break; } } if (Result.getNode()) { Ops.push_back(Result); return; } return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } std::pair X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { // First, see if this is a constraint that directly corresponds to an LLVM // register class. if (Constraint.size() == 1) { // GCC Constraint Letters switch (Constraint[0]) { default: break; // TODO: Slight differences here in allocation order and leaving // RIP in the class. Do they matter any more here than they do // in the normal allocation? case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. if (Subtarget->is64Bit()) { if (VT == MVT::i32 || VT == MVT::f32) return std::make_pair(0U, &X86::GR32RegClass); if (VT == MVT::i16) return std::make_pair(0U, &X86::GR16RegClass); if (VT == MVT::i8 || VT == MVT::i1) return std::make_pair(0U, &X86::GR8RegClass); if (VT == MVT::i64 || VT == MVT::f64) return std::make_pair(0U, &X86::GR64RegClass); break; } // 32-bit fallthrough case 'Q': // Q_REGS if (VT == MVT::i32 || VT == MVT::f32) return std::make_pair(0U, &X86::GR32_ABCDRegClass); if (VT == MVT::i16) return std::make_pair(0U, &X86::GR16_ABCDRegClass); if (VT == MVT::i8 || VT == MVT::i1) return std::make_pair(0U, &X86::GR8_ABCD_LRegClass); if (VT == MVT::i64) return std::make_pair(0U, &X86::GR64_ABCDRegClass); break; case 'r': // GENERAL_REGS case 'l': // INDEX_REGS if (VT == MVT::i8 || VT == MVT::i1) return std::make_pair(0U, &X86::GR8RegClass); if (VT == MVT::i16) return std::make_pair(0U, &X86::GR16RegClass); if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit()) return std::make_pair(0U, &X86::GR32RegClass); return std::make_pair(0U, &X86::GR64RegClass); case 'R': // LEGACY_REGS if (VT == MVT::i8 || VT == MVT::i1) return std::make_pair(0U, &X86::GR8_NOREXRegClass); if (VT == MVT::i16) return std::make_pair(0U, &X86::GR16_NOREXRegClass); if (VT == MVT::i32 || !Subtarget->is64Bit()) return std::make_pair(0U, &X86::GR32_NOREXRegClass); return std::make_pair(0U, &X86::GR64_NOREXRegClass); case 'f': // FP Stack registers. // If SSE is enabled for this VT, use f80 to ensure the isel moves the // value to the correct fpstack register class. if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) return std::make_pair(0U, &X86::RFP32RegClass); if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) return std::make_pair(0U, &X86::RFP64RegClass); return std::make_pair(0U, &X86::RFP80RegClass); case 'y': // MMX_REGS if MMX allowed. if (!Subtarget->hasMMX()) break; return std::make_pair(0U, &X86::VR64RegClass); case 'Y': // SSE_REGS if SSE2 allowed if (!Subtarget->hasSSE2()) break; // FALL THROUGH. case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed if (!Subtarget->hasSSE1()) break; switch (VT.getSimpleVT().SimpleTy) { default: break; // Scalar SSE types. case MVT::f32: case MVT::i32: return std::make_pair(0U, &X86::FR32RegClass); case MVT::f64: case MVT::i64: return std::make_pair(0U, &X86::FR64RegClass); // Vector types. case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: return std::make_pair(0U, &X86::VR128RegClass); // AVX types. case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32: case MVT::v4f64: return std::make_pair(0U, &X86::VR256RegClass); } break; } } // Use the default implementation in TargetLowering to convert the register // constraint into a member of a register class. std::pair Res; Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); // Not found as a standard register? if (Res.second == 0) { // Map st(0) -> st(7) -> ST0 if (Constraint.size() == 7 && Constraint[0] == '{' && tolower(Constraint[1]) == 's' && tolower(Constraint[2]) == 't' && Constraint[3] == '(' && (Constraint[4] >= '0' && Constraint[4] <= '7') && Constraint[5] == ')' && Constraint[6] == '}') { Res.first = X86::ST0+Constraint[4]-'0'; Res.second = &X86::RFP80RegClass; return Res; } // GCC allows "st(0)" to be called just plain "st". if (StringRef("{st}").equals_lower(Constraint)) { Res.first = X86::ST0; Res.second = &X86::RFP80RegClass; return Res; } // flags -> EFLAGS if (StringRef("{flags}").equals_lower(Constraint)) { Res.first = X86::EFLAGS; Res.second = &X86::CCRRegClass; return Res; } // 'A' means EAX + EDX. if (Constraint == "A") { Res.first = X86::EAX; Res.second = &X86::GR32_ADRegClass; return Res; } return Res; } // Otherwise, check to see if this is a register class of the wrong value // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to // turn into {ax},{dx}. if (Res.second->hasType(VT)) return Res; // Correct type already, nothing to do. // All of the single-register GCC register classes map their values onto // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we // really want an 8-bit or 32-bit register, map to the appropriate register // class and return the appropriate register. if (Res.second == &X86::GR16RegClass) { if (VT == MVT::i8 || VT == MVT::i1) { unsigned DestReg = 0; switch (Res.first) { default: break; case X86::AX: DestReg = X86::AL; break; case X86::DX: DestReg = X86::DL; break; case X86::CX: DestReg = X86::CL; break; case X86::BX: DestReg = X86::BL; break; } if (DestReg) { Res.first = DestReg; Res.second = &X86::GR8RegClass; } } else if (VT == MVT::i32 || VT == MVT::f32) { unsigned DestReg = 0; switch (Res.first) { default: break; case X86::AX: DestReg = X86::EAX; break; case X86::DX: DestReg = X86::EDX; break; case X86::CX: DestReg = X86::ECX; break; case X86::BX: DestReg = X86::EBX; break; case X86::SI: DestReg = X86::ESI; break; case X86::DI: DestReg = X86::EDI; break; case X86::BP: DestReg = X86::EBP; break; case X86::SP: DestReg = X86::ESP; break; } if (DestReg) { Res.first = DestReg; Res.second = &X86::GR32RegClass; } } else if (VT == MVT::i64 || VT == MVT::f64) { unsigned DestReg = 0; switch (Res.first) { default: break; case X86::AX: DestReg = X86::RAX; break; case X86::DX: DestReg = X86::RDX; break; case X86::CX: DestReg = X86::RCX; break; case X86::BX: DestReg = X86::RBX; break; case X86::SI: DestReg = X86::RSI; break; case X86::DI: DestReg = X86::RDI; break; case X86::BP: DestReg = X86::RBP; break; case X86::SP: DestReg = X86::RSP; break; } if (DestReg) { Res.first = DestReg; Res.second = &X86::GR64RegClass; } } } else if (Res.second == &X86::FR32RegClass || Res.second == &X86::FR64RegClass || Res.second == &X86::VR128RegClass) { // Handle references to XMM physical registers that got mapped into the // wrong class. This can happen with constraints like {xmm0} where the // target independent register mapper will just pick the first match it can // find, ignoring the required type. if (VT == MVT::f32 || VT == MVT::i32) Res.second = &X86::FR32RegClass; else if (VT == MVT::f64 || VT == MVT::i64) Res.second = &X86::FR64RegClass; else if (X86::VR128RegClass.hasType(VT)) Res.second = &X86::VR128RegClass; else if (X86::VR256RegClass.hasType(VT)) Res.second = &X86::VR256RegClass; } return Res; }