//===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector -*- C++ -*- ===// // // The LLVM Compiler Infrastructure // // This file was developed by Daniel Berlin and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the SparseBitVector class. See the doxygen comment for // SparseBitVector for more details on the algorithm used. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SPARSEBITVECTOR_H #define LLVM_ADT_SPARSEBITVECTOR_H #include #include #include #include #include "llvm/Support/DataTypes.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/MathExtras.h" namespace llvm { /// SparseBitVector is an implementation of a bitvector that is sparse by only /// storing the elements that have non-zero bits set. In order to make this /// fast for the most common cases, SparseBitVector is implemented as a linked /// list of SparseBitVectorElements. We maintain a pointer to the last /// SparseBitVectorElement accessed (in the form of a list iterator), in order /// to make multiple in-order test/set constant time after the first one is /// executed. Note that using vectors to store SparseBitVectorElement's does /// not work out very well because it causes insertion in the middle to take /// enormous amounts of time with a large amount of bits. Other structures that /// have better worst cases for insertion in the middle (various balanced trees, /// etc) do not perform as well in practice as a linked list with this iterator /// kept up to date. They are also significantly more memory intensive. template struct SparseBitVectorElement { public: typedef unsigned long BitWord; enum { BITWORD_SIZE = sizeof(BitWord) * 8, BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE, BITS_PER_ELEMENT = ElementSize }; private: // Index of Element in terms of where first bit starts. unsigned ElementIndex; BitWord Bits[BITWORDS_PER_ELEMENT]; SparseBitVectorElement(); public: explicit SparseBitVectorElement(unsigned Idx) { ElementIndex = Idx; memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT); } ~SparseBitVectorElement() { } // Copy ctor. SparseBitVectorElement(const SparseBitVectorElement &RHS) { ElementIndex = RHS.ElementIndex; std::copy(&RHS.Bits[0], &RHS.Bits[BITWORDS_PER_ELEMENT], Bits); } // Comparison. bool operator==(const SparseBitVectorElement &RHS) const { if (ElementIndex != RHS.ElementIndex) return false; for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) if (Bits[i] != RHS.Bits[i]) return false; return true; } bool operator!=(const SparseBitVectorElement &RHS) const { return !(*this == RHS); } // Return the bits that make up word Idx in our element. BitWord word(unsigned Idx) const { assert (Idx < BITWORDS_PER_ELEMENT); return Bits[Idx]; } unsigned index() const { return ElementIndex; } bool empty() const { for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) if (Bits[i]) return false; return true; } void set(unsigned Idx) { Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE); } bool test_and_set (unsigned Idx) { bool old = test(Idx); if (!old) set(Idx); return !old; } void reset(unsigned Idx) { Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE)); } bool test(unsigned Idx) const { return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE)); } unsigned count() const { unsigned NumBits = 0; for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) if (sizeof(BitWord) == 4) NumBits += CountPopulation_32(Bits[i]); else if (sizeof(BitWord) == 8) NumBits += CountPopulation_64(Bits[i]); else assert(0 && "Unsupported!"); return NumBits; } /// find_first - Returns the index of the first set bit. int find_first() const { for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) if (Bits[i] != 0) { if (sizeof(BitWord) == 4) return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]); else if (sizeof(BitWord) == 8) return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]); else assert(0 && "Unsupported!"); } assert(0 && "Illegal empty element"); } /// find_next - Returns the index of the next set bit following the /// "Prev" bit. Returns -1 if the next set bit is not found. int find_next(unsigned Prev) const { ++Prev; if (Prev >= BITS_PER_ELEMENT) return -1; unsigned WordPos = Prev / BITWORD_SIZE; unsigned BitPos = Prev % BITWORD_SIZE; BitWord Copy = Bits[WordPos]; assert (WordPos <= BITWORDS_PER_ELEMENT && "Word Position outside of element"); // Mask off previous bits. Copy &= ~0L << BitPos; if (Copy != 0) { if (sizeof(BitWord) == 4) return WordPos * BITWORD_SIZE + CountTrailingZeros_32(Copy); else if (sizeof(BitWord) == 8) return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy); else assert(0 && "Unsupported!"); } // Check subsequent words. for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i) if (Bits[i] != 0) { if (sizeof(BitWord) == 4) return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]); else if (sizeof(BitWord) == 8) return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]); else assert(0 && "Unsupported!"); } return -1; } // Union this element with RHS and return true if this one changed. bool unionWith(const SparseBitVectorElement &RHS) { bool changed = false; for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { BitWord old = changed ? 0 : Bits[i]; Bits[i] |= RHS.Bits[i]; if (old != Bits[i]) changed = true; } return changed; } // Intersect this Element with RHS and return true if this one changed. // BecameZero is set to true if this element became all-zero bits. bool intersectWith(const SparseBitVectorElement &RHS, bool &BecameZero) { bool changed = false; bool allzero = true; BecameZero = false; for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { BitWord old = changed ? 0 : Bits[i]; Bits[i] &= RHS.Bits[i]; if (Bits[i] != 0) allzero = false; if (old != Bits[i]) changed = true; } BecameZero = !allzero; return changed; } }; template class SparseBitVector { typedef std::list *> ElementList; typedef typename ElementList::iterator ElementListIter; typedef typename ElementList::const_iterator ElementListConstIter; enum { BITWORD_SIZE = SparseBitVectorElement::BITWORD_SIZE }; // Pointer to our current Element. ElementListIter CurrElementIter; ElementList Elements; // This is like std::lower_bound, except we do linear searching from the // current position. ElementListIter FindLowerBound(unsigned ElementIndex) { if (Elements.empty()) { CurrElementIter = Elements.begin(); return Elements.begin(); } // Make sure our current iterator is valid. if (CurrElementIter == Elements.end()) --CurrElementIter; // Search from our current iterator, either backwards or forwards, // depending on what element we are looking for. ElementListIter ElementIter = CurrElementIter; if ((*CurrElementIter)->index() == ElementIndex) { return ElementIter; } else if ((*CurrElementIter)->index() > ElementIndex) { while (ElementIter != Elements.begin() && (*ElementIter)->index() > ElementIndex) --ElementIter; } else { while (ElementIter != Elements.end() && (*ElementIter)->index() <= ElementIndex) ++ElementIter; --ElementIter; } CurrElementIter = ElementIter; return ElementIter; } // Iterator to walk set bits in the bitmap. This iterator is a lot uglier // than it would be, in order to be efficient. struct SparseBitVectorIterator { private: bool AtEnd; SparseBitVector &BitVector; // Current element inside of bitmap. ElementListConstIter Iter; // Current bit number inside of our bitmap. unsigned BitNumber; // Current word number inside of our element. unsigned WordNumber; // Current bits from the element. typename SparseBitVectorElement::BitWord Bits; // Move our iterator to the first non-zero bit in the bitmap. void AdvanceToFirstNonZero() { if (AtEnd) return; if (BitVector.Elements.empty()) { AtEnd = true; return; } Iter = BitVector.Elements.begin(); BitNumber = (*Iter)->index() * ElementSize; unsigned BitPos = (*Iter)->find_first(); BitNumber += BitPos; WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; Bits = (*Iter)->word(WordNumber); Bits >>= BitPos % BITWORD_SIZE; } // Move our iterator to the next non-zero bit. void AdvanceToNextNonZero() { if (AtEnd) return; while (Bits && !(Bits & 1)) { Bits >>= 1; BitNumber += 1; } // See if we ran out of Bits in this word. if (!Bits) { int NextSetBitNumber = (*Iter)->find_next(BitNumber % ElementSize) ; // If we ran out of set bits in this element, move to next element. if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) { Iter++; WordNumber = 0; // We may run out of elements in the bitmap. if (Iter == BitVector.Elements.end()) { AtEnd = true; return; } // Set up for next non zero word in bitmap. BitNumber = (*Iter)->index() * ElementSize; NextSetBitNumber = (*Iter)->find_first(); BitNumber += NextSetBitNumber; WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; Bits = (*Iter)->word(WordNumber); Bits >>= NextSetBitNumber % BITWORD_SIZE; } else { WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE; Bits = (*Iter)->word(WordNumber); Bits >>= NextSetBitNumber % BITWORD_SIZE; } } } public: // Preincrement. inline SparseBitVectorIterator& operator++() { BitNumber++; Bits >>= 1; AdvanceToNextNonZero(); return *this; } // Postincrement. inline SparseBitVectorIterator operator++(int) { SparseBitVectorIterator tmp = *this; ++*this; return tmp; } // Return the current set bit number. unsigned operator*() const { return BitNumber; } bool operator==(const SparseBitVectorIterator &RHS) const { // If they are both at the end, ignore the rest of the fields. if (AtEnd == RHS.AtEnd) return true; // Otherwise they are the same if they have the same bit number and // bitmap. return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber; } bool operator!=(const SparseBitVectorIterator &RHS) const { return !(*this == RHS); } explicit SparseBitVectorIterator(SparseBitVector &RHS, bool end = false):BitVector(RHS) { Iter = BitVector.Elements.begin(); BitNumber = 0; Bits = 0; WordNumber = ~0; AtEnd = end; AdvanceToFirstNonZero(); } }; public: typedef SparseBitVectorIterator iterator; typedef const SparseBitVectorIterator const_iterator; SparseBitVector () { CurrElementIter = Elements.begin (); } ~SparseBitVector() { for_each(Elements.begin(), Elements.end(), deleter >); } // SparseBitVector copy ctor. SparseBitVector(const SparseBitVector &RHS) { ElementListConstIter ElementIter = RHS.Elements.begin(); while (ElementIter != RHS.Elements.end()) { SparseBitVectorElement *ElementCopy; ElementCopy = new SparseBitVectorElement(*(*ElementIter)); Elements.push_back(ElementCopy); } CurrElementIter = Elements.begin (); } // Test, Reset, and Set a bit in the bitmap. bool test(unsigned Idx) { if (Elements.empty()) return false; unsigned ElementIndex = Idx / ElementSize; ElementListIter ElementIter = FindLowerBound(ElementIndex); // If we can't find an element that is supposed to contain this bit, there // is nothing more to do. if (ElementIter == Elements.end() || (*ElementIter)->index() != ElementIndex) return false; return (*ElementIter)->test(Idx % ElementSize); } void reset(unsigned Idx) { if (Elements.empty()) return; unsigned ElementIndex = Idx / ElementSize; ElementListIter ElementIter = FindLowerBound(ElementIndex); // If we can't find an element that is supposed to contain this bit, there // is nothing more to do. if (ElementIter == Elements.end() || (*ElementIter)->index() != ElementIndex) return; (*ElementIter)->reset(Idx % ElementSize); // When the element is zeroed out, delete it. if ((*ElementIter)->empty()) { delete (*ElementIter); ++CurrElementIter; Elements.erase(ElementIter); } } void set(unsigned Idx) { SparseBitVectorElement *Element; unsigned ElementIndex = Idx / ElementSize; if (Elements.empty()) { Element = new SparseBitVectorElement(ElementIndex); Elements.push_back(Element); } else { ElementListIter ElementIter = FindLowerBound(ElementIndex); if (ElementIter != Elements.end() && (*ElementIter)->index() == ElementIndex) Element = *ElementIter; else { Element = new SparseBitVectorElement(ElementIndex); // Insert does insert before, and lower bound gives the one before. Elements.insert(++ElementIter, Element); } } Element->set(Idx % ElementSize); } // Union our bitmap with the RHS and return true if we changed. bool operator|=(const SparseBitVector &RHS) { bool changed = false; ElementListIter Iter1 = Elements.begin(); ElementListConstIter Iter2 = RHS.Elements.begin(); // IE They may both be end if (Iter1 == Iter2) return false; // See if the first bitmap element is the same in both. This is only // possible if they are the same bitmap. if (Iter1 != Elements.end() && Iter2 != RHS.Elements.end()) if (*Iter1 == *Iter2) return false; while (Iter2 != RHS.Elements.end()) { if (Iter1 == Elements.end() || (*Iter1)->index() > (*Iter2)->index()) { SparseBitVectorElement *NewElem; NewElem = new SparseBitVectorElement(*(*Iter2)); Elements.insert(Iter1, NewElem); Iter2++; changed = true; } else if ((*Iter1)->index() == (*Iter2)->index()) { changed |= (*Iter1)->unionWith(*(*Iter2)); Iter1++; Iter2++; } else { Iter1++; } } CurrElementIter = Elements.begin(); return changed; } // Intersect our bitmap with the RHS and return true if ours changed. bool operator&=(const SparseBitVector &RHS) { bool changed = false; ElementListIter Iter1 = Elements.begin(); ElementListConstIter Iter2 = RHS.Elements.begin(); // IE They may both be end. if (Iter1 == Iter2) return false; // See if the first bitmap element is the same in both. This is only // possible if they are the same bitmap. if (Iter1 != Elements.end() && Iter2 != RHS.Elements.end()) if (*Iter1 == *Iter2) return false; // Loop through, intersecting as we go, erasing elements when necessary. while (Iter2 != RHS.Elements.end()) { if (Iter1 == Elements.end()) return changed; if ((*Iter1)->index() > (*Iter2)->index()) { Iter2++; } else if ((*Iter1)->index() == (*Iter2)->index()) { bool BecameZero; changed |= (*Iter1)->intersectWith(*(*Iter2), BecameZero); if (BecameZero) { ElementListIter IterTmp = Iter1; delete *IterTmp; Elements.erase(IterTmp); Iter1++; } else { Iter1++; } Iter2++; } else { ElementListIter IterTmp = Iter1; Iter1++; delete *IterTmp; Elements.erase(IterTmp); } } CurrElementIter = Elements.begin(); return changed; } iterator begin() const { return iterator(*this); } iterator end() const { return iterator(*this, ~0); } }; } #endif