diff options
Diffstat (limited to 'utils/TableGen/ARMDecoderEmitter.cpp')
-rw-r--r-- | utils/TableGen/ARMDecoderEmitter.cpp | 1861 |
1 files changed, 1861 insertions, 0 deletions
diff --git a/utils/TableGen/ARMDecoderEmitter.cpp b/utils/TableGen/ARMDecoderEmitter.cpp new file mode 100644 index 0000000000..0c9ef44596 --- /dev/null +++ b/utils/TableGen/ARMDecoderEmitter.cpp @@ -0,0 +1,1861 @@ +//===------------ ARMDecoderEmitter.cpp - Decoder Generator ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file is part of the ARM Disassembler. +// It contains the tablegen backend that emits the decoder functions for ARM and +// Thumb. The disassembler core includes the auto-generated file, invokes the +// decoder functions, and builds up the MCInst based on the decoded Opcode. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "arm-decoder-emitter" + +#include "ARMDecoderEmitter.h" +#include "CodeGenTarget.h" +#include "Record.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" + +#include <vector> +#include <map> +#include <string> + +using namespace llvm; + +///////////////////////////////////////////////////// +// // +// Enums and Utilities for ARM Instruction Format // +// // +///////////////////////////////////////////////////// + +#define ARM_FORMATS \ + ENTRY(ARM_FORMAT_PSEUDO, 0) \ + ENTRY(ARM_FORMAT_MULFRM, 1) \ + ENTRY(ARM_FORMAT_BRFRM, 2) \ + ENTRY(ARM_FORMAT_BRMISCFRM, 3) \ + ENTRY(ARM_FORMAT_DPFRM, 4) \ + ENTRY(ARM_FORMAT_DPSOREGFRM, 5) \ + ENTRY(ARM_FORMAT_LDFRM, 6) \ + ENTRY(ARM_FORMAT_STFRM, 7) \ + ENTRY(ARM_FORMAT_LDMISCFRM, 8) \ + ENTRY(ARM_FORMAT_STMISCFRM, 9) \ + ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \ + ENTRY(ARM_FORMAT_LDSTEXFRM, 11) \ + ENTRY(ARM_FORMAT_ARITHMISCFRM, 12) \ + ENTRY(ARM_FORMAT_EXTFRM, 13) \ + ENTRY(ARM_FORMAT_VFPUNARYFRM, 14) \ + ENTRY(ARM_FORMAT_VFPBINARYFRM, 15) \ + ENTRY(ARM_FORMAT_VFPCONV1FRM, 16) \ + ENTRY(ARM_FORMAT_VFPCONV2FRM, 17) \ + ENTRY(ARM_FORMAT_VFPCONV3FRM, 18) \ + ENTRY(ARM_FORMAT_VFPCONV4FRM, 19) \ + ENTRY(ARM_FORMAT_VFPCONV5FRM, 20) \ + ENTRY(ARM_FORMAT_VFPLDSTFRM, 21) \ + ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 22) \ + ENTRY(ARM_FORMAT_VFPMISCFRM, 23) \ + ENTRY(ARM_FORMAT_THUMBFRM, 24) \ + ENTRY(ARM_FORMAT_NEONFRM, 25) \ + ENTRY(ARM_FORMAT_NEONGETLNFRM, 26) \ + ENTRY(ARM_FORMAT_NEONSETLNFRM, 27) \ + ENTRY(ARM_FORMAT_NEONDUPFRM, 28) \ + ENTRY(ARM_FORMAT_MISCFRM, 29) \ + ENTRY(ARM_FORMAT_THUMBMISCFRM, 30) \ + ENTRY(ARM_FORMAT_NLdSt, 31) \ + ENTRY(ARM_FORMAT_N1RegModImm, 32) \ + ENTRY(ARM_FORMAT_N2Reg, 33) \ + ENTRY(ARM_FORMAT_NVCVT, 34) \ + ENTRY(ARM_FORMAT_NVecDupLn, 35) \ + ENTRY(ARM_FORMAT_N2RegVecShL, 36) \ + ENTRY(ARM_FORMAT_N2RegVecShR, 37) \ + ENTRY(ARM_FORMAT_N3Reg, 38) \ + ENTRY(ARM_FORMAT_N3RegVecSh, 39) \ + ENTRY(ARM_FORMAT_NVecExtract, 40) \ + ENTRY(ARM_FORMAT_NVecMulScalar, 41) \ + ENTRY(ARM_FORMAT_NVTBL, 42) + +// ARM instruction format specifies the encoding used by the instruction. +#define ENTRY(n, v) n = v, +typedef enum { + ARM_FORMATS + ARM_FORMAT_NA +} ARMFormat; +#undef ENTRY + +// Converts enum to const char*. +static const char *stringForARMFormat(ARMFormat form) { +#define ENTRY(n, v) case n: return #n; + switch(form) { + ARM_FORMATS + case ARM_FORMAT_NA: + default: + return ""; + } +#undef ENTRY +} + +typedef enum { + IndexModeNone = 0, + IndexModePre = 1, + IndexModePost = 2, + IndexModeUpd = 3 +}; + +///////////////////////// +// // +// Utility functions // +// // +///////////////////////// + +/// byteFromBitsInit - Return the byte value from a BitsInit. +/// Called from getByteField(). +static uint8_t byteFromBitsInit(BitsInit &init) { + int width = init.getNumBits(); + + assert(width <= 8 && "Field is too large for uint8_t!"); + + int index; + uint8_t mask = 0x01; + + uint8_t ret = 0; + + for (index = 0; index < width; index++) { + if (static_cast<BitInit*>(init.getBit(index))->getValue()) + ret |= mask; + + mask <<= 1; + } + + return ret; +} + +static uint8_t getByteField(const Record &def, const char *str) { + BitsInit *bits = def.getValueAsBitsInit(str); + return byteFromBitsInit(*bits); +} + +static BitsInit &getBitsField(const Record &def, const char *str) { + BitsInit *bits = def.getValueAsBitsInit(str); + return *bits; +} + +/// sameStringExceptSuffix - Return true if the two strings differ only in RHS's +/// suffix. ("VST4d8", "VST4d8_UPD", "_UPD") as input returns true. +static +bool sameStringExceptSuffix(const StringRef LHS, const StringRef RHS, + const StringRef Suffix) { + + if (RHS.startswith(LHS) && RHS.endswith(Suffix)) + return RHS.size() == LHS.size() + Suffix.size(); + + return false; +} + +/// thumbInstruction - Determine whether we have a Thumb instruction. +/// See also ARMInstrFormats.td. +static bool thumbInstruction(uint8_t Form) { + return Form == ARM_FORMAT_THUMBFRM; +} + +// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system +// for a bit value. +// +// BIT_UNFILTERED is used as the init value for a filter position. It is used +// only for filter processings. +typedef enum { + BIT_TRUE, // '1' + BIT_FALSE, // '0' + BIT_UNSET, // '?' + BIT_UNFILTERED // unfiltered +} bit_value_t; + +static bool ValueSet(bit_value_t V) { + return (V == BIT_TRUE || V == BIT_FALSE); +} +static bool ValueNotSet(bit_value_t V) { + return (V == BIT_UNSET); +} +static int Value(bit_value_t V) { + return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); +} +static bit_value_t bitFromBits(BitsInit &bits, unsigned index) { + if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index))) + return bit->getValue() ? BIT_TRUE : BIT_FALSE; + + // The bit is uninitialized. + return BIT_UNSET; +} +// Prints the bit value for each position. +static void dumpBits(raw_ostream &o, BitsInit &bits) { + unsigned index; + + for (index = bits.getNumBits(); index > 0; index--) { + switch (bitFromBits(bits, index - 1)) { + case BIT_TRUE: + o << "1"; + break; + case BIT_FALSE: + o << "0"; + break; + case BIT_UNSET: + o << "_"; + break; + default: + assert(0 && "unexpected return value from bitFromBits"); + } + } +} + +// Enums for the available target names. +typedef enum { + TARGET_ARM = 0, + TARGET_THUMB +} TARGET_NAME_t; + +// FIXME: Possibly auto-detected? +#define BIT_WIDTH 32 + +// Forward declaration. +class FilterChooser; + +// Representation of the instruction to work on. +typedef bit_value_t insn_t[BIT_WIDTH]; + +/// Filter - Filter works with FilterChooser to produce the decoding tree for +/// the ISA. +/// +/// It is useful to think of a Filter as governing the switch stmts of the +/// decoding tree in a certain level. Each case stmt delegates to an inferior +/// FilterChooser to decide what further decoding logic to employ, or in another +/// words, what other remaining bits to look at. The FilterChooser eventually +/// chooses a best Filter to do its job. +/// +/// This recursive scheme ends when the number of Opcodes assigned to the +/// FilterChooser becomes 1 or if there is a conflict. A conflict happens when +/// the Filter/FilterChooser combo does not know how to distinguish among the +/// Opcodes assigned. +/// +/// An example of a conflcit is +/// +/// Conflict: +/// 111101000.00........00010000.... +/// 111101000.00........0001........ +/// 1111010...00........0001........ +/// 1111010...00.................... +/// 1111010......................... +/// 1111............................ +/// ................................ +/// VST4q8a 111101000_00________00010000____ +/// VST4q8b 111101000_00________00010000____ +/// +/// The Debug output shows the path that the decoding tree follows to reach the +/// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced +/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters. +/// +/// The encoding info in the .td files does not specify this meta information, +/// which could have been used by the decoder to resolve the conflict. The +/// decoder could try to decode the even/odd register numbering and assign to +/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" +/// version and return the Opcode since the two have the same Asm format string. +class Filter { +protected: + FilterChooser *Owner; // points to the FilterChooser who owns this filter + unsigned StartBit; // the starting bit position + unsigned NumBits; // number of bits to filter + bool Mixed; // a mixed region contains both set and unset bits + + // Map of well-known segment value to the set of uid's with that value. + std::map<uint64_t, std::vector<unsigned> > FilteredInstructions; + + // Set of uid's with non-constant segment values. + std::vector<unsigned> VariableInstructions; + + // Map of well-known segment value to its delegate. + std::map<unsigned, FilterChooser*> FilterChooserMap; + + // Number of instructions which fall under FilteredInstructions category. + unsigned NumFiltered; + + // Keeps track of the last opcode in the filtered bucket. + unsigned LastOpcFiltered; + + // Number of instructions which fall under VariableInstructions category. + unsigned NumVariable; + +public: + unsigned getNumFiltered() { return NumFiltered; } + unsigned getNumVariable() { return NumVariable; } + unsigned getSingletonOpc() { + assert(NumFiltered == 1); + return LastOpcFiltered; + } + // Return the filter chooser for the group of instructions without constant + // segment values. + FilterChooser &getVariableFC() { + assert(NumFiltered == 1); + assert(FilterChooserMap.size() == 1); + return *(FilterChooserMap.find(-1)->second); + } + + Filter(const Filter &f); + Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); + + ~Filter(); + + // Divides the decoding task into sub tasks and delegates them to the + // inferior FilterChooser's. + // + // A special case arises when there's only one entry in the filtered + // instructions. In order to unambiguously decode the singleton, we need to + // match the remaining undecoded encoding bits against the singleton. + void recurse(); + + // Emit code to decode instructions given a segment or segments of bits. + void emit(raw_ostream &o, unsigned &Indentation); + + // Returns the number of fanout produced by the filter. More fanout implies + // the filter distinguishes more categories of instructions. + unsigned usefulness() const; +}; // End of class Filter + +// These are states of our finite state machines used in FilterChooser's +// filterProcessor() which produces the filter candidates to use. +typedef enum { + ATTR_NONE, + ATTR_FILTERED, + ATTR_ALL_SET, + ATTR_ALL_UNSET, + ATTR_MIXED +} bitAttr_t; + +/// FilterChooser - FilterChooser chooses the best filter among a set of Filters +/// in order to perform the decoding of instructions at the current level. +/// +/// Decoding proceeds from the top down. Based on the well-known encoding bits +/// of instructions available, FilterChooser builds up the possible Filters that +/// can further the task of decoding by distinguishing among the remaining +/// candidate instructions. +/// +/// Once a filter has been chosen, it is called upon to divide the decoding task +/// into sub-tasks and delegates them to its inferior FilterChoosers for further +/// processings. +/// +/// It is useful to think of a Filter as governing the switch stmts of the +/// decoding tree. And each case is delegated to an inferior FilterChooser to +/// decide what further remaining bits to look at. +class FilterChooser { + static TARGET_NAME_t TargetName; + +protected: + friend class Filter; + + // Vector of codegen instructions to choose our filter. + const std::vector<const CodeGenInstruction*> &AllInstructions; + + // Vector of uid's for this filter chooser to work on. + const std::vector<unsigned> Opcodes; + + // Vector of candidate filters. + std::vector<Filter> Filters; + + // Array of bit values passed down from our parent. + // Set to all BIT_UNFILTERED's for Parent == NULL. + bit_value_t FilterBitValues[BIT_WIDTH]; + + // Links to the FilterChooser above us in the decoding tree. + FilterChooser *Parent; + + // Index of the best filter from Filters. + int BestIndex; + +public: + static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; } + + FilterChooser(const FilterChooser &FC) : + AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes), + Filters(FC.Filters), Parent(FC.Parent), BestIndex(FC.BestIndex) { + memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues)); + } + + FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, + const std::vector<unsigned> &IDs) : + AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(NULL), + BestIndex(-1) { + for (unsigned i = 0; i < BIT_WIDTH; ++i) + FilterBitValues[i] = BIT_UNFILTERED; + + doFilter(); + } + + FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, + const std::vector<unsigned> &IDs, + bit_value_t (&ParentFilterBitValues)[BIT_WIDTH], + FilterChooser &parent) : + AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(&parent), + BestIndex(-1) { + for (unsigned i = 0; i < BIT_WIDTH; ++i) + FilterBitValues[i] = ParentFilterBitValues[i]; + + doFilter(); + } + + // The top level filter chooser has NULL as its parent. + bool isTopLevel() { return Parent == NULL; } + + // This provides an opportunity for target specific code emission. + void emitTopHook(raw_ostream &o); + + // Emit the top level typedef and decodeInstruction() function. + void emitTop(raw_ostream &o, unsigned &Indentation); + + // This provides an opportunity for target specific code emission after + // emitTop(). + void emitBot(raw_ostream &o, unsigned &Indentation); + +protected: + // Populates the insn given the uid. + void insnWithID(insn_t &Insn, unsigned Opcode) const { + BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); + + for (unsigned i = 0; i < BIT_WIDTH; ++i) + Insn[i] = bitFromBits(Bits, i); + + // Set Inst{21} to 1 (wback) when IndexModeBits == IndexModeUpd. + if (getByteField(*AllInstructions[Opcode]->TheDef, "IndexModeBits") + == IndexModeUpd) + Insn[21] = BIT_TRUE; + } + + // Returns the record name. + const std::string &nameWithID(unsigned Opcode) const { + return AllInstructions[Opcode]->TheDef->getName(); + } + + // Populates the field of the insn given the start position and the number of + // consecutive bits to scan for. + // + // Returns false if there exists any uninitialized bit value in the range. + // Returns true, otherwise. + bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, + unsigned NumBits) const; + + /// dumpFilterArray - dumpFilterArray prints out debugging info for the given + /// filter array as a series of chars. + void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]); + + /// dumpStack - dumpStack traverses the filter chooser chain and calls + /// dumpFilterArray on each filter chooser up to the top level one. + void dumpStack(raw_ostream &o, const char *prefix); + + Filter &bestFilter() { + assert(BestIndex != -1 && "BestIndex not set"); + return Filters[BestIndex]; + } + + // Called from Filter::recurse() when singleton exists. For debug purpose. + void SingletonExists(unsigned Opc); + + bool PositionFiltered(unsigned i) { + return ValueSet(FilterBitValues[i]); + } + + // Calculates the island(s) needed to decode the instruction. + // This returns a lit of undecoded bits of an instructions, for example, + // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be + // decoded bits in order to verify that the instruction matches the Opcode. + unsigned getIslands(std::vector<unsigned> &StartBits, + std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, + insn_t &Insn); + + // The purpose of this function is for the API client to detect possible + // Load/Store Coprocessor instructions. If the coprocessor number is of + // the instruction is either 10 or 11, the decoder should not report the + // instruction as LDC/LDC2/STC/STC2, but should match against Advanced SIMD or + // VFP instructions. + bool LdStCopEncoding1(unsigned Opc) { + const std::string &Name = nameWithID(Opc); + if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" || + Name == "LDC_POST" || Name == "LDC_PRE" || + Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" || + Name == "LDCL_POST" || Name == "LDCL_PRE" || + Name == "STC_OFFSET" || Name == "STC_OPTION" || + Name == "STC_POST" || Name == "STC_PRE" || + Name == "STCL_OFFSET" || Name == "STCL_OPTION" || + Name == "STCL_POST" || Name == "STCL_PRE") + return true; + else + return false; + } + + // Emits code to decode the singleton. Return true if we have matched all the + // well-known bits. + bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc); + + // Emits code to decode the singleton, and then to decode the rest. + void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best); + + // Assign a single filter and run with it. + void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit, + bool mixed); + + // reportRegion is a helper function for filterProcessor to mark a region as + // eligible for use as a filter region. + void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, + bool AllowMixed); + + // FilterProcessor scans the well-known encoding bits of the instructions and + // builds up a list of candidate filters. It chooses the best filter and + // recursively descends down the decoding tree. + bool filterProcessor(bool AllowMixed, bool Greedy = true); + + // Decides on the best configuration of filter(s) to use in order to decode + // the instructions. A conflict of instructions may occur, in which case we + // dump the conflict set to the standard error. + void doFilter(); + + // Emits code to decode our share of instructions. Returns true if the + // emitted code causes a return, which occurs if we know how to decode + // the instruction at this level or the instruction is not decodeable. + bool emit(raw_ostream &o, unsigned &Indentation); +}; + +/////////////////////////// +// // +// Filter Implmenetation // +// // +/////////////////////////// + +Filter::Filter(const Filter &f) : + Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), + FilteredInstructions(f.FilteredInstructions), + VariableInstructions(f.VariableInstructions), + FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered), + LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) { +} + +Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, + bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits), + Mixed(mixed) { + assert(StartBit + NumBits - 1 < BIT_WIDTH); + + NumFiltered = 0; + LastOpcFiltered = 0; + NumVariable = 0; + + for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { + insn_t Insn; + + // Populates the insn given the uid. + Owner->insnWithID(Insn, Owner->Opcodes[i]); + + uint64_t Field; + // Scans the segment for possibly well-specified encoding bits. + bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); + + if (ok) { + // The encoding bits are well-known. Lets add the uid of the + // instruction into the bucket keyed off the constant field value. + LastOpcFiltered = Owner->Opcodes[i]; + FilteredInstructions[Field].push_back(LastOpcFiltered); + ++NumFiltered; + } else { + // Some of the encoding bit(s) are unspecfied. This contributes to + // one additional member of "Variable" instructions. + VariableInstructions.push_back(Owner->Opcodes[i]); + ++NumVariable; + } + } + + assert((FilteredInstructions.size() + VariableInstructions.size() > 0) + && "Filter returns no instruction categories"); +} + +Filter::~Filter() { + std::map<unsigned, FilterChooser*>::iterator filterIterator; + for (filterIterator = FilterChooserMap.begin(); + filterIterator != FilterChooserMap.end(); + filterIterator++) { + delete filterIterator->second; + } +} + +// Divides the decoding task into sub tasks and delegates them to the +// inferior FilterChooser's. +// +// A special case arises when there's only one entry in the filtered +// instructions. In order to unambiguously decode the singleton, we need to +// match the remaining undecoded encoding bits against the singleton. +void Filter::recurse() { + std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator; + + bit_value_t BitValueArray[BIT_WIDTH]; + // Starts by inheriting our parent filter chooser's filter bit values. + memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray)); + + unsigned bitIndex; + + if (VariableInstructions.size()) { + // Conservatively marks each segment position as BIT_UNSET. + for (bitIndex = 0; bitIndex < NumBits; bitIndex++) + BitValueArray[StartBit + bitIndex] = BIT_UNSET; + + // Delegates to an inferior filter chooser for futher processing on this + // group of instructions whose segment values are variable. + FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>( + (unsigned)-1, + new FilterChooser(Owner->AllInstructions, + VariableInstructions, + BitValueArray, + *Owner) + )); + } + + // No need to recurse for a singleton filtered instruction. + // See also Filter::emit(). + if (getNumFiltered() == 1) { + //Owner->SingletonExists(LastOpcFiltered); + assert(FilterChooserMap.size() == 1); + return; + } + + // Otherwise, create sub choosers. + for (mapIterator = FilteredInstructions.begin(); + mapIterator != FilteredInstructions.end(); + mapIterator++) { + + // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. + for (bitIndex = 0; bitIndex < NumBits; bitIndex++) { + if (mapIterator->first & (1 << bitIndex)) + BitValueArray[StartBit + bitIndex] = BIT_TRUE; + else + BitValueArray[StartBit + bitIndex] = BIT_FALSE; + } + + // Delegates to an inferior filter chooser for futher processing on this + // category of instructions. + FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>( + mapIterator->first, + new FilterChooser(Owner->AllInstructions, + mapIterator->second, + BitValueArray, + *Owner) + )); + } +} + +// Emit code to decode instructions given a segment or segments of bits. +void Filter::emit(raw_ostream &o, unsigned &Indentation) { + o.indent(Indentation) << "// Check Inst{"; + + if (NumBits > 1) + o << (StartBit + NumBits - 1) << '-'; + + o << StartBit << "} ...\n"; + + o.indent(Indentation) << "switch (fieldFromInstruction(insn, " + << StartBit << ", " << NumBits << ")) {\n"; + + std::map<unsigned, FilterChooser*>::iterator filterIterator; + + bool DefaultCase = false; + for (filterIterator = FilterChooserMap.begin(); + filterIterator != FilterChooserMap.end(); + filterIterator++) { + + // Field value -1 implies a non-empty set of variable instructions. + // See also recurse(). + if (filterIterator->first == (unsigned)-1) { + DefaultCase = true; + + o.indent(Indentation) << "default:\n"; + o.indent(Indentation) << " break; // fallthrough\n"; + + // Closing curly brace for the switch statement. + // This is unconventional because we want the default processing to be + // performed for the fallthrough cases as well, i.e., when the "cases" + // did not prove a decoded instruction. + o.indent(Indentation) << "}\n"; + + } else + o.indent(Indentation) << "case " << filterIterator->first << ":\n"; + + // We arrive at a category of instructions with the same segment value. + // Now delegate to the sub filter chooser for further decodings. + // The case may fallthrough, which happens if the remaining well-known + // encoding bits do not match exactly. + if (!DefaultCase) { ++Indentation; ++Indentation; } + + bool finished = filterIterator->second->emit(o, Indentation); + // For top level default case, there's no need for a break statement. + if (Owner->isTopLevel() && DefaultCase) + break; + if (!finished) + o.indent(Indentation) << "break;\n"; + + if (!DefaultCase) { --Indentation; --Indentation; } + } + + // If there is no default case, we still need to supply a closing brace. + if (!DefaultCase) { + // Closing curly brace for the switch statement. + o.indent(Indentation) << "}\n"; + } +} + +// Returns the number of fanout produced by the filter. More fanout implies +// the filter distinguishes more categories of instructions. +unsigned Filter::usefulness() const { + if (VariableInstructions.size()) + return FilteredInstructions.size(); + else + return FilteredInstructions.size() + 1; +} + +////////////////////////////////// +// // +// Filterchooser Implementation // +// // +////////////////////////////////// + +// Define the symbol here. +TARGET_NAME_t FilterChooser::TargetName; + +// This provides an opportunity for target specific code emission. +void FilterChooser::emitTopHook(raw_ostream &o) { + if (TargetName == TARGET_ARM) { + // Emit code that references the ARMFormat data type. + o << "static const ARMFormat ARMFormats[] = {\n"; + for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) { + const Record &Def = *(AllInstructions[i]->TheDef); + const std::string &Name = Def.getName(); + if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb")) + o.indent(2) << + stringForARMFormat((ARMFormat)getByteField(Def, "Form")); + else + o << " ARM_FORMAT_NA"; + + o << ",\t// Inst #" << i << " = " << Name << '\n'; + } + o << " ARM_FORMAT_NA\t// Unreachable.\n"; + o << "};\n\n"; + } +} + +// Emit the top level typedef and decodeInstruction() function. +void FilterChooser::emitTop(raw_ostream &o, unsigned &Indentation) { + // Run the target specific emit hook. + emitTopHook(o); + + switch (BIT_WIDTH) { + case 8: + o.indent(Indentation) << "typedef uint8_t field_t;\n"; + break; + case 16: + o.indent(Indentation) << "typedef uint16_t field_t;\n"; + break; + case 32: + o.indent(Indentation) << "typedef uint32_t field_t;\n"; + break; + case 64: + o.indent(Indentation) << "typedef uint64_t field_t;\n"; + break; + default: + assert(0 && "Unexpected instruction size!"); + } + + o << '\n'; + + o.indent(Indentation) << "static field_t " << + "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n"; + + o.indent(Indentation) << "{\n"; + + ++Indentation; ++Indentation; + o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH + << " && \"Instruction field out of bounds!\");\n"; + o << '\n'; + o.indent(Indentation) << "field_t fieldMask;\n"; + o << '\n'; + o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n"; + + ++Indentation; ++Indentation; + o.indent(Indentation) << "fieldMask = (field_t)-1;\n"; + --Indentation; --Indentation; + + o.indent(Indentation) << "else\n"; + + ++Indentation; ++Indentation; + o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n"; + --Indentation; --Indentation; + + o << '\n'; + o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n"; + --Indentation; --Indentation; + + o.indent(Indentation) << "}\n"; + + o << '\n'; + + o.indent(Indentation) << "static uint16_t decodeInstruction(field_t insn) {\n"; + + ++Indentation; ++Indentation; + // Emits code to decode the instructions. + emit(o, Indentation); + + o << '\n'; + o.indent(Indentation) << "return 0;\n"; + --Indentation; --Indentation; + + o.indent(Indentation) << "}\n"; + + o << '\n'; +} + +// This provides an opportunity for target specific code emission after +// emitTop(). +void FilterChooser::emitBot(raw_ostream &o, unsigned &Indentation) { + if (TargetName != TARGET_THUMB) return; + + // Emit code that decodes the Thumb ISA. + o.indent(Indentation) + << "static uint16_t decodeThumbInstruction(field_t insn) {\n"; + + ++Indentation; ++Indentation; + + // Emits code to decode the instructions. + emit(o, Indentation); + + o << '\n'; + o.indent(Indentation) << "return 0;\n"; + + --Indentation; --Indentation; + + o.indent(Indentation) << "}\n"; +} + +// Populates the field of the insn given the start position and the number of +// consecutive bits to scan for. +// +// Returns false if and on the first uninitialized bit value encountered. +// Returns true, otherwise. +bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, + unsigned StartBit, unsigned NumBits) const { + Field = 0; + + for (unsigned i = 0; i < NumBits; ++i) { + if (Insn[StartBit + i] == BIT_UNSET) + return false; + + if (Insn[StartBit + i] == BIT_TRUE) + Field = Field | (1 << i); + } + + return true; +} + +/// dumpFilterArray - dumpFilterArray prints out debugging info for the given +/// filter array as a series of chars. +void FilterChooser::dumpFilterArray(raw_ostream &o, + bit_value_t (&filter)[BIT_WIDTH]) { + unsigned bitIndex; + + for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) { + switch (filter[bitIndex - 1]) { + case BIT_UNFILTERED: + o << "."; + break; + case BIT_UNSET: + o << "_"; + break; + case BIT_TRUE: + o << "1"; + break; + case BIT_FALSE: + o << "0"; + break; + } + } +} + +/// dumpStack - dumpStack traverses the filter chooser chain and calls +/// dumpFilterArray on each filter chooser up to the top level one. +void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) { + FilterChooser *current = this; + + while (current) { + o << prefix; + dumpFilterArray(o, current->FilterBitValues); + o << '\n'; + current = current->Parent; + } +} + +// Called from Filter::recurse() when singleton exists. For debug purpose. +void FilterChooser::SingletonExists(unsigned Opc) { + insn_t Insn0; + insnWithID(Insn0, Opc); + + errs() << "Singleton exists: " << nameWithID(Opc) + << " with its decoding dominating "; + for (unsigned i = 0; i < Opcodes.size(); ++i) { + if (Opcodes[i] == Opc) continue; + errs() << nameWithID(Opcodes[i]) << ' '; + } + errs() << '\n'; + + dumpStack(errs(), "\t\t"); + for (unsigned i = 0; i < Opcodes.size(); i++) { + const std::string &Name = nameWithID(Opcodes[i]); + + errs() << '\t' << Name << " "; + dumpBits(errs(), + getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); + errs() << '\n'; + } +} + +// Calculates the island(s) needed to decode the instruction. +// This returns a list of undecoded bits of an instructions, for example, +// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be +// decoded bits in order to verify that the instruction matches the Opcode. +unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits, + std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, + insn_t &Insn) { + unsigned Num, BitNo; + Num = BitNo = 0; + + uint64_t FieldVal = 0; + + // 0: Init + // 1: Water (the bit value does not affect decoding) + // 2: Island (well-known bit value needed for decoding) + int State = 0; + int Val = -1; + + for (unsigned i = 0; i < BIT_WIDTH; ++i) { + Val = Value(Insn[i]); + bool Filtered = PositionFiltered(i); + switch (State) { + default: + assert(0 && "Unreachable code!"); + break; + case 0: + case 1: + if (Filtered || Val == -1) + State = 1; // Still in Water + else { + State = 2; // Into the Island + BitNo = 0; + StartBits.push_back(i); + FieldVal = Val; + } + break; + case 2: + if (Filtered || Val == -1) { + State = 1; // Into the Water + EndBits.push_back(i - 1); + FieldVals.push_back(FieldVal); + ++Num; + } else { + State = 2; // Still in Island + ++BitNo; + FieldVal = FieldVal | Val << BitNo; + } + break; + } + } + // If we are still in Island after the loop, do some housekeeping. + if (State == 2) { + EndBits.push_back(BIT_WIDTH - 1); + FieldVals.push_back(FieldVal); + ++Num; + } + + assert(StartBits.size() == Num && EndBits.size() == Num && + FieldVals.size() == Num); + return Num; +} + +// Emits code to decode the singleton. Return true if we have matched all the +// well-known bits. +bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, + unsigned Opc) { + std::vector<unsigned> StartBits; + std::vector<unsigned> EndBits; + std::vector<uint64_t> FieldVals; + insn_t Insn; + insnWithID(Insn, Opc); + + // This provides a good opportunity to check for possible Ld/St Coprocessor + // Opcode and escapes if the coproc # is either 10 or 11. It is a NEON/VFP + // instruction is disguise. + if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) { + o.indent(Indentation); + // A8.6.51 & A8.6.188 + // If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape. + o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n"; + } + + // Look for islands of undecoded bits of the singleton. + getIslands(StartBits, EndBits, FieldVals, Insn); + + unsigned Size = StartBits.size(); + unsigned I, NumBits; + + // If we have matched all the well-known bits, just issue a return. + if (Size == 0) { + o.indent(Indentation) << "return " << Opc << "; // " << nameWithID(Opc) + << '\n'; + return true; + } + + // Otherwise, there are more decodings to be done! + + // Emit code to match the island(s) for the singleton. + o.indent(Indentation) << "// Check "; + + for (I = Size; I != 0; --I) { + o << "Inst{" << EndBits[I-1] < |