//===- NaClBitcodeReader.cpp ----------------------------------------------===// // Internal NaClBitcodeReader implementation // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "NaClBitcodeReader" #include "llvm/Bitcode/NaCl/NaClReaderWriter.h" #include "NaClBitcodeReader.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/AutoUpgrade.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/OperandTraits.h" #include "llvm/IR/Operator.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DataStream.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; void NaClBitcodeReader::FreeState() { if (BufferOwned) delete Buffer; Buffer = 0; std::vector().swap(TypeList); ValueList.clear(); std::vector().swap(FunctionsWithBodies); DeferredFunctionInfo.clear(); } //===----------------------------------------------------------------------===// // Helper functions to implement forward reference resolution, etc. //===----------------------------------------------------------------------===// /// ConvertToString - Convert a string from a record into an std::string, return /// true on failure. template static bool ConvertToString(ArrayRef Record, unsigned Idx, StrTy &Result) { if (Idx > Record.size()) return true; for (unsigned i = Idx, e = Record.size(); i != e; ++i) Result += (char)Record[i]; return false; } static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { switch (Val) { default: // Map unknown/new linkages to external case 0: return GlobalValue::ExternalLinkage; case 1: return GlobalValue::WeakAnyLinkage; case 2: return GlobalValue::AppendingLinkage; case 3: return GlobalValue::InternalLinkage; case 4: return GlobalValue::LinkOnceAnyLinkage; case 5: return GlobalValue::DLLImportLinkage; case 6: return GlobalValue::DLLExportLinkage; case 7: return GlobalValue::ExternalWeakLinkage; case 8: return GlobalValue::CommonLinkage; case 9: return GlobalValue::PrivateLinkage; case 10: return GlobalValue::WeakODRLinkage; case 11: return GlobalValue::LinkOnceODRLinkage; case 12: return GlobalValue::AvailableExternallyLinkage; case 13: return GlobalValue::LinkerPrivateLinkage; case 14: return GlobalValue::LinkerPrivateWeakLinkage; case 15: return GlobalValue::LinkOnceODRAutoHideLinkage; } } static int GetDecodedCastOpcode(unsigned Val) { switch (Val) { default: return -1; case naclbitc::CAST_TRUNC : return Instruction::Trunc; case naclbitc::CAST_ZEXT : return Instruction::ZExt; case naclbitc::CAST_SEXT : return Instruction::SExt; case naclbitc::CAST_FPTOUI : return Instruction::FPToUI; case naclbitc::CAST_FPTOSI : return Instruction::FPToSI; case naclbitc::CAST_UITOFP : return Instruction::UIToFP; case naclbitc::CAST_SITOFP : return Instruction::SIToFP; case naclbitc::CAST_FPTRUNC : return Instruction::FPTrunc; case naclbitc::CAST_FPEXT : return Instruction::FPExt; case naclbitc::CAST_PTRTOINT: return Instruction::PtrToInt; case naclbitc::CAST_INTTOPTR: return Instruction::IntToPtr; case naclbitc::CAST_BITCAST : return Instruction::BitCast; } } static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { switch (Val) { default: return -1; case naclbitc::BINOP_ADD: return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; case naclbitc::BINOP_SUB: return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; case naclbitc::BINOP_MUL: return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; case naclbitc::BINOP_UDIV: return Instruction::UDiv; case naclbitc::BINOP_SDIV: return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; case naclbitc::BINOP_UREM: return Instruction::URem; case naclbitc::BINOP_SREM: return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; case naclbitc::BINOP_SHL: return Instruction::Shl; case naclbitc::BINOP_LSHR: return Instruction::LShr; case naclbitc::BINOP_ASHR: return Instruction::AShr; case naclbitc::BINOP_AND: return Instruction::And; case naclbitc::BINOP_OR: return Instruction::Or; case naclbitc::BINOP_XOR: return Instruction::Xor; } } static CallingConv::ID GetDecodedCallingConv(unsigned Val) { switch (Val) { default: report_fatal_error("PNaCl bitcode contains invalid calling conventions."); case naclbitc::C_CallingConv: return CallingConv::C; } } void NaClBitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { assert(V); if (Idx == size()) { push_back(V); return; } if (Idx >= size()) resize(Idx+1); WeakVH &OldV = ValuePtrs[Idx]; if (OldV == 0) { OldV = V; return; } // If there was a forward reference to this value, replace it. Value *PrevVal = OldV; OldV->replaceAllUsesWith(V); delete PrevVal; } void NaClBitcodeReaderValueList::AssignGlobalVar(GlobalVariable *GV, unsigned Idx) { assert(GV); if (Idx == size()) { push_back(GV); return; } if (Idx >= size()) resize(Idx+1); WeakVH &OldV = ValuePtrs[Idx]; if (OldV == 0) { OldV = GV; return; } // If there was a forward reference to this value, replace it. Value *PrevVal = OldV; GlobalVariable *Placeholder = cast(PrevVal); Placeholder->replaceAllUsesWith( ConstantExpr::getBitCast(GV, Placeholder->getType())); Placeholder->eraseFromParent(); ValuePtrs[Idx] = GV; } void NaClBitcodeReaderValueList::OverwriteValue(Value *V, unsigned Idx) { ValuePtrs[Idx] = V; } Value *NaClBitcodeReaderValueList::getValueFwdRef(unsigned Idx) { if (Idx >= size()) return 0; if (Value *V = ValuePtrs[Idx]) return V; return 0; } bool NaClBitcodeReaderValueList::createValueFwdRef(unsigned Idx, Type *Ty) { if (Idx >= size()) resize(Idx + 1); // Return an error if this a duplicate definition of Idx. if (ValuePtrs[Idx]) return true; // No type specified, must be invalid reference. if (Ty == 0) return true; // Create a placeholder, which will later be RAUW'd. ValuePtrs[Idx] = new Argument(Ty); return false; } Constant *NaClBitcodeReaderValueList::getOrCreateGlobalVarRef( unsigned Idx, Module *M) { // First make sure the element for Idx is defined. if (Idx >= size()) resize(Idx + 1); // Now get its value (if applicable). if (Value *V = ValuePtrs[Idx]) return dyn_cast(V); // Create a placeholder, which will later be RAUW'd. Type *PlaceholderType = Type::getInt8Ty(Context); Constant *C = new GlobalVariable(*M, PlaceholderType, false, GlobalValue::ExternalLinkage, 0); ValuePtrs[Idx] = C; return C; } Type *NaClBitcodeReader::getTypeByID(unsigned ID) { // The type table size is always specified correctly. if (ID >= TypeList.size()) return 0; if (Type *Ty = TypeList[ID]) return Ty; // If we have a forward reference, the only possible case is when it is to a // named struct. Just create a placeholder for now. return TypeList[ID] = StructType::create(Context); } //===----------------------------------------------------------------------===// // Functions for parsing blocks from the bitcode file //===----------------------------------------------------------------------===// bool NaClBitcodeReader::ParseTypeTable() { DEBUG(dbgs() << "-> ParseTypeTable\n"); if (Stream.EnterSubBlock(naclbitc::TYPE_BLOCK_ID_NEW)) return Error("Malformed block record"); bool result = ParseTypeTableBody(); if (!result) DEBUG(dbgs() << "<- ParseTypeTable\n"); return result; } bool NaClBitcodeReader::ParseTypeTableBody() { if (!TypeList.empty()) return Error("Multiple TYPE_BLOCKs found!"); SmallVector Record; unsigned NumRecords = 0; // Read all the records for this type table. while (1) { NaClBitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case NaClBitstreamEntry::SubBlock: // Handled for us already. case NaClBitstreamEntry::Error: Error("Error in the type table block"); return true; case NaClBitstreamEntry::EndBlock: if (NumRecords != TypeList.size()) return Error("Invalid type forward reference in TYPE_BLOCK"); return false; case NaClBitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); Type *ResultTy = 0; unsigned TypeCode = Stream.readRecord(Entry.ID, Record); switch (TypeCode) { default: { std::string Message; raw_string_ostream StrM(Message); StrM << "Unknown type code in type table: " << TypeCode; StrM.flush(); return Error(Message); } case naclbitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] // TYPE_CODE_NUMENTRY contains a count of the number of types in the // type list. This allows us to reserve space. if (Record.size() < 1) return Error("Invalid TYPE_CODE_NUMENTRY record"); TypeList.resize(Record[0]); continue; case naclbitc::TYPE_CODE_VOID: // VOID ResultTy = Type::getVoidTy(Context); break; case naclbitc::TYPE_CODE_FLOAT: // FLOAT ResultTy = Type::getFloatTy(Context); break; case naclbitc::TYPE_CODE_DOUBLE: // DOUBLE ResultTy = Type::getDoubleTy(Context); break; case naclbitc::TYPE_CODE_INTEGER: // INTEGER: [width] if (Record.size() < 1) return Error("Invalid Integer type record"); ResultTy = IntegerType::get(Context, Record[0]); break; case naclbitc::TYPE_CODE_FUNCTION: { // FUNCTION: [vararg, retty, paramty x N] if (Record.size() < 2) return Error("Invalid FUNCTION type record"); SmallVector ArgTys; for (unsigned i = 2, e = Record.size(); i != e; ++i) { if (Type *T = getTypeByID(Record[i])) ArgTys.push_back(T); else break; } ResultTy = getTypeByID(Record[1]); if (ResultTy == 0 || ArgTys.size() < Record.size()-2) return Error("invalid type in function type"); ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); break; } } if (NumRecords >= TypeList.size()) return Error("invalid TYPE table"); assert(ResultTy && "Didn't read a type?"); assert(TypeList[NumRecords] == 0 && "Already read type?"); TypeList[NumRecords++] = ResultTy; } } bool NaClBitcodeReader::ParseGlobalVars() { if (Stream.EnterSubBlock(naclbitc::GLOBALVAR_BLOCK_ID)) return Error("Malformed block record"); SmallVector Record; // True when processing a global variable. Stays true until all records // are processed, and the global variable is created. bool ProcessingGlobal = false; // The alignment value defined for the global variable. unsigned VarAlignment = 0; // True if the variable is read-only. bool VarIsConstant = false; // The initializer for the global variable. SmallVector VarInit; // The number of initializers needed for the global variable. unsigned VarInitializersNeeded = 0; unsigned FirstValueNo = ValueList.size(); // The index of the next global variable. unsigned NextValueNo = FirstValueNo; // The number of expected global variable definitions. unsigned NumGlobals = 0; // Read all global variable records. while (1) { NaClBitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case NaClBitstreamEntry::SubBlock: case NaClBitstreamEntry::Error: return Error("Error in the global vars block"); case NaClBitstreamEntry::EndBlock: if (ProcessingGlobal || NumGlobals != (NextValueNo - FirstValueNo)) return Error("Error in the global vars block"); return false; case NaClBitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); unsigned Bitcode = Stream.readRecord(Entry.ID, Record); switch (Bitcode) { default: return Error("Unknown global variable entry"); case naclbitc::GLOBALVAR_VAR: // Start the definition of a global variable. if (ProcessingGlobal || Record.size() != 2) return Error("Bad GLOBALVAR_VAR record"); ProcessingGlobal = true; VarAlignment = (1 << Record[0]) >> 1; VarIsConstant = Record[1] != 0; // Assume (by default) there is a single initializer. VarInitializersNeeded = 1; break; case naclbitc::GLOBALVAR_COMPOUND: // Global variable has multiple initializers. Changes the // default number of initializers to the given value in // Record[0]. if (!ProcessingGlobal || !VarInit.empty() || VarInitializersNeeded != 1 || Record.size() != 1) return Error("Bad GLOBALVAR_COMPOUND record"); VarInitializersNeeded = Record[0]; break; case naclbitc::GLOBALVAR_ZEROFILL: { // Define an initializer that defines a sequence of zero-filled bytes. if (!ProcessingGlobal || Record.size() != 1) return Error("Bad GLOBALVAR_ZEROFILL record"); Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Record[0]); Constant *Zero = ConstantAggregateZero::get(Ty); VarInit.push_back(Zero); break; } case naclbitc::GLOBALVAR_DATA: { // Defines an initializer defined by a sequence of byte values. if (!ProcessingGlobal || Record.size() < 1) return Error("Bad GLOBALVAR_DATA record"); unsigned Size = Record.size(); uint8_t *Buf = new uint8_t[Size]; assert(Buf); for (unsigned i = 0; i < Size; ++i) Buf[i] = Record[i]; Constant *Init = ConstantDataArray::get( Context, ArrayRef(Buf, Buf + Size)); VarInit.push_back(Init); delete[] Buf; break; } case naclbitc::GLOBALVAR_RELOC: { // Define a relocation initializer. if (!ProcessingGlobal || Record.size() < 1 || Record.size() > 2) return Error("Bad GLOBALVAR_RELOC record"); Constant *BaseVal = ValueList.getOrCreateGlobalVarRef(Record[0], TheModule); if (BaseVal == 0) return Error("Bad base value in GLOBALVAR_RELOC record"); Type *IntPtrType = IntegerType::get(Context, 32); Constant *Val = ConstantExpr::getPtrToInt(BaseVal, IntPtrType); if (Record.size() == 2) { uint32_t Addend = Record[1]; Val = ConstantExpr::getAdd(Val, ConstantInt::get(IntPtrType, Addend)); } VarInit.push_back(Val); break; } case naclbitc::GLOBALVAR_COUNT: if (Record.size() != 1 || NumGlobals != 0) return Error("Invalid global count record"); NumGlobals = Record[0]; break; } // If more initializers needed for global variable, continue processing. if (!ProcessingGlobal || VarInit.size() < VarInitializersNeeded) continue; Constant *Init = 0; switch (VarInit.size()) { case 0: return Error("No initializer for global variable in global vars block"); case 1: Init = VarInit[0]; break; default: Init = ConstantStruct::getAnon(Context, VarInit, true); break; } GlobalVariable *GV = new GlobalVariable( *TheModule, Init->getType(), VarIsConstant, GlobalValue::InternalLinkage, Init, ""); GV->setAlignment(VarAlignment); ValueList.AssignGlobalVar(GV, NextValueNo); ++NextValueNo; ProcessingGlobal = false; VarAlignment = 0; VarIsConstant = false; VarInitializersNeeded = 0; VarInit.clear(); } } bool NaClBitcodeReader::ParseValueSymbolTable() { DEBUG(dbgs() << "-> ParseValueSymbolTable\n"); if (Stream.EnterSubBlock(naclbitc::VALUE_SYMTAB_BLOCK_ID)) return Error("Malformed block record"); SmallVector Record; // Read all the records for this value table. SmallString<128> ValueName; while (1) { NaClBitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case NaClBitstreamEntry::SubBlock: // Handled for us already. case NaClBitstreamEntry::Error: return Error("malformed value symbol table block"); case NaClBitstreamEntry::EndBlock: DEBUG(dbgs() << "<- ParseValueSymbolTable\n"); return false; case NaClBitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); switch (Stream.readRecord(Entry.ID, Record)) { default: // Default behavior: unknown type. break; case naclbitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] if (ConvertToString(Record, 1, ValueName)) return Error("Invalid VST_ENTRY record"); unsigned ValueID = Record[0]; if (ValueID >= ValueList.size()) return Error("Invalid Value ID in VST_ENTRY record"); Value *V = ValueList[ValueID]; V->setName(StringRef(ValueName.data(), ValueName.size())); ValueName.clear(); break; } case naclbitc::VST_CODE_BBENTRY: { if (ConvertToString(Record, 1, ValueName)) return Error("Invalid VST_BBENTRY record"); BasicBlock *BB = getBasicBlock(Record[0]); if (BB == 0) return Error("Invalid BB ID in VST_BBENTRY record"); BB->setName(StringRef(ValueName.data(), ValueName.size())); ValueName.clear(); break; } } } } static APInt ReadWideAPInt(ArrayRef Vals, unsigned TypeBits) { SmallVector Words(Vals.size()); std::transform(Vals.begin(), Vals.end(), Words.begin(), NaClDecodeSignRotatedValue); return APInt(TypeBits, Words); } bool NaClBitcodeReader::ParseConstants() { DEBUG(dbgs() << "-> ParseConstants\n"); if (Stream.EnterSubBlock(naclbitc::CONSTANTS_BLOCK_ID)) return Error("Malformed block record"); SmallVector Record; // Read all the records for this value table. Type *CurTy = Type::getInt32Ty(Context); unsigned NextCstNo = ValueList.size(); while (1) { NaClBitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case NaClBitstreamEntry::SubBlock: // Handled for us already. case NaClBitstreamEntry::Error: return Error("malformed block record in AST file"); case NaClBitstreamEntry::EndBlock: if (NextCstNo != ValueList.size()) return Error("Invalid constant reference!"); DEBUG(dbgs() << "<- ParseConstants\n"); return false; case NaClBitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); Value *V = 0; unsigned BitCode = Stream.readRecord(Entry.ID, Record); switch (BitCode) { default: { std::string Message; raw_string_ostream StrM(Message); StrM << "Invalid Constant code: " << BitCode; StrM.flush(); return Error(Message); } case naclbitc::CST_CODE_UNDEF: // UNDEF V = UndefValue::get(CurTy); break; case naclbitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] if (Record.empty()) return Error("Malformed CST_SETTYPE record"); if (Record[0] >= TypeList.size()) return Error("Invalid Type ID in CST_SETTYPE record"); CurTy = TypeList[Record[0]]; continue; // Skip the ValueList manipulation. case naclbitc::CST_CODE_INTEGER: // INTEGER: [intval] if (!CurTy->isIntegerTy() || Record.empty()) return Error("Invalid CST_INTEGER record"); V = ConstantInt::get(CurTy, NaClDecodeSignRotatedValue(Record[0])); break; case naclbitc::CST_CODE_FLOAT: { // FLOAT: [fpval] if (Record.empty()) return Error("Invalid FLOAT record"); if (CurTy->isFloatTy()) V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, APInt(32, (uint32_t)Record[0]))); else if (CurTy->isDoubleTy()) V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, APInt(64, Record[0]))); else return Error("Unknown type for FLOAT record"); break; } } ValueList.AssignValue(V, NextCstNo); ++NextCstNo; } } /// RememberAndSkipFunctionBody - When we see the block for a function body, /// remember where it is and then skip it. This lets us lazily deserialize the /// functions. bool NaClBitcodeReader::RememberAndSkipFunctionBody() { DEBUG(dbgs() << "-> RememberAndSkipFunctionBody\n"); // Get the function we are talking about. if (FunctionsWithBodies.empty()) return Error("Insufficient function protos"); Function *Fn = FunctionsWithBodies.back(); FunctionsWithBodies.pop_back(); // Save the current stream state. uint64_t CurBit = Stream.GetCurrentBitNo(); DeferredFunctionInfo[Fn] = CurBit; // Skip over the function block for now. if (Stream.SkipBlock()) return Error("Malformed block record"); DEBUG(dbgs() << "<- RememberAndSkipFunctionBody\n"); return false; } bool NaClBitcodeReader::GlobalCleanup() { // Look for intrinsic functions which need to be upgraded at some point for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); FI != FE; ++FI) { Function *NewFn; if (UpgradeIntrinsicFunction(FI, NewFn)) UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); } // Look for global variables which need to be renamed. for (Module::global_iterator GI = TheModule->global_begin(), GE = TheModule->global_end(); GI != GE; ++GI) UpgradeGlobalVariable(GI); return false; } FunctionType *NaClBitcodeReader::AddPointerTypesToIntrinsicType( StringRef Name, FunctionType *FTy) { Type *ReturnTy = FTy->getReturnType(); SmallVector ArgTypes(FTy->param_begin(), FTy->param_end()); // Ideally we wouldn't need a list of supported intrinsics here, but // Intrinsic::* doesn't provide a function for recovering the // expected type of an intrinsic given its full name. // TODO(mseaborn): We could reuse the intrinsic list from // PNaClABIVerifyModule.cpp here. if (Name == "llvm.nacl.read.tp" || Name == "llvm.stacksave") { ReturnTy = Type::getInt8PtrTy(Context); } else if (Name == "llvm.nacl.setjmp" || Name == "llvm.nacl.longjmp" || Name == "llvm.stackrestore" || Name.startswith("llvm.memset.")) { assert(ArgTypes.size() >= 1); ArgTypes[0] = Type::getInt8PtrTy(Context); } else if (Name.startswith("llvm.memcpy.") || Name.startswith("llvm.memmove.")) { assert(ArgTypes.size() >= 2); ArgTypes[0] = Type::getInt8PtrTy(Context); ArgTypes[1] = Type::getInt8PtrTy(Context); } else if (Name.startswith("llvm.nacl.atomic.load.") || Name.startswith("llvm.nacl.atomic.cmpxchg.")) { assert(ArgTypes.size() >= 1); ArgTypes[0] = ReturnTy->getPointerTo(); } else if (Name.startswith("llvm.nacl.atomic.store.")) { assert(ArgTypes.size() >= 2); ArgTypes[1] = ArgTypes[0]->getPointerTo(); } else if (Name.startswith("llvm.nacl.atomic.rmw.")) { assert(ArgTypes.size() >= 3); ArgTypes[1] = ArgTypes[2]->getPointerTo(); } else if (Name == "llvm.nacl.atomic.is.lock.free") { assert(ArgTypes.size() >= 2); ArgTypes[1] = Type::getInt8PtrTy(Context); } return FunctionType::get(ReturnTy, ArgTypes, false); } void NaClBitcodeReader::AddPointerTypesToIntrinsicParams() { for (unsigned Index = 0, E = ValueList.size(); Index < E; ++Index) { if (Function *Func = dyn_cast(ValueList[Index])) { if (Func->isIntrinsic()) { FunctionType *FTy = AddPointerTypesToIntrinsicType( Func->getName(), Func->getFunctionType()); Function *NewIntrinsic = Function::Create( FTy, GlobalValue::ExternalLinkage, "", TheModule); NewIntrinsic->takeName(Func); ValueList.OverwriteValue(NewIntrinsic, Index); Func->eraseFromParent(); } } } } bool NaClBitcodeReader::ParseModule(bool Resume) { DEBUG(dbgs() << "-> ParseModule\n"); if (Resume) Stream.JumpToBit(NextUnreadBit); else if (Stream.EnterSubBlock(naclbitc::MODULE_BLOCK_ID)) return Error("Malformed block record"); SmallVector Record; // Read all the records for this module. while (1) { NaClBitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case NaClBitstreamEntry::Error: Error("malformed module block"); return true; case NaClBitstreamEntry::EndBlock: DEBUG(dbgs() << "<- ParseModule\n"); return GlobalCleanup(); case NaClBitstreamEntry::SubBlock: switch (Entry.ID) { default: { std::string Message; raw_string_ostream StrM(Message); StrM << "Unknown block ID: " << Entry.ID; return Error(StrM.str()); } case naclbitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) return Error("Malformed BlockInfoBlock"); break; case naclbitc::TYPE_BLOCK_ID_NEW: if (ParseTypeTable()) return true; break; case naclbitc::GLOBALVAR_BLOCK_ID: if (ParseGlobalVars()) return true; break; case naclbitc::VALUE_SYMTAB_BLOCK_ID: if (ParseValueSymbolTable()) return true; SeenValueSymbolTable = true; // Now that we know the names of the intrinsics, we can add // pointer types to the intrinsic declarations' types. AddPointerTypesToIntrinsicParams(); break; case naclbitc::FUNCTION_BLOCK_ID: // If this is the first function body we've seen, reverse the // FunctionsWithBodies list. if (!SeenFirstFunctionBody) { std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); if (GlobalCleanup()) return true; SeenFirstFunctionBody = true; } if (RememberAndSkipFunctionBody()) return true; // For streaming bitcode, suspend parsing when we reach the function // bodies. Subsequent materialization calls will resume it when // necessary. For streaming, the function bodies must be at the end of // the bitcode. If the bitcode file is old, the symbol table will be // at the end instead and will not have been seen yet. In this case, // just finish the parse now. if (LazyStreamer && SeenValueSymbolTable) { NextUnreadBit = Stream.GetCurrentBitNo(); DEBUG(dbgs() << "<- ParseModule\n"); return false; } break; } continue; case NaClBitstreamEntry::Record: // The interesting case. break; } // Read a record. unsigned Selector = Stream.readRecord(Entry.ID, Record); switch (Selector) { default: { std::string Message; raw_string_ostream StrM(Message); StrM << "Invalid MODULE_CODE: " << Selector; StrM.flush(); return Error(Message); } case naclbitc::MODULE_CODE_VERSION: { // VERSION: [version#] if (Record.size() < 1) return Error("Malformed MODULE_CODE_VERSION"); // Only version #0 and #1 are supported so far. unsigned module_version = Record[0]; switch (module_version) { default: return Error("Unknown bitstream version!"); case 0: UseRelativeIDs = false; break; case 1: UseRelativeIDs = true; break; } break; } // FUNCTION: [type, callingconv, isproto, linkage] case naclbitc::MODULE_CODE_FUNCTION: { if (Record.size() < 4) return Error("Invalid MODULE_CODE_FUNCTION record"); Type *Ty = getTypeByID(Record[0]); if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record"); FunctionType *FTy = dyn_cast(Ty); if (!FTy) return Error("Function not declared with a function type!"); Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, "", TheModule); Func->setCallingConv(GetDecodedCallingConv(Record[1])); bool isProto = Record[2]; Func->setLinkage(GetDecodedLinkage(Record[3])); ValueList.push_back(Func); // If this is a function with a body, remember the prototype we are // creating now, so that we can match up the body with them later. if (!isProto) { FunctionsWithBodies.push_back(Func); if (LazyStreamer) DeferredFunctionInfo[Func] = 0; } break; } } Record.clear(); } } bool NaClBitcodeReader::ParseBitcodeInto(Module *M) { TheModule = 0; // PNaCl does not support different DataLayouts in pexes, so we // implicitly set the DataLayout to the following default. // // This is not usually needed by the backend, but it might be used // by IR passes that the PNaCl translator runs. We set this in the // reader rather than in pnacl-llc so that 'opt' will also use the // correct DataLayout if it is run on a pexe. M->setDataLayout("e-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-" "f32:32:32-f64:64:64-p:32:32:32-v128:32:32"); if (InitStream()) return true; // InitSream will set the error string. // We expect a number of well-defined blocks, though we don't necessarily // need to understand them all. while (1) { if (Stream.AtEndOfStream()) return false; NaClBitstreamEntry Entry = Stream.advance(NaClBitstreamCursor::AF_DontAutoprocessAbbrevs); switch (Entry.Kind) { case NaClBitstreamEntry::Error: Error("malformed module file"); return true; case NaClBitstreamEntry::EndBlock: return false; case NaClBitstreamEntry::SubBlock: switch (Entry.ID) { case naclbitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) return Error("Malformed BlockInfoBlock"); break; case naclbitc::MODULE_BLOCK_ID: // Reject multiple MODULE_BLOCK's in a single bitstream. if (TheModule) return Error("Multiple MODULE_BLOCKs in same stream"); TheModule = M; if (ParseModule(false)) return true; if (LazyStreamer) return false; break; default: if (Stream.SkipBlock()) return Error("Malformed block record"); break; } continue; case NaClBitstreamEntry::Record: // There should be no records in the top-level of blocks. // The ranlib in Xcode 4 will align archive members by appending newlines // to the end of them. If this file size is a multiple of 4 but not 8, we // have to read and ignore these final 4 bytes :-( if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && Stream.AtEndOfStream()) return false; return Error("Invalid record at top-level"); } } } // Returns true if error occured installing I into BB. bool NaClBitcodeReader::InstallInstruction( BasicBlock *BB, Instruction *I) { // Add instruction to end of current BB. If there is no current BB, reject // this file. if (BB == 0) { delete I; return Error("Invalid instruction with no BB"); } BB->getInstList().push_back(I); return false; } CastInst * NaClBitcodeReader::CreateCast(unsigned BBIndex, Instruction::CastOps Op, Type *CT, Value *V, bool DeferInsertion) { if (BBIndex >= FunctionBBs.size()) report_fatal_error("CreateCast on unknown basic block"); BasicBlockInfo &BBInfo = FunctionBBs[BBIndex]; NaClBitcodeReaderCast ModeledCast(Op, CT, V); CastInst *Cast = BBInfo.CastMap[ModeledCast]; if (Cast == NULL) { Cast = CastInst::Create(Op, V, CT); BBInfo.CastMap[ModeledCast] = Cast; if (DeferInsertion) { BBInfo.PhiCasts.push_back(Cast); } } if (!DeferInsertion && Cast->getParent() == 0) { InstallInstruction(BBInfo.BB, Cast); } return Cast; } Value *NaClBitcodeReader::ConvertOpToScalar(Value *Op, unsigned BBIndex, bool DeferInsertion) { if (Op->getType()->isPointerTy()) { return CreateCast(BBIndex, Instruction::PtrToInt, IntPtrType, Op, DeferInsertion); } return Op; } Value *NaClBitcodeReader::ConvertOpToType(Value *Op, Type *T, unsigned BBIndex) { Type *OpTy = Op->getType(); if (OpTy == T) return Op; if (OpTy->isPointerTy()) { if (T == IntPtrType) { return ConvertOpToScalar(Op, BBIndex); } else { return CreateCast(BBIndex, Instruction::BitCast, T, Op); } } else if (OpTy == IntPtrType) { return CreateCast(BBIndex, Instruction::IntToPtr, T, Op); } std::string Message; raw_string_ostream StrM(Message); StrM << "Can't convert " << *Op << " to type " << *T << "\n"; report_fatal_error(StrM.str()); } Type *NaClBitcodeReader::ConvertTypeToScalarType(Type *T) { return T->isPointerTy() ? IntPtrType : T; } /// ParseFunctionBody - Lazily parse the specified function body block. bool NaClBitcodeReader::ParseFunctionBody(Function *F) { DEBUG(dbgs() << "-> ParseFunctionBody\n"); if (Stream.EnterSubBlock(naclbitc::FUNCTION_BLOCK_ID)) return Error("Malformed block record"); unsigned ModuleValueListSize = ValueList.size(); // Add all the function arguments to the value table. for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) ValueList.push_back(I); unsigned NextValueNo = ValueList.size(); BasicBlock *CurBB = 0; unsigned CurBBNo = 0; // Read all the records. SmallVector Record; while (1) { NaClBitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case NaClBitstreamEntry::Error: return Error("Bitcode error in function block"); case NaClBitstreamEntry::EndBlock: goto OutOfRecordLoop; case NaClBitstreamEntry::SubBlock: switch (Entry.ID) { default: // Skip unknown content. dbgs() << "default skip block\n"; if (Stream.SkipBlock()) return Error("Malformed block record"); break; case naclbitc::CONSTANTS_BLOCK_ID: if (ParseConstants()) return true; NextValueNo = ValueList.size(); break; case naclbitc::VALUE_SYMTAB_BLOCK_ID: if (ParseValueSymbolTable()) return true; break; } continue; case NaClBitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); Instruction *I = 0; unsigned BitCode = Stream.readRecord(Entry.ID, Record); switch (BitCode) { default: {// Default behavior: reject std::string Message; raw_string_ostream StrM(Message); StrM << "Unknown instruction record: <" << BitCode; for (unsigned I = 0, E = Record.size(); I != E; ++I) { StrM << " " << Record[I]; } StrM << ">"; return Error(StrM.str()); } case naclbitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] if (Record.size() < 1 || Record[0] == 0) return Error("Invalid DECLAREBLOCKS record"); // Create all the basic blocks for the function. FunctionBBs.resize(Record[0]); for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) { BasicBlockInfo &BBInfo = FunctionBBs[i]; BBInfo.BB = BasicBlock::Create(Context, "", F); } CurBB = FunctionBBs.at(0).BB; continue; case naclbitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, opval, opcode[, flags]] unsigned OpNum = 0; Value *LHS, *RHS; if (popValue(Record, &OpNum, NextValueNo, &LHS) || popValue(Record, &OpNum, NextValueNo, &RHS) || OpNum+1 > Record.size()) return Error("Invalid BINOP record"); LHS = ConvertOpToScalar(LHS, CurBBNo); RHS = ConvertOpToScalar(RHS, CurBBNo); int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); if (Opc == -1) return Error("Invalid BINOP record"); I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); if (OpNum < Record.size()) { if (Opc == Instruction::Add || Opc == Instruction::Sub || Opc == Instruction::Mul || Opc == Instruction::Shl) { if (Record[OpNum] & (1 << naclbitc::OBO_NO_SIGNED_WRAP)) cast(I)->setHasNoSignedWrap(true); if (Record[OpNum] & (1 << naclbitc::OBO_NO_UNSIGNED_WRAP)) cast(I)->setHasNoUnsignedWrap(true); } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || Opc == Instruction::LShr || Opc == Instruction::AShr) { if (Record[OpNum] & (1 << naclbitc::PEO_EXACT)) cast(I)->setIsExact(true); } else if (isa(I)) { FastMathFlags FMF; if (0 != (Record[OpNum] & (1 << naclbitc::FPO_UNSAFE_ALGEBRA))) FMF.setUnsafeAlgebra(); if (0 != (Record[OpNum] & (1 << naclbitc::FPO_NO_NANS))) FMF.setNoNaNs(); if (0 != (Record[OpNum] & (1 << naclbitc::FPO_NO_INFS))) FMF.setNoInfs(); if (0 != (Record[OpNum] & (1 << naclbitc::FPO_NO_SIGNED_ZEROS))) FMF.setNoSignedZeros(); if (0 != (Record[OpNum] & (1 << naclbitc::FPO_ALLOW_RECIPROCAL))) FMF.setAllowReciprocal(); if (FMF.any()) I->setFastMathFlags(FMF); } } break; } case naclbitc::FUNC_CODE_INST_CAST: { // CAST: [opval, destty, castopc] unsigned OpNum = 0; Value *Op; if (popValue(Record, &OpNum, NextValueNo, &Op) || OpNum+2 != Record.size()) return Error("Invalid CAST record"); Type *ResTy = getTypeByID(Record[OpNum]); int Opc = GetDecodedCastOpcode(Record[OpNum+1]); if (Opc == -1 || ResTy == 0) return Error("Invalid CAST record"); // If a ptrtoint cast was elided on the argument of the cast, // add it back. Note: The casts allowed here should match the // casts in NaClValueEnumerator::ExpectsScalarValue. switch (Opc) { case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::UIToFP: case Instruction::SIToFP: Op = ConvertOpToScalar(Op, CurBBNo); break; default: break; } I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); break; } case naclbitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [opval, opval, pred] // new form of select // handles select i1 or select [N x i1] unsigned OpNum = 0; Value *TrueVal, *FalseVal, *Cond; if (popValue(Record, &OpNum, NextValueNo, &TrueVal) || popValue(Record, &OpNum, NextValueNo, &FalseVal) || popValue(Record, &OpNum, NextValueNo, &Cond)) return Error("Invalid SELECT record"); TrueVal = ConvertOpToScalar(TrueVal, CurBBNo); FalseVal = ConvertOpToScalar(FalseVal, CurBBNo); // expect i1 if (Cond->getType() != Type::getInt1Ty(Context)) return Error("Invalid SELECT condition type"); I = SelectInst::Create(Cond, TrueVal, FalseVal); break; } case naclbitc::FUNC_CODE_INST_CMP2: { // CMP2: [opval, opval, pred] // FCmp/ICmp returning bool or vector of bool unsigned OpNum = 0; Value *LHS, *RHS; if (popValue(Record, &OpNum, NextValueNo, &LHS) || popValue(Record, &OpNum, NextValueNo, &RHS) || OpNum+1 != Record.size()) return Error("Invalid CMP record"); LHS = ConvertOpToScalar(LHS, CurBBNo); RHS = ConvertOpToScalar(RHS, CurBBNo); if (LHS->getType()->isFPOrFPVectorTy()) I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); else I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); break; } case naclbitc::FUNC_CODE_INST_RET: // RET: [opval] { unsigned Size = Record.size(); if (Size == 0) { I = ReturnInst::Create(Context); break; } unsigned OpNum = 0; Value *Op = NULL; if (popValue(Record, &OpNum, NextValueNo, &Op)) return Error("Invalid RET record"); if (OpNum != Record.size()) return Error("Invalid RET record"); I = ReturnInst::Create(Context, ConvertOpToScalar(Op, CurBBNo)); break; } case naclbitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] if (Record.size() != 1 && Record.size() != 3) return Error("Invalid BR record"); BasicBlock *TrueDest = getBasicBlock(Record[0]); if (TrueDest == 0) return Error("Invalid BR record"); if (Record.size() == 1) { I = BranchInst::Create(TrueDest); } else { BasicBlock *FalseDest = getBasicBlock(Record[1]); Value *Cond = getValue(Record, 2, NextValueNo); if (FalseDest == 0 || Cond == 0) return Error("Invalid BR record"); I = BranchInst::Create(TrueDest, FalseDest, Cond); } break; } case naclbitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] // New SwitchInst format with case ranges. if (Record.size() < 4) return Error("Invalid SWITCH record"); Type *OpTy = getTypeByID(Record[0]); unsigned ValueBitWidth = cast(OpTy)->getBitWidth(); Value *Cond = getValue(Record, 1, NextValueNo); BasicBlock *Default = getBasicBlock(Record[2]); if (OpTy == 0 || Cond == 0 || Default == 0) return Error("Invalid SWITCH record"); unsigned NumCases = Record[3]; SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); unsigned CurIdx = 4; for (unsigned i = 0; i != NumCases; ++i) { IntegersSubsetToBB CaseBuilder; unsigned NumItems = Record[CurIdx++]; for (unsigned ci = 0; ci != NumItems; ++ci) { bool isSingleNumber = Record[CurIdx++]; APInt Low; unsigned ActiveWords = 1; if (ValueBitWidth > 64) ActiveWords = Record[CurIdx++]; Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); CurIdx += ActiveWords; if (!isSingleNumber) { ActiveWords = 1; if (ValueBitWidth > 64) ActiveWords = Record[CurIdx++]; APInt High = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); CaseBuilder.add(IntItem::fromType(OpTy, Low), IntItem::fromType(OpTy, High)); CurIdx += ActiveWords; } else CaseBuilder.add(IntItem::fromType(OpTy, Low)); } BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); IntegersSubset Case = CaseBuilder.getCase(); SI->addCase(Case, DestBB); } I = SI; break; } case naclbitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE I = new UnreachableInst(Context); break; case naclbitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] if (Record.size() < 1 || ((Record.size()-1)&1)) return Error("Invalid PHI record"); Type *Ty = getTypeByID(Record[0]); if (!Ty) return Error("Invalid PHI record"); PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { Value *V; // With the new function encoding, it is possible that operands have // negative IDs (for forward references). Use a signed VBR // representation to keep the encoding small. if (UseRelativeIDs) V = getValueSigned(Record, 1+i, NextValueNo); else V = getValue(Record, 1+i, NextValueNo); unsigned BBIndex = Record[2+i]; BasicBlock *BB = getBasicBlock(BBIndex); if (!V || !BB) return Error("Invalid PHI record"); if (Ty == IntPtrType) { // Delay installing scalar casts until all instructions of // the function are rendered. This guarantees that we insert // the conversion just before the incoming edge (or use an // existing conversion if already installed). V = ConvertOpToScalar(V, BBIndex, /* DeferInsertion = */ true); } PN->addIncoming(V, BB); } I = PN; break; } case naclbitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [op, align] if (Record.size() != 2) return Error("Invalid ALLOCA record"); Value *Size; unsigned OpNum = 0; if (popValue(Record, &OpNum, NextValueNo, &Size)) return Error("Invalid ALLOCA record"); unsigned Align = Record[1]; I = new AllocaInst(Type::getInt8Ty(Context), Size, (1 << Align) >> 1); break; } case naclbitc::FUNC_CODE_INST_LOAD: { // LOAD: [op, align, ty] unsigned OpNum = 0; Value *Op; if (popValue(Record, &OpNum, NextValueNo, &Op) || Record.size() != 3) return Error("Invalid LOAD record"); // Add pointer cast to op. Type *T = getTypeByID(Record[2]); if (T == 0) return Error("Invalid type for load instruction"); Op = ConvertOpToType(Op, T->getPointerTo(), CurBBNo); if (Op == 0) return true; I = new LoadInst(Op, "", false, (1 << Record[OpNum]) >> 1); break; } case naclbitc::FUNC_CODE_INST_STORE: { // STORE: [ptr, val, align] unsigned OpNum = 0; Value *Val, *Ptr; if (popValue(Record, &OpNum, NextValueNo, &Ptr) || popValue(Record, &OpNum, NextValueNo, &Val)) return Error("Invalid STORE record"); if (OpNum+1 != Record.size()) return Error("Invalid STORE record"); Val = ConvertOpToScalar(Val, CurBBNo); Ptr = ConvertOpToType(Ptr, Val->getType()->getPointerTo(), CurBBNo); I = new StoreInst(Val, Ptr, false, (1 << Record[OpNum]) >> 1); break; } case naclbitc::FUNC_CODE_INST_CALL: case naclbitc::FUNC_CODE_INST_CALL_INDIRECT: { // CALL: [cc, fnid, arg0, arg1...] // CALL_INDIRECT: [cc, fnid, fnty, args...] if ((Record.size() < 2) || (BitCode == naclbitc::FUNC_CODE_INST_CALL_INDIRECT && Record.size() < 3)) return Error("Invalid CALL record"); unsigned CCInfo = Record[0]; unsigned OpNum = 1; Value *Callee; if (popValue(Record, &OpNum, NextValueNo, &Callee)) return Error("Invalid CALL record"); // Build function type for call. FunctionType *FTy = 0; Type *ReturnType = 0; if (BitCode == naclbitc::FUNC_CODE_INST_CALL_INDIRECT) { // Callee type has been elided, add back in. ReturnType = getTypeByID(Record[2]); ++OpNum; } else { // Get type signature from callee. if (PointerType *OpTy = dyn_cast(Callee->getType())) { FTy = dyn_cast(OpTy->getElementType()); } if (FTy == 0) return Error("Invalid type for CALL record"); } unsigned NumParams = Record.size() - OpNum; if (FTy && NumParams != FTy->getNumParams()) return Error("Invalid CALL record"); // Process call arguments. SmallVector Args; for (unsigned Index = 0; Index < NumParams; ++Index) { Value *Arg; if (popValue(Record, &OpNum, NextValueNo, &Arg)) Error("Invalid argument in CALL record"); if (FTy) { // Add a cast, to a pointer type if necessary, in case this // is an intrinsic call that takes a pointer argument. Arg = ConvertOpToType(Arg, FTy->getParamType(Index), CurBBNo); } else { Arg = ConvertOpToScalar(Arg, CurBBNo); } Args.push_back(Arg); } if (FTy == 0) { // Reconstruct the function type and cast the function pointer // to it. SmallVector ArgTypes; for (unsigned Index = 0; Index < NumParams; ++Index) ArgTypes.push_back(Args[Index]->getType()); FTy = FunctionType::get(ReturnType, ArgTypes, false); Callee = ConvertOpToType(Callee, FTy->getPointerTo(), CurBBNo); } // Construct call. I = CallInst::Create(Callee, Args); cast(I)->setCallingConv(GetDecodedCallingConv(CCInfo>>1)); cast(I)->setTailCall(CCInfo & 1); break; } case naclbitc::FUNC_CODE_INST_FORWARDTYPEREF: // Build corresponding forward reference. if (Record.size() != 2 || ValueList.createValueFwdRef(Record[0], getTypeByID(Record[1]))) return Error("Invalid FORWARDTYPEREF record"); continue; } if (InstallInstruction(CurBB, I)) return true; // If this was a terminator instruction, move to the next block. if (isa(I)) { ++CurBBNo; CurBB = getBasicBlock(CurBBNo); } // Non-void values get registered in the value table for future use. if (I && !I->getType()->isVoidTy()) { Value *NewVal = I; if (NewVal->getType()->isPointerTy() && ValueList.getValueFwdRef(NextValueNo)) { // Forward-referenced values cannot have pointer type. NewVal = ConvertOpToScalar(NewVal, CurBBNo); } ValueList.AssignValue(NewVal, NextValueNo++); } } OutOfRecordLoop: // Add PHI conversions to corresponding incoming block, if not // already in the block. Also clear all conversions after fixing // PHI conversions. for (unsigned I = 0, NumBBs = FunctionBBs.size(); I < NumBBs; ++I) { BasicBlockInfo &BBInfo = FunctionBBs[I]; std::vector &PhiCasts = BBInfo.PhiCasts; for (std::vector::iterator Iter = PhiCasts.begin(), IterEnd = PhiCasts.end(); Iter != IterEnd; ++Iter) { CastInst *Cast = *Iter; if (Cast->getParent() == 0) { BasicBlock *BB = BBInfo.BB; BB->getInstList().insert(BB->getTerminator(), Cast); } } PhiCasts.clear(); BBInfo.CastMap.clear(); } // Check the function list for unresolved values. if (Argument *A = dyn_cast(ValueList.back())) { if (A->getParent() == 0) { // We found at least one unresolved value. Nuke them all to avoid leaks. for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ if ((A = dyn_cast(ValueList[i])) && A->getParent() == 0) { A->replaceAllUsesWith(UndefValue::get(A->getType())); delete A; } } return Error("Never resolved value found in function!"); } } // Trim the value list down to the size it was before we parsed this function. ValueList.shrinkTo(ModuleValueListSize); FunctionBBs.clear(); DEBUG(dbgs() << "-> ParseFunctionBody\n"); return false; } /// FindFunctionInStream - Find the function body in the bitcode stream bool NaClBitcodeReader::FindFunctionInStream(Function *F, DenseMap::iterator DeferredFunctionInfoIterator) { while (DeferredFunctionInfoIterator->second == 0) { if (Stream.AtEndOfStream()) return Error("Could not find Function in stream"); // ParseModule will parse the next body in the stream and set its // position in the DeferredFunctionInfo map. if (ParseModule(true)) return true; } return false; } //===----------------------------------------------------------------------===// // GVMaterializer implementation //===----------------------------------------------------------------------===// bool NaClBitcodeReader::isMaterializable(const GlobalValue *GV) const { if (const Function *F = dyn_cast(GV)) { return F->isDeclaration() && DeferredFunctionInfo.count(const_cast(F)); } return false; } bool NaClBitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { Function *F = dyn_cast(GV); // If it's not a function or is already material, ignore the request. if (!F || !F->isMaterializable()) return false; DenseMap::iterator DFII = DeferredFunctionInfo.find(F); assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); // If its position is recorded as 0, its body is somewhere in the stream // but we haven't seen it yet. if (DFII->second == 0) if (LazyStreamer && FindFunctionInStream(F, DFII)) return true; // Move the bit stream to the saved position of the deferred function body. Stream.JumpToBit(DFII->second); if (ParseFunctionBody(F)) { if (ErrInfo) *ErrInfo = ErrorString; return true; } // Upgrade any old intrinsic calls in the function. for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { if (I->first != I->second) { for (Value::use_iterator UI = I->first->use_begin(), UE = I->first->use_end(); UI != UE; ) { if (CallInst* CI = dyn_cast(*UI++)) UpgradeIntrinsicCall(CI, I->second); } } } return false; } bool NaClBitcodeReader::isDematerializable(const GlobalValue *GV) const { const Function *F = dyn_cast(GV); if (!F || F->isDeclaration()) return false; return DeferredFunctionInfo.count(const_cast(F)); } void NaClBitcodeReader::Dematerialize(GlobalValue *GV) { Function *F = dyn_cast(GV); // If this function isn't dematerializable, this is a noop. if (!F || !isDematerializable(F)) return; assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); // Just forget the function body, we can remat it later. F->deleteBody(); } bool NaClBitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { assert(M == TheModule && "Can only Materialize the Module this NaClBitcodeReader is attached to."); // Iterate over the module, deserializing any functions that are still on // disk. for (Module::iterator F = TheModule->begin(), E = TheModule->end(); F != E; ++F) if (F->isMaterializable() && Materialize(F, ErrInfo)) return true; // At this point, if there are any function bodies, the current bit is // pointing to the END_BLOCK record after them. Now make sure the rest // of the bits in the module have been read. if (NextUnreadBit) ParseModule(true); // Upgrade any intrinsic calls that slipped through (should not happen!) and // delete the old functions to clean up. We can't do this unless the entire // module is materialized because there could always be another function body // with calls to the old function. for (std::vector >::iterator I = UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { if (I->first != I->second) { for (Value::use_iterator UI = I->first->use_begin(), UE = I->first->use_end(); UI != UE; ) { if (CallInst* CI = dyn_cast(*UI++)) UpgradeIntrinsicCall(CI, I->second); } if (!I->first->use_empty()) I->first->replaceAllUsesWith(I->second); I->first->eraseFromParent(); } } std::vector >().swap(UpgradedIntrinsics); return false; } bool NaClBitcodeReader::InitStream() { if (LazyStreamer) return InitLazyStream(); return InitStreamFromBuffer(); } bool NaClBitcodeReader::InitStreamFromBuffer() { const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); if (Buffer->getBufferSize() & 3) return Error("Bitcode stream should be a multiple of 4 bytes in length"); if (Header.Read(BufPtr, BufEnd)) return Error(Header.Unsupported()); StreamFile.reset(new NaClBitstreamReader(BufPtr, BufEnd)); Stream.init(*StreamFile); if (AcceptHeader()) return Error(Header.Unsupported()); return false; } bool NaClBitcodeReader::InitLazyStream() { StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); if (Header.Read(Bytes)) return Error(Header.Unsupported()); StreamFile.reset(new NaClBitstreamReader(Bytes, Header.getHeaderSize())); Stream.init(*StreamFile); if (AcceptHeader()) return Error(Header.Unsupported()); return false; } //===----------------------------------------------------------------------===// // External interface //===----------------------------------------------------------------------===// /// getNaClLazyBitcodeModule - lazy function-at-a-time loading from a file. /// Module *llvm::getNaClLazyBitcodeModule(MemoryBuffer *Buffer, LLVMContext& Context, std::string *ErrMsg, bool AcceptSupportedOnly) { Module *M = new Module(Buffer->getBufferIdentifier(), Context); NaClBitcodeReader *R = new NaClBitcodeReader(Buffer, Context, AcceptSupportedOnly); M->setMaterializer(R); if (R->ParseBitcodeInto(M)) { if (ErrMsg) *ErrMsg = R->getErrorString(); delete M; // Also deletes R. return 0; } // Have the NaClBitcodeReader dtor delete 'Buffer'. R->setBufferOwned(true); return M; } Module *llvm::getNaClStreamedBitcodeModule(const std::string &name, DataStreamer *streamer, LLVMContext &Context, std::string *ErrMsg, bool AcceptSupportedOnly) { Module *M = new Module(name, Context); NaClBitcodeReader *R = new NaClBitcodeReader(streamer, Context, AcceptSupportedOnly); M->setMaterializer(R); if (R->ParseBitcodeInto(M)) { if (ErrMsg) *ErrMsg = R->getErrorString(); delete M; // Also deletes R. return 0; } R->setBufferOwned(false); // no buffer to delete return M; } /// NaClParseBitcodeFile - Read the specified bitcode file, returning the module. /// If an error occurs, return null and fill in *ErrMsg if non-null. Module *llvm::NaClParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, std::string *ErrMsg, bool AcceptSupportedOnly){ Module *M = getNaClLazyBitcodeModule(Buffer, Context, ErrMsg, AcceptSupportedOnly); if (!M) return 0; // Don't let the NaClBitcodeReader dtor delete 'Buffer', regardless of whether // there was an error. static_cast(M->getMaterializer())->setBufferOwned(false); // Read in the entire module, and destroy the NaClBitcodeReader. if (M->MaterializeAllPermanently(ErrMsg)) { delete M; return 0; } // TODO: Restore the use-lists to the in-memory state when the bitcode was // written. We must defer until the Module has been fully materialized. return M; }