aboutsummaryrefslogtreecommitdiff
path: root/lib/VMCore
diff options
context:
space:
mode:
Diffstat (limited to 'lib/VMCore')
-rw-r--r--lib/VMCore/AsmWriter.cpp3
-rw-r--r--lib/VMCore/AutoUpgrade.cpp8
-rw-r--r--lib/VMCore/ConstantFold.cpp298
-rw-r--r--lib/VMCore/ConstantFold.h6
-rw-r--r--lib/VMCore/ConstantFolding.h6
-rw-r--r--lib/VMCore/Constants.cpp215
-rw-r--r--lib/VMCore/Function.cpp4
-rw-r--r--lib/VMCore/Instruction.cpp33
-rw-r--r--lib/VMCore/Instructions.cpp601
-rw-r--r--lib/VMCore/IntrinsicInst.cpp2
-rw-r--r--lib/VMCore/Type.cpp34
-rw-r--r--lib/VMCore/Verifier.cpp175
12 files changed, 1195 insertions, 190 deletions
diff --git a/lib/VMCore/AsmWriter.cpp b/lib/VMCore/AsmWriter.cpp
index 4f2cbc42fc..8ff55b6640 100644
--- a/lib/VMCore/AsmWriter.cpp
+++ b/lib/VMCore/AsmWriter.cpp
@@ -541,10 +541,11 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV,
Out << ", ";
}
- if (CE->getOpcode() == Instruction::Cast) {
+ if (CE->isCast()) {
Out << " to ";
printTypeInt(Out, CE->getType(), TypeTable);
}
+
Out << ')';
} else {
diff --git a/lib/VMCore/AutoUpgrade.cpp b/lib/VMCore/AutoUpgrade.cpp
index 1529d1bf1f..57a09e2d07 100644
--- a/lib/VMCore/AutoUpgrade.cpp
+++ b/lib/VMCore/AutoUpgrade.cpp
@@ -206,8 +206,8 @@ static Value *CastArg(Value *Arg, const Type *Ty, Instruction *InsertBefore) {
if (Constant *C = dyn_cast<Constant>(Arg)) {
return ConstantExpr::getCast(C, Ty);
} else {
- Value *Cast = new CastInst(Arg, Ty, "autoupgrade_cast", InsertBefore);
- return Cast;
+ return CastInst::createInferredCast(Arg, Ty, "autoupgrade_cast",
+ InsertBefore);
}
}
@@ -261,8 +261,8 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
Instruction *RetVal = NewCI;
if (F->getReturnType() != NewFn->getReturnType()) {
- RetVal = new CastInst(NewCI, F->getReturnType(),
- NewCI->getName(), CI);
+ RetVal =
+ new BitCastInst(NewCI, F->getReturnType(), NewCI->getName(), CI);
NewCI->moveBefore(RetVal);
}
diff --git a/lib/VMCore/ConstantFold.cpp b/lib/VMCore/ConstantFold.cpp
index 64dd1b1234..9974071385 100644
--- a/lib/VMCore/ConstantFold.cpp
+++ b/lib/VMCore/ConstantFold.cpp
@@ -507,7 +507,7 @@ struct VISIBILITY_HIDDEN DirectIntRules
// Casting operators. ick
#define DEF_CAST(TYPE, CLASS, CTYPE) \
static Constant *CastTo##TYPE (const ConstantInt *V) { \
- return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getZExtValue()); \
+ return CLASS::get(Type::TYPE##Ty, (CTYPE)((BuiltinType)V->getZExtValue()));\
}
DEF_CAST(Bool , ConstantBool, bool)
@@ -721,15 +721,6 @@ ConstRules &ConstRules::get(const Constant *V1, const Constant *V2) {
//===----------------------------------------------------------------------===//
// ConstantFold*Instruction Implementations
//===----------------------------------------------------------------------===//
-//
-// These methods contain the special case hackery required to symbolically
-// evaluate some constant expression cases, and use the ConstantRules class to
-// evaluate normal constants.
-//
-static unsigned getSize(const Type *Ty) {
- unsigned S = Ty->getPrimitiveSize();
- return S ? S : 8; // Treat pointers at 8 bytes
-}
/// CastConstantPacked - Convert the specified ConstantPacked node to the
/// specified packed type. At this point, we know that the elements of the
@@ -746,17 +737,20 @@ static Constant *CastConstantPacked(ConstantPacked *CP,
if (SrcNumElts == DstNumElts) {
std::vector<Constant*> Result;
- // If the src and dest elements are both integers, just cast each one
- // which will do the appropriate bit-convert.
- if (SrcEltTy->isIntegral() && DstEltTy->isIntegral()) {
+ // If the src and dest elements are both integers, or both floats, we can
+ // just BitCast each element because the elements are the same size.
+ if ((SrcEltTy->isIntegral() && DstEltTy->isIntegral()) ||
+ (SrcEltTy->isFloatingPoint() && DstEltTy->isFloatingPoint())) {
for (unsigned i = 0; i != SrcNumElts; ++i)
- Result.push_back(ConstantExpr::getCast(CP->getOperand(i),
- DstEltTy));
+ Result.push_back(
+ ConstantExpr::getCast(Instruction::BitCast, CP->getOperand(1),
+ DstEltTy));
return ConstantPacked::get(Result);
}
+ // If this is an int-to-fp cast ..
if (SrcEltTy->isIntegral()) {
- // Otherwise, this is an int-to-fp cast.
+ // Ensure that it is int-to-fp cast
assert(DstEltTy->isFloatingPoint());
if (DstEltTy->getTypeID() == Type::DoubleTyID) {
for (unsigned i = 0; i != SrcNumElts; ++i) {
@@ -805,34 +799,50 @@ static Constant *CastConstantPacked(ConstantPacked *CP,
return 0;
}
+/// This function determines which opcode to use to fold two constant cast
+/// expressions together. It uses CastInst::isEliminableCastPair to determine
+/// the opcode. Consequently its just a wrapper around that function.
+/// @Determine if it is valid to fold a cast of a cast
+static unsigned
+foldConstantCastPair(
+ unsigned opc, ///< opcode of the second cast constant expression
+ const ConstantExpr*Op, ///< the first cast constant expression
+ const Type *DstTy ///< desintation type of the first cast
+) {
+ assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
+ assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
+ assert(CastInst::isCast(opc) && "Invalid cast opcode");
+
+ // The the types and opcodes for the two Cast constant expressions
+ const Type *SrcTy = Op->getOperand(0)->getType();
+ const Type *MidTy = Op->getType();
+ Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
+ Instruction::CastOps secondOp = Instruction::CastOps(opc);
+
+ // Let CastInst::isEliminableCastPair do the heavy lifting.
+ return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
+ Type::ULongTy);
+}
-Constant *llvm::ConstantFoldCastInstruction(const Constant *V,
+Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
const Type *DestTy) {
- if (V->getType() == DestTy) return (Constant*)V;
-
- // Cast of a global address to boolean is always true.
- if (isa<GlobalValue>(V)) {
- if (DestTy == Type::BoolTy)
- // FIXME: When we support 'external weak' references, we have to prevent
- // this transformation from happening. This code will need to be updated
- // to ignore external weak symbols when we support it.
- return ConstantBool::getTrue();
- } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() == Instruction::Cast) {
- Constant *Op = const_cast<Constant*>(CE->getOperand(0));
- // Try to not produce a cast of a cast, which is almost always redundant.
- if (!Op->getType()->isFloatingPoint() &&
- !CE->getType()->isFloatingPoint() &&
- !DestTy->isFloatingPoint()) {
- unsigned S1 = getSize(Op->getType()), S2 = getSize(CE->getType());
- unsigned S3 = getSize(DestTy);
- if (Op->getType() == DestTy && S3 >= S2)
- return Op;
- if (S1 >= S2 && S2 >= S3)
- return ConstantExpr::getCast(Op, DestTy);
- if (S1 <= S2 && S2 >= S3 && S1 <= S3)
- return ConstantExpr::getCast(Op, DestTy);
- }
+ const Type *SrcTy = V->getType();
+
+ // Handle some simple cases
+ if (SrcTy == DestTy)
+ return (Constant*)V; // no-op cast
+
+ if (isa<UndefValue>(V))
+ return UndefValue::get(DestTy);
+
+ // If the cast operand is a constant expression, there's a few things we can
+ // do to try to simplify it.
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ if (CE->isCast()) {
+ // Try hard to fold cast of cast because they are almost always
+ // eliminable.
+ if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
+ return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
} else if (CE->getOpcode() == Instruction::GetElementPtr) {
// If all of the indexes in the GEP are null values, there is no pointer
// adjustment going on. We might as well cast the source pointer.
@@ -845,69 +855,132 @@ Constant *llvm::ConstantFoldCastInstruction(const Constant *V,
if (isAllNull)
return ConstantExpr::getCast(CE->getOperand(0), DestTy);
}
- } else if (isa<UndefValue>(V)) {
- return UndefValue::get(DestTy);
}
- // Check to see if we are casting an pointer to an aggregate to a pointer to
- // the first element. If so, return the appropriate GEP instruction.
- if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
- if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
- std::vector<Value*> IdxList;
- IdxList.push_back(Constant::getNullValue(Type::IntTy));
- const Type *ElTy = PTy->getElementType();
- while (ElTy != DPTy->getElementType()) {
- if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
- if (STy->getNumElements() == 0) break;
- ElTy = STy->getElementType(0);
- IdxList.push_back(Constant::getNullValue(Type::UIntTy));
- } else if (const SequentialType *STy = dyn_cast<SequentialType>(ElTy)) {
- if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
- ElTy = STy->getElementType();
- IdxList.push_back(IdxList[0]);
- } else {
- break;
- }
- }
+ // We actually have to do a cast now, but first, we might need to fix up
+ // the value of the operand.
+ switch (opc) {
+ case Instruction::FPTrunc:
+ case Instruction::Trunc:
+ case Instruction::FPExt:
+ break; // floating point input & output, no fixup needed
+ case Instruction::FPToUI: {
+ ConstRules &Rules = ConstRules::get(V, V);
+ V = Rules.castToULong(V); // make sure we get an unsigned value first
+ break;
+ }
+ case Instruction::FPToSI: {
+ ConstRules &Rules = ConstRules::get(V, V);
+ V = Rules.castToLong(V); // make sure we get a signed value first
+ break;
+ }
+ case Instruction::IntToPtr: //always treated as unsigned
+ case Instruction::UIToFP:
+ case Instruction::ZExt:
+ // A ZExt always produces an unsigned value so we need to cast the value
+ // now before we try to cast it to the destination type
+ if (isa<ConstantInt>(V))
+ V = ConstantInt::get(SrcTy->getUnsignedVersion(),
+ cast<ConstantIntegral>(V)->getZExtValue());
+ break;
+ case Instruction::SIToFP:
+ case Instruction::SExt:
+ // A SExt always produces a signed value so we need to cast the value
+ // now before we try to cast it to the destiniation type.
+ if (isa<ConstantInt>(V))
+ V = ConstantInt::get(SrcTy->getSignedVersion(),
+ cast<ConstantIntegral>(V)->getSExtValue());
+ break;
- if (ElTy == DPTy->getElementType())
- return ConstantExpr::getGetElementPtr(const_cast<Constant*>(V),IdxList);
+ case Instruction::PtrToInt:
+ // Cast of a global address to boolean is always true.
+ if (isa<GlobalValue>(V)) {
+ if (DestTy == Type::BoolTy)
+ // FIXME: When we support 'external weak' references, we have to
+ // prevent this transformation from happening. This code will need
+ // to be updated to ignore external weak symbols when we support it.
+ return ConstantBool::getTrue();
}
-
- // Handle casts from one packed constant to another. We know that the src and
- // dest type have the same size.
- if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
- if (const PackedType *SrcTy = dyn_cast<PackedType>(V->getType())) {
- assert(DestPTy->getElementType()->getPrimitiveSizeInBits() *
- DestPTy->getNumElements() ==
- SrcTy->getElementType()->getPrimitiveSizeInBits() *
- SrcTy->getNumElements() && "Not cast between same sized vectors!");
- if (isa<ConstantAggregateZero>(V))
- return Constant::getNullValue(DestTy);
- if (isa<UndefValue>(V))
- return UndefValue::get(DestTy);
- if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) {
- // This is a cast from a ConstantPacked of one type to a ConstantPacked
- // of another type. Check to see if all elements of the input are
- // simple.
- bool AllSimpleConstants = true;
- for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
- if (!isa<ConstantInt>(CP->getOperand(i)) &&
- !isa<ConstantFP>(CP->getOperand(i))) {
- AllSimpleConstants = false;
+ break;
+ case Instruction::BitCast:
+ // Check to see if we are casting a pointer to an aggregate to a pointer to
+ // the first element. If so, return the appropriate GEP instruction.
+ if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
+ if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
+ std::vector<Value*> IdxList;
+ IdxList.push_back(Constant::getNullValue(Type::IntTy));
+ const Type *ElTy = PTy->getElementType();
+ while (ElTy != DPTy->getElementType()) {
+ if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
+ if (STy->getNumElements() == 0) break;
+ ElTy = STy->getElementType(0);
+ IdxList.push_back(Constant::getNullValue(Type::UIntTy));
+ } else if (const SequentialType *STy =
+ dyn_cast<SequentialType>(ElTy)) {
+ if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
+ ElTy = STy->getElementType();
+ IdxList.push_back(IdxList[0]);
+ } else {
break;
}
}
-
- // If all of the elements are simple constants, we can fold this.
- if (AllSimpleConstants)
- return CastConstantPacked(const_cast<ConstantPacked*>(CP), DestPTy);
+
+ if (ElTy == DPTy->getElementType())
+ return ConstantExpr::getGetElementPtr(
+ const_cast<Constant*>(V),IdxList);
+ }
+
+ // Handle casts from one packed constant to another. We know that the src
+ // and dest type have the same size (otherwise its an illegal cast).
+ if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
+ if (const PackedType *SrcTy = dyn_cast<PackedType>(V->getType())) {
+ assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
+ "Not cast between same sized vectors!");
+ // First, check for null and undef
+ if (isa<ConstantAggregateZero>(V))
+ return Constant::getNullValue(DestTy);
+ if (isa<UndefValue>(V))
+ return UndefValue::get(DestTy);
+
+ if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) {
+ // This is a cast from a ConstantPacked of one type to a
+ // ConstantPacked of another type. Check to see if all elements of
+ // the input are simple.
+ bool AllSimpleConstants = true;
+ for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
+ if (!isa<ConstantInt>(CP->getOperand(i)) &&
+ !isa<ConstantFP>(CP->getOperand(i))) {
+ AllSimpleConstants = false;
+ break;
+ }
+ }
+
+ // If all of the elements are simple constants, we can fold this.
+ if (AllSimpleConstants)
+ return CastConstantPacked(const_cast<ConstantPacked*>(CP), DestPTy);
+ }
}
}
+
+ // Handle sign conversion for integer no-op casts. We need to cast the
+ // value to the correct signedness before we try to cast it to the
+ // destination type. Be careful to do this only for integer types.
+ if (isa<ConstantIntegral>(V) && SrcTy->isInteger()) {
+ if (SrcTy->isSigned())
+ V = ConstantInt::get(SrcTy->getUnsignedVersion(),
+ cast<ConstantIntegral>(V)->getZExtValue());
+ else
+ V = ConstantInt::get(SrcTy->getSignedVersion(),
+ cast<ConstantIntegral>(V)->getSExtValue());
+ }
+ break;
+ default:
+ assert(!"Invalid CE CastInst opcode");
+ break;
}
+ // Okay, no more folding possible, time to cast
ConstRules &Rules = ConstRules::get(V, V);
-
switch (DestTy->getTypeID()) {
case Type::BoolTyID: return Rules.castToBool(V);
case Type::UByteTyID: return Rules.castToUByte(V);
@@ -922,6 +995,7 @@ Constant *llvm::ConstantFoldCastInstruction(const Constant *V,
case Type::DoubleTyID: return Rules.castToDouble(V);
case Type::PointerTyID:
return Rules.castToPointer(V, cast<PointerType>(DestTy));
+ // what about packed ?
default: return 0;
}
}
@@ -1049,15 +1123,22 @@ static bool isMaybeZeroSizedType(const Type *Ty) {
static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
if (C1 == C2) return 0;
- // Ok, we found a different index. Are either of the operands
- // ConstantExprs? If so, we can't do anything with them.
+ // Ok, we found a different index. Are either of the operands ConstantExprs?
+ // If so, we can't do anything with them.
if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
return -2; // don't know!
// Ok, we have two differing integer indices. Sign extend them to be the same
// type. Long is always big enough, so we use it.
- C1 = ConstantExpr::getSignExtend(C1, Type::LongTy);
- C2 = ConstantExpr::getSignExtend(C2, Type::LongTy);
+ if (C1->getType() != Type::LongTy && C1->getType() != Type::ULongTy)
+ C1 = ConstantExpr::getSignExtend(C1, Type::LongTy);
+ else
+ C1 = ConstantExpr::getBitCast(C1, Type::LongTy);
+ if (C2->getType() != Type::LongTy && C1->getType() != Type::ULongTy)
+ C2 = ConstantExpr::getSignExtend(C2, Type::LongTy);
+ else
+ C2 = ConstantExpr::getBitCast(C2, Type::LongTy);
+
if (C1 == C2) return 0; // Are they just differing types?
// If the type being indexed over is really just a zero sized type, there is
@@ -1141,7 +1222,19 @@ static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
Constant *CE1Op0 = CE1->getOperand(0);
switch (CE1->getOpcode()) {
- case Instruction::Cast:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ break; // We don't do anything with floating point.
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
// If the cast is not actually changing bits, and the second operand is a
// null pointer, do the comparison with the pre-casted value.
if (V2->isNullValue() &&
@@ -1154,8 +1247,7 @@ static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
// important for things like "seteq (cast 4 to int*), (cast 5 to int*)",
// which happens a lot in compilers with tagged integers.
if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
- if (isa<PointerType>(CE1->getType()) &&
- CE2->getOpcode() == Instruction::Cast &&
+ if (isa<PointerType>(CE1->getType()) && CE2->isCast() &&
CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
CE1->getOperand(0)->getType()->isIntegral()) {
return evaluateRelation(CE1->getOperand(0), CE2->getOperand(0));
@@ -1423,8 +1515,7 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
if (cast<ConstantIntegral>(V2)->isAllOnesValue())
return const_cast<Constant*>(V1); // X & -1 == X
if (V2->isNullValue()) return const_cast<Constant*>(V2); // X & 0 == 0
- if (CE1->getOpcode() == Instruction::Cast &&
- isa<GlobalValue>(CE1->getOperand(0))) {
+ if (CE1->isCast() && isa<GlobalValue>(CE1->getOperand(0))) {
GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
// Functions are at least 4-byte aligned. If and'ing the address of a
@@ -1566,8 +1657,7 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
// long 0, long 0)
// To: int* getelementptr ([3 x int]* %X, long 0, long 0)
//
- if (CE->getOpcode() == Instruction::Cast && IdxList.size() > 1 &&
- Idx0->isNullValue())
+ if (CE->isCast() && IdxList.size() > 1 && Idx0->isNullValue())
if (const PointerType *SPT =
dyn_cast<PointerType>(CE->getOperand(0)->getType()))
if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
diff --git a/lib/VMCore/ConstantFold.h b/lib/VMCore/ConstantFold.h
index 5119aaf3f7..2824979cf4 100644
--- a/lib/VMCore/ConstantFold.h
+++ b/lib/VMCore/ConstantFold.h
@@ -27,7 +27,11 @@ namespace llvm {
class Type;
// Constant fold various types of instruction...
- Constant *ConstantFoldCastInstruction(const Constant *V, const Type *DestTy);
+ Constant *ConstantFoldCastInstruction(
+ unsigned opcode, ///< The opcode of the cast
+ const Constant *V, ///< The source constant
+ const Type *DestTy ///< The destination type
+ );
Constant *ConstantFoldSelectInstruction(const Constant *Cond,
const Constant *V1,
const Constant *V2);
diff --git a/lib/VMCore/ConstantFolding.h b/lib/VMCore/ConstantFolding.h
index 5119aaf3f7..2824979cf4 100644
--- a/lib/VMCore/ConstantFolding.h
+++ b/lib/VMCore/ConstantFolding.h
@@ -27,7 +27,11 @@ namespace llvm {
class Type;
// Constant fold various types of instruction...
- Constant *ConstantFoldCastInstruction(const Constant *V, const Type *DestTy);
+ Constant *ConstantFoldCastInstruction(
+ unsigned opcode, ///< The opcode of the cast
+ const Constant *V, ///< The source constant
+ const Type *DestTy ///< The destination type
+ );
Constant *ConstantFoldSelectInstruction(const Constant *Cond,
const Constant *V1,
const Constant *V2);
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp
index d91e21841d..06dcbb38a7 100644
--- a/lib/VMCore/Constants.cpp
+++ b/lib/VMCore/Constants.cpp
@@ -427,6 +427,14 @@ struct VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr {
};
}
+
+// Utility function for determining if a ConstantExpr is a CastOp or not. This
+// can't be inline because we don't want to #include Instruction.h into
+// Constant.h
+bool ConstantExpr::isCast() const {
+ return Instruction::isCast(getOpcode());
+}
+
/// ConstantExpr::get* - Return some common constants without having to
/// specify the full Instruction::OPCODE identifier.
///
@@ -507,8 +515,8 @@ Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2) {
/// getWithOperandReplaced - Return a constant expression identical to this
/// one, but with the specified operand set to the specified value.
-Constant *ConstantExpr::getWithOperandReplaced(unsigned OpNo,
- Constant *Op) const {
+Constant *
+ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
assert(OpNo < getNumOperands() && "Operand num is out of range!");
assert(Op->getType() == getOperand(OpNo)->getType() &&
"Replacing operand with value of different type!");
@@ -517,8 +525,19 @@ Constant *ConstantExpr::getWithOperandReplaced(unsigned OpNo,
Constant *Op0, *Op1, *Op2;
switch (getOpcode()) {
- case Instruction::Cast:
- return ConstantExpr::getCast(Op, getType());
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ return ConstantExpr::getCast(getOpcode(), Op, getType());
case Instruction::Select:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
@@ -571,8 +590,19 @@ getWithOperands(const std::vector<Constant*> &Ops) const {
return const_cast<ConstantExpr*>(this);
switch (getOpcode()) {
- case Instruction::Cast:
- return ConstantExpr::getCast(Ops[0], getType());
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertElement:
@@ -1317,8 +1347,8 @@ namespace llvm {
template<>
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) {
- if (V.first == Instruction::Cast)
- return new UnaryConstantExpr(Instruction::Cast, V.second[0], Ty);
+ if (Instruction::isCast(V.first))
+ return new UnaryConstantExpr(V.first, V.second[0], Ty);
if ((V.first >= Instruction::BinaryOpsBegin &&
V.first < Instruction::BinaryOpsEnd) ||
V.first == Instruction::Shl ||
@@ -1348,8 +1378,20 @@ namespace llvm {
static void convert(ConstantExpr *OldC, const Type *NewTy) {
Constant *New;
switch (OldC->getOpcode()) {
- case Instruction::Cast:
- New = ConstantExpr::getCast(OldC->getOperand(0), NewTy);
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ New = ConstantExpr::getCast(
+ OldC->getOpcode(), OldC->getOperand(0), NewTy);
break;
case Instruction::Select:
New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
@@ -1394,40 +1436,143 @@ static ExprMapKeyType getValType(ConstantExpr *CE) {
static ManagedStatic<ValueMap<ExprMapKeyType, Type,
ConstantExpr> > ExprConstants;
-Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) {
+/// This is a utility function to handle folding of casts and lookup of the
+/// cast in the ExprConstants map. It is usedby the various get* methods below.
+static inline Constant *getFoldedCast(
+ Instruction::CastOps opc, Constant *C, const Type *Ty) {
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
-
- if (Constant *FC = ConstantFoldCastInstruction(C, Ty))
- return FC; // Fold a few common cases...
+ // Fold a few common cases
+ if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
+ return FC;
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> argVec(1, C);
- ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec);
+ ExprMapKeyType Key = std::make_pair(opc, argVec);
return ExprConstants->getOrCreate(Ty, Key);
}
-Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) {
- assert(C->getType()->isIntegral() && Ty->isIntegral() &&
- C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
- "This is an illegal sign extension!");
- if (C->getType() != Type::BoolTy) {
- C = ConstantExpr::getCast(C, C->getType()->getSignedVersion());
- return ConstantExpr::getCast(C, Ty);
- } else {
- if (C == ConstantBool::getTrue())
- return ConstantIntegral::getAllOnesValue(Ty);
- else
- return ConstantIntegral::getNullValue(Ty);
+Constant *ConstantExpr::getCast( Constant *C, const Type *Ty ) {
+ // Note: we can't inline this because it requires the Instructions.h header
+ return getCast(CastInst::getCastOpcode(C, Ty), C, Ty);
+}
+
+Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
+ Instruction::CastOps opc = Instruction::CastOps(oc);
+ assert(Instruction::isCast(opc) && "opcode out of range");
+ assert(C && Ty && "Null arguments to getCast");
+ assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
+
+ switch (opc) {
+ default:
+ assert(0 && "Invalid cast opcode");
+ break;
+ case Instruction::Trunc: return getTrunc(C, Ty);
+ case Instruction::ZExt: return getZeroExtend(C, Ty);
+ case Instruction::SExt: return getSignExtend(C, Ty);
+ case Instruction::FPTrunc: return getFPTrunc(C, Ty);
+ case Instruction::FPExt: return getFPExtend(C, Ty);
+ case Instruction::UIToFP: return getUIToFP(C, Ty);
+ case Instruction::SIToFP: return getSIToFP(C, Ty);
+ case Instruction::FPToUI: return getFPToUI(C, Ty);
+ case Instruction::FPToSI: return getFPToSI(C, Ty);
+ case Instruction::PtrToInt: return getPtrToInt(C, Ty);
+ case Instruction::IntToPtr: return getIntToPtr(C, Ty);
+ case Instruction::BitCast: return getBitCast(C, Ty);
}
+ return 0;
+}
+
+Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
+ assert(C->getType()->isInteger() && "Trunc operand must be integer");
+ assert(Ty->isIntegral() && "Trunc produces only integral");
+ assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
+ "SrcTy must be larger than DestTy for Trunc!");
+
+ return getFoldedCast(Instruction::Trunc, C, Ty);
+}
+
+Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) {
+ assert(C->getType()->isIntegral() && "SEXt operand must be integral");
+ assert(Ty->isInteger() && "SExt produces only integer");
+ assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
+ "SrcTy must be smaller than DestTy for SExt!");
+
+ return getFoldedCast(Instruction::SExt, C, Ty);
}
Constant *ConstantExpr::getZeroExtend(Constant *C, const Type *Ty) {
- assert(C->getType()->isIntegral() && Ty->isIntegral() &&
- C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
- "This is an illegal zero extension!");
- if (C->getType() != Type::BoolTy)
- C = ConstantExpr::getCast(C, C->getType()->getUnsignedVersion());
- return ConstantExpr::getCast(C, Ty);
+ assert(C->getType()->isIntegral() && "ZEXt operand must be integral");
+ assert(Ty->isInteger() && "ZExt produces only integer");
+ assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
+ "SrcTy must be smaller than DestTy for ZExt!");
+
+ return getFoldedCast(Instruction::ZExt, C, Ty);
+}
+
+Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
+ assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
+ C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
+ "This is an illegal floating point truncation!");
+ return getFoldedCast(Instruction::FPTrunc, C, Ty);
+}
+
+Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
+ assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
+ C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
+ "This is an illegal floating point extension!");
+ return getFoldedCast(Instruction::FPExt, C, Ty);
+}
+
+Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
+ assert(C->getType()->isIntegral() && Ty->isFloatingPoint() &&
+ "This is an illegal uint to floating point cast!");
+ return getFoldedCast(Instruction::UIToFP, C, Ty);
+}
+
+Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
+ assert(C->getType()->isIntegral() && Ty->isFloatingPoint() &&
+ "This is an illegal sint to floating point cast!");
+ return getFoldedCast(Instruction::SIToFP, C, Ty);
+}
+
+Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
+ assert(C->getType()->isFloatingPoint() && Ty->isIntegral() &&
+ "This is an illegal floating point to uint cast!");
+ return getFoldedCast(Instruction::FPToUI, C, Ty);
+}
+
+Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
+ assert(C->getType()->isFloatingPoint() && Ty->isIntegral() &&
+ "This is an illegal floating point to sint cast!");
+ return getFoldedCast(Instruction::FPToSI, C, Ty);
+}
+
+Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
+ assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
+ assert(DstTy->isIntegral() && "PtrToInt destination must be integral");
+ return getFoldedCast(Instruction::PtrToInt, C, DstTy);
+}
+
+Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
+ assert(C->getType()->isIntegral() && "IntToPtr source must be integral");
+ assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
+ return getFoldedCast(Instruction::IntToPtr, C, DstTy);
+}
+
+Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
+ // BitCast implies a no-op cast of type only. No bits change. However, you
+ // can't cast pointers to anything but pointers.
+ const Type *SrcTy = C->getType();
+ assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
+ "Bitcast cannot cast pointer to non-pointer and vice versa");
+
+ // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
+ // or nonptr->ptr). For all the other types, the cast is okay if source and
+ // destination bit widths are identical.
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
+ assert(SrcBitSize == DstBitSize && "Bitcast requies types of same width");
+ return getFoldedCast(Instruction::BitCast, C, DstTy);
}
Constant *ConstantExpr::getSizeOf(const Type *Ty) {
@@ -1858,9 +2003,9 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
Indices.push_back(Val);
}
Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices);
- } else if (getOpcode() == Instruction::Cast) {
+ } else if (isCast()) {
assert(getOperand(0) == From && "Cast only has one use!");
- Replacement = ConstantExpr::getCast(To, getType());
+ Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
} else if (getOpcode() == Instruction::Select) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
diff --git a/lib/VMCore/Function.cpp b/lib/VMCore/Function.cpp
index 641cb9fe7e..7a44ec0786 100644
--- a/lib/VMCore/Function.cpp
+++ b/lib/VMCore/Function.cpp
@@ -226,7 +226,7 @@ const char *Intrinsic::getName(ID id) {
Value *IntrinsicInst::StripPointerCasts(Value *Ptr) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
- if (CE->getOpcode() == Instruction::Cast) {
+ if (CE->getOpcode() == Instruction::BitCast) {
if (isa<PointerType>(CE->getOperand(0)->getType()))
return StripPointerCasts(CE->getOperand(0));
} else if (CE->getOpcode() == Instruction::GetElementPtr) {
@@ -238,7 +238,7 @@ Value *IntrinsicInst::StripPointerCasts(Value *Ptr) {