aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Vectorize/LoopVectorize.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Vectorize/LoopVectorize.cpp')
-rw-r--r--lib/Transforms/Vectorize/LoopVectorize.cpp559
1 files changed, 373 insertions, 186 deletions
diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp
index a7ef248e6e..55733f7f8a 100644
--- a/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -25,6 +25,7 @@
// 4. LoopVectorizationCostModel - A unit that checks for the profitability
// of vectorization. It decides on the optimal vector width, which
// can be one, if vectorization is not profitable.
+//
//===----------------------------------------------------------------------===//
//
// The reduction-variable vectorization is based on the paper:
@@ -36,6 +37,9 @@
// Other ideas/concepts are from:
// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
//
+// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
+// Vectorizing Compilers.
+//
//===----------------------------------------------------------------------===//
#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME
@@ -82,6 +86,9 @@ const unsigned TinyTripCountThreshold = 16;
/// number of pointers. Notice that the check is quadratic!
const unsigned RuntimeMemoryCheckThreshold = 2;
+/// This is the highest vector width that we try to generate.
+const unsigned MaxVectorSize = 8;
+
namespace {
// Forward declarations.
@@ -106,23 +113,28 @@ class SingleBlockLoopVectorizer {
public:
/// Ctor.
SingleBlockLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li,
- DominatorTree *dt, LPPassManager *Lpm,
+ DominatorTree *Dt, DataLayout *Dl,
+ LPPassManager *Lpm,
unsigned VecWidth):
- OrigLoop(Orig), SE(Se), LI(Li), DT(dt), LPM(Lpm), VF(VecWidth),
+ OrigLoop(Orig), SE(Se), LI(Li), DT(Dt), DL(Dl), LPM(Lpm), VF(VecWidth),
Builder(Se->getContext()), Induction(0), OldInduction(0) { }
// Perform the actual loop widening (vectorization).
void vectorize(LoopVectorizationLegality *Legal) {
- ///Create a new empty loop. Unlink the old loop and connect the new one.
+ // Create a new empty loop. Unlink the old loop and connect the new one.
createEmptyLoop(Legal);
- /// Widen each instruction in the old loop to a new one in the new loop.
- /// Use the Legality module to find the induction and reduction variables.
+ // Widen each instruction in the old loop to a new one in the new loop.
+ // Use the Legality module to find the induction and reduction variables.
vectorizeLoop(Legal);
// Register the new loop and update the analysis passes.
updateAnalysis();
}
private:
+ /// Add code that checks at runtime if the accessed arrays overlap.
+ /// Returns the comperator value or NULL if no check is needed.
+ Value *addRuntimeCheck(LoopVectorizationLegality *Legal,
+ Instruction *Loc);
/// Create an empty loop, based on the loop ranges of the old loop.
void createEmptyLoop(LoopVectorizationLegality *Legal);
/// Copy and widen the instructions from the old loop.
@@ -167,6 +179,8 @@ private:
LoopInfo *LI;
// Dominator Tree.
DominatorTree *DT;
+ // Data Layout.
+ DataLayout *DL;
// Loop Pass Manager;
LPPassManager *LPM;
// The vectorization factor to use.
@@ -250,16 +264,46 @@ public:
// This POD struct holds information about the memory runtime legality
// check that a group of pointers do not overlap.
struct RuntimePointerCheck {
+ RuntimePointerCheck(): Need(false) {}
+
+ /// Reset the state of the pointer runtime information.
+ void reset() {
+ Need = false;
+ Pointers.clear();
+ Starts.clear();
+ Ends.clear();
+ }
+
+ /// Insert a pointer and calculate the start and end SCEVs.
+ void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr) {
+ const SCEV *Sc = SE->getSCEV(Ptr);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
+ assert(AR && "Invalid addrec expression");
+ const SCEV *Ex = SE->getExitCount(Lp, Lp->getHeader());
+ const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
+ Pointers.push_back(Ptr);
+ Starts.push_back(AR->getStart());
+ Ends.push_back(ScEnd);
+ }
+
/// This flag indicates if we need to add the runtime check.
bool Need;
/// Holds the pointers that we need to check.
SmallVector<Value*, 2> Pointers;
+ /// Holds the pointer value at the beginning of the loop.
+ SmallVector<const SCEV*, 2> Starts;
+ /// Holds the pointer value at the end of the loop.
+ SmallVector<const SCEV*, 2> Ends;
};
/// ReductionList contains the reduction descriptors for all
/// of the reductions that were found in the loop.
typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
+ /// InductionList saves induction variables and maps them to the initial
+ /// value entring the loop.
+ typedef DenseMap<PHINode*, Value*> InductionList;
+
/// Returns true if it is legal to vectorize this loop.
/// This does not mean that it is profitable to vectorize this
/// loop, only that it is legal to do so.
@@ -271,11 +315,14 @@ public:
/// Returns the reduction variables found in the loop.
ReductionList *getReductionVars() { return &Reductions; }
- /// Check if the pointer returned by this GEP is consecutive
- /// when the index is vectorized. This happens when the last
- /// index of the GEP is consecutive, like the induction variable.
+ /// Returns the induction variables found in the loop.
+ InductionList *getInductionVars() { return &Inductions; }
+
+ /// Check if this pointer is consecutive when vectorizing. This happens
+ /// when the last index of the GEP is the induction variable, or that the
+ /// pointer itself is an induction variable.
/// This check allows us to vectorize A[idx] into a wide load/store.
- bool isConsecutiveGep(Value *Ptr);
+ bool isConsecutivePtr(Value *Ptr);
/// Returns true if the value V is uniform within the loop.
bool isUniform(Value *V);
@@ -317,10 +364,16 @@ private:
// --- vectorization state --- //
- /// Holds the induction variable.
+ /// Holds the integer induction variable. This is the counter of the
+ /// loop.
PHINode *Induction;
/// Holds the reduction variables.
ReductionList Reductions;
+ /// Holds all of the induction variables that we found in the loop.
+ /// Notice that inductions don't need to start at zero and that induction
+ /// variables can be pointers.
+ InductionList Inductions;
+
/// Allowed outside users. This holds the reduction
/// vars which can be accessed from outside the loop.
SmallPtrSet<Value*, 4> AllowedExit;
@@ -350,7 +403,7 @@ public:
/// Returns the most profitable vectorization factor for the loop that is
/// smaller or equal to the VF argument. This method checks every power
/// of two up to VF.
- unsigned findBestVectorizationFactor(unsigned VF = 8);
+ unsigned findBestVectorizationFactor(unsigned VF = MaxVectorSize);
private:
/// Returns the expected execution cost. The unit of the cost does
@@ -438,7 +491,7 @@ struct LoopVectorize : public LoopPass {
"\n");
// If we decided that it is *legal* to vectorizer the loop then do it.
- SingleBlockLoopVectorizer LB(L, SE, LI, DT, &LPM, VF);
+ SingleBlockLoopVectorizer LB(L, SE, LI, DT, DL, &LPM, VF);
LB.vectorize(&LVL);
DEBUG(verifyFunction(*L->getHeader()->getParent()));
@@ -459,10 +512,6 @@ struct LoopVectorize : public LoopPass {
};
Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
- // Instructions that access the old induction variable
- // actually want to get the new one.
- if (V == OldInduction)
- V = Induction;
// Create the types.
LLVMContext &C = V->getContext();
Type *VTy = VectorType::get(V->getType(), VF);
@@ -502,7 +551,14 @@ Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
return Builder.CreateAdd(Val, Cv, "induction");
}
-bool LoopVectorizationLegality::isConsecutiveGep(Value *Ptr) {
+bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
+ assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
+
+ // If this pointer is an induction variable, return it.
+ PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
+ if (Phi && getInductionVars()->count(Phi))
+ return true;
+
GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
if (!Gep)
return false;
@@ -549,13 +605,7 @@ Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
Constant*
SingleBlockLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
- SmallVector<Constant*, 8> Indices;
- // Create a vector of consecutive numbers from zero to VF.
- for (unsigned i = 0; i < VF; ++i)
- Indices.push_back(ConstantInt::get(ScalarTy, Val, true));
-
- // Add the consecutive indices to the vector value.
- return ConstantVector::get(Indices);
+ return ConstantVector::getSplat(VF, ConstantInt::get(ScalarTy, Val, true));
}
void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
@@ -569,7 +619,7 @@ void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
// If we are accessing the old induction variable, use the new one.
if (SrcOp == OldInduction) {
- Params.push_back(getBroadcastInstrs(Induction));
+ Params.push_back(getVectorValue(Induction));
continue;
}
@@ -628,6 +678,67 @@ void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
WidenMap[Instr] = VecResults;
}
+Value*
+SingleBlockLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
+ Instruction *Loc) {
+ LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
+ Legal->getRuntimePointerCheck();
+
+ if (!PtrRtCheck->Need)
+ return NULL;
+
+ Value *MemoryRuntimeCheck = 0;
+ unsigned NumPointers = PtrRtCheck->Pointers.size();
+ SmallVector<Value* , 2> Starts;
+ SmallVector<Value* , 2> Ends;
+
+ SCEVExpander Exp(*SE, "induction");
+
+ // Use this type for pointer arithmetic.
+ Type* PtrArithTy = PtrRtCheck->Pointers[0]->getType();
+
+ for (unsigned i=0; i < NumPointers; ++i) {
+ Value *Ptr = PtrRtCheck->Pointers[i];
+ const SCEV *Sc = SE->getSCEV(Ptr);
+
+ if (SE->isLoopInvariant(Sc, OrigLoop)) {
+ DEBUG(dbgs() << "LV1: Adding RT check for a loop invariant ptr:" <<
+ *Ptr <<"\n");
+ Starts.push_back(Ptr);
+ Ends.push_back(Ptr);
+ } else {
+ DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
+
+ Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i],
+ PtrArithTy, Loc);
+ Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
+ Starts.push_back(Start);
+ Ends.push_back(End);
+ }
+ }
+
+ for (unsigned i = 0; i < NumPointers; ++i) {
+ for (unsigned j = i+1; j < NumPointers; ++j) {
+ Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
+ Starts[i], Ends[j], "bound0", Loc);
+ Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
+ Starts[j], Ends[i], "bound1", Loc);
+ Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1,
+ "found.conflict", Loc);
+ if (MemoryRuntimeCheck)
+ MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or,
+ MemoryRuntimeCheck,
+ IsConflict,
+ "conflict.rdx", Loc);
+ else
+ MemoryRuntimeCheck = IsConflict;
+
+ }
+ }
+
+ return MemoryRuntimeCheck;
+}
+
void
SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
/*
@@ -659,9 +770,18 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
...
*/
+ BasicBlock *OldBasicBlock = OrigLoop->getHeader();
+ BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
+ BasicBlock *ExitBlock = OrigLoop->getExitBlock();
+ assert(ExitBlock && "Must have an exit block");
+
+ // Some loops have a single integer induction variable, while other loops
+ // don't. One example is c++ iterators that often have multiple pointer
+ // induction variables. In the code below we also support a case where we
+ // don't have a single induction variable.
OldInduction = Legal->getInduction();
- assert(OldInduction && "We must have a single phi node.");
- Type *IdxTy = OldInduction->getType();
+ Type *IdxTy = OldInduction ? OldInduction->getType() :
+ DL->getIntPtrType(SE->getContext());
// Find the loop boundaries.
const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getHeader());
@@ -670,35 +790,42 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
// Get the total trip count from the count by adding 1.
ExitCount = SE->getAddExpr(ExitCount,
SE->getConstant(ExitCount->getType(), 1));
- // We may need to extend the index in case there is a type mismatch.
- // We know that the count starts at zero and does not overflow.
- // We are using Zext because it should be less expensive.
- if (ExitCount->getType() != IdxTy)
- ExitCount = SE->getZeroExtendExpr(ExitCount, IdxTy);
- // This is the original scalar-loop preheader.
- BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
- BasicBlock *ExitBlock = OrigLoop->getExitBlock();
- assert(ExitBlock && "Must have an exit block");
+ // Expand the trip count and place the new instructions in the preheader.
+ // Notice that the pre-header does not change, only the loop body.
+ SCEVExpander Exp(*SE, "induction");
- // The loop index does not have to start at Zero. It starts with this value.
- Value *StartIdx = OldInduction->getIncomingValueForBlock(BypassBlock);
+ // Count holds the overall loop count (N).
+ Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
+ BypassBlock->getTerminator());
+
+ // The loop index does not have to start at Zero. Find the original start
+ // value from the induction PHI node. If we don't have an induction variable
+ // then we know that it starts at zero.
+ Value *StartIdx = OldInduction ?
+ OldInduction->getIncomingValueForBlock(BypassBlock):
+ ConstantInt::get(IdxTy, 0);
assert(OrigLoop->getNumBlocks() == 1 && "Invalid loop");
assert(BypassBlock && "Invalid loop structure");
+ // Generate the code that checks in runtime if arrays overlap.
+ Value *MemoryRuntimeCheck = addRuntimeCheck(Legal,
+ BypassBlock->getTerminator());
+
+ // Split the single block loop into the two loop structure described above.
BasicBlock *VectorPH =
BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
- BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(),
- "vector.body");
-
- BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(),
- "middle.block");
+ BasicBlock *VecBody =
+ VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
+ BasicBlock *MiddleBlock =
+ VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
BasicBlock *ScalarPH =
- MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(),
- "scalar.preheader");
- // Find the induction variable.
- BasicBlock *OldBasicBlock = OrigLoop->getHeader();
+ MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
+
+ // This is the location in which we add all of the logic for bypassing
+ // the new vector loop.
+ Instruction *Loc = BypassBlock->getTerminator();
// Use this IR builder to create the loop instructions (Phi, Br, Cmp)
// inside the loop.
@@ -708,13 +835,16 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
Induction = Builder.CreatePHI(IdxTy, 2, "index");
Constant *Step = ConstantInt::get(IdxTy, VF);
- // Expand the trip count and place the new instructions in the preheader.
- // Notice that the pre-header does not change, only the loop body.
- SCEVExpander Exp(*SE, "induction");
- Instruction *Loc = BypassBlock->getTerminator();
-
- // Count holds the overall loop count (N).
- Value *Count = Exp.expandCodeFor(ExitCount, Induction->getType(), Loc);
+ // We may need to extend the index in case there is a type mismatch.
+ // We know that the count starts at zero and does not overflow.
+ if (Count->getType() != IdxTy) {
+ // The exit count can be of pointer type. Convert it to the correct
+ // integer type.
+ if (ExitCount->getType()->isPointerTy())
+ Count = CastInst::CreatePointerCast(Count, IdxTy, "ptrcnt.to.int", Loc);
+ else
+ Count = CastInst::CreateZExtOrBitCast(Count, IdxTy, "zext.cnt", Loc);
+ }
// Add the start index to the loop count to get the new end index.
Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc);
@@ -727,84 +857,79 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx,
"end.idx.rnd.down", Loc);
- // Now, compare the new count to zero. If it is zero, jump to the scalar part.
+ // Now, compare the new count to zero. If it is zero skip the vector loop and
+ // jump to the scalar loop.
Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
IdxEndRoundDown,
StartIdx,
"cmp.zero", Loc);
- LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
- Legal->getRuntimePointerCheck();
- Value *MemoryRuntimeCheck = 0;
- if (PtrRtCheck->Need) {
- unsigned NumPointers = PtrRtCheck->Pointers.size();
- SmallVector<Value* , 2> Starts;
- SmallVector<Value* , 2> Ends;
-
- // Use this type for pointer arithmetic.
- Type* PtrArithTy = PtrRtCheck->Pointers[0]->getType();
-
- for (unsigned i=0; i < NumPointers; ++i) {
- Value *Ptr = PtrRtCheck->Pointers[i];
- const SCEV *Sc = SE->getSCEV(Ptr);
-
- if (SE->isLoopInvariant(Sc, OrigLoop)) {
- DEBUG(dbgs() << "LV1: Adding RT check for a loop invariant ptr:" <<
- *Ptr <<"\n");
- Starts.push_back(Ptr);
- Ends.push_back(Ptr);
- } else {
- DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
- Value *Start = Exp.expandCodeFor(AR->getStart(), PtrArithTy, Loc);
- const SCEV *Ex = SE->getExitCount(OrigLoop, OrigLoop->getHeader());
- const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
- assert(!isa<SCEVCouldNotCompute>(ScEnd) && "Invalid scev range.");
- Value *End = Exp.expandCodeFor(ScEnd, PtrArithTy, Loc);
- Starts.push_back(Start);
- Ends.push_back(End);
- }
- }
-
- for (unsigned i=0; i < NumPointers; ++i) {
- for (unsigned j=i+1; j < NumPointers; ++j) {
- Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
- Starts[0], Ends[1], "bound0", Loc);
- Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
- Starts[1], Ends[0], "bound1", Loc);
- Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1,
- "found.conflict", Loc);
- if (MemoryRuntimeCheck) {
- MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or,
- MemoryRuntimeCheck,
- IsConflict,
- "conflict.rdx", Loc);
- } else {
- MemoryRuntimeCheck = IsConflict;
- }
- }
- }
- }// end of need-runtime-check code.
-
// If we are using memory runtime checks, include them in.
- if (MemoryRuntimeCheck) {
+ if (MemoryRuntimeCheck)
Cmp = BinaryOperator::Create(Instruction::Or, Cmp, MemoryRuntimeCheck,
"CntOrMem", Loc);
- }
BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
// Remove the old terminator.
Loc->eraseFromParent();
// We are going to resume the execution of the scalar loop.
- // This PHI decides on what number to start. If we come from the
- // vector loop then we need to start with the end index minus the
- // index modulo VF. If we come from a bypass edge then we need to start
- // from the real start.
- PHINode* ResumeIndex = PHINode::Create(IdxTy, 2, "resume.idx",
- MiddleBlock->getTerminator());
- ResumeIndex->addIncoming(StartIdx, BypassBlock);
- ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
+ // Go over all of the induction variables that we found and fix the
+ // PHIs that are left in the scalar version of the loop.
+ // The starting values of PHI nodes depend on the counter of the last
+ // iteration in the vectorized loop.
+ // If we come from a bypass edge then we need to start from the original start
+ // value.
+
+ // This variable saves the new starting index for the scalar loop.
+ PHINode *ResumeIndex = 0;
+ LoopVectorizationLegality::InductionList::iterator I, E;
+ LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
+ for (I = List->begin(), E = List->end(); I != E; ++I) {
+ PHINode *OrigPhi = I->first;
+ PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
+ MiddleBlock->getTerminator());
+ Value *EndValue = 0;
+ if (OrigPhi->getType()->isIntegerTy()) {
+ // Handle the integer induction counter:
+ assert(OrigPhi == OldInduction && "Unknown integer PHI");
+ // We know what the end value is.
+ EndValue = IdxEndRoundDown;
+ // We also know which PHI node holds it.
+ ResumeIndex = ResumeVal;
+ } else {
+ // For pointer induction variables, calculate the offset using
+ // the end index.
+ EndValue = GetElementPtrInst::Create(I->second, CountRoundDown,
+ "ptr.ind.end",
+ BypassBlock->getTerminator());
+ }
+
+ // The new PHI merges the original incoming value, in case of a bypass,
+ // or the value at the end of the vectorized loop.
+ ResumeVal->addIncoming(I->second, BypassBlock);
+ ResumeVal->addIncoming(EndValue, VecBody);
+
+ // Fix the scalar body counter (PHI node).
+ unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
+ OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
+ }
+
+ // If we are generating a new induction variable then we also need to
+ // generate the code that calculates the exit value. This value is not
+ // simply the end of the counter because we may skip the vectorized body
+ // in case of a runtime check.
+ if (!OldInduction){
+ assert(!ResumeIndex && "Unexpected resume value found");
+ ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
+ MiddleBlock->getTerminator());
+ ResumeIndex->addIncoming(StartIdx, BypassBlock);
+ ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
+ }
+
+ // Make sure that we found the index where scalar loop needs to continue.
+ assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
+ "Invalid resume Index");
// Add a check in the middle block to see if we have completed
// all of the iterations in the first vector loop.
@@ -828,10 +953,6 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
// Now we have two terminators. Remove the old one from the block.
VecBody->getTerminator()->eraseFromParent();
- // Fix the scalar body iteration count.
- unsigned BlockIdx = OldInduction->getBasicBlockIndex(ScalarPH);
- OldInduction->setIncomingValue(BlockIdx, ResumeIndex);
-
// Get ready to start creating new instructions into the vectorized body.
Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
@@ -901,7 +1022,7 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// add the new incoming edges to the PHI. At this point all of the
// instructions in the basic block are vectorized, so we can use them to
// construct the PHI.
- PhiVector PHIsToFix;
+ PhiVector RdxPHIsToFix;
// For each instruction in the old loop.
for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
@@ -914,15 +1035,53 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
continue;
case Instruction::PHI:{
PHINode* P = cast<PHINode>(Inst);
- // Special handling for the induction var.
- if (OldInduction == Inst)
+ // Handle reduction variables:
+ if (Legal->getReductionVars()->count(P)) {
+ // This is phase one of vectorizing PHIs.
+ Type *VecTy = VectorType::get(Inst->getType(), VF);
+ WidenMap[Inst] = PHINode::Create(VecTy, 2, "vec.phi",
+ LoopVectorBody->getFirstInsertionPt());
+ RdxPHIsToFix.push_back(P);
+ continue;
+ }
+
+ // This PHINode must be an induction variable.
+ // Make sure that we know about it.
+ assert(Legal->getInductionVars()->count(P) &&
+ "Not an induction variable");
+
+ if (P->getType()->isIntegerTy()) {
+ assert(P == OldInduction && "Unexpected PHI");
+ WidenMap[Inst] = getBroadcastInstrs(Induction);
continue;
- // This is phase one of vectorizing PHIs.
- // This has to be a reduction variable.
- assert(Legal->getReductionVars()->count(P) && "Not a Reduction");
- Type *VecTy = VectorType::get(Inst->getType(), VF);
- WidenMap[Inst] = Builder.CreatePHI(VecTy, 2, "vec.phi");
- PHIsToFix.push_back(P);
+ }
+
+ // Handle pointer inductions.
+ assert(P->getType()->isPointerTy() && "Unexpected type.");
+ Value *StartIdx = OldInduction ?
+ Legal->getInductionVars()->lookup(OldInduction) :
+ ConstantInt::get(Induction->getType(), 0);
+
+ // This is the pointer value coming into the loop.
+ Value *StartPtr = Legal->getInductionVars()->lookup(P);
+
+ // This is the normalized GEP that starts counting at zero.
+ Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
+ "normalized.idx");
+
+ // This is the vector of results. Notice that we don't generate vector
+ // geps because scalar geps result in better code.
+ Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
+ for (unsigned int i = 0; i < VF; ++i) {
+ Constant *Idx = ConstantInt::get(Induction->getType(), i);
+ Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
+ Value *SclrGep = Builder.CreateGEP(StartPtr, GlobalIdx, "next.gep");
+ VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
+ Builder.getInt32(i),
+ "insert.gep");
+ }
+
+ WidenMap[Inst] = VecVal;
continue;
}
case Instruction::Add:
@@ -1010,21 +1169,27 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
// This store does not use GEPs.
- if (!Legal->isConsecutiveGep(Gep)) {
+ if (!Legal->isConsecutivePtr(Ptr)) {
scalarizeInstruction(Inst);
break;
}
- // The last index does not have to be the induction. It can be
- // consecutive and be a function of the index. For example A[I+1];
- unsigned NumOperands = Gep->getNumOperands();
- Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands - 1));
- LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
-
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- Gep2->setOperand(NumOperands - 1, LastIndex);
- Ptr = Builder.Insert(Gep2);
+ if (Gep) {
+ // The last index does not have to be the induction. It can be
+ // consecutive and be a function of the index. For example A[I+1];
+ unsigned NumOperands = Gep->getNumOperands();
+ Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands - 1));
+ LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(NumOperands - 1, LastIndex);
+ Ptr = Builder.Insert(Gep2);
+ } else {
+ // Use the induction element ptr.
+ assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
+ Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
+ }
Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo());
Value *Val = getVectorValue(SI->getValueOperand());
Builder.CreateStore(Val, Ptr)->setAlignment(Alignment);
@@ -1038,23 +1203,31 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
unsigned Alignment = LI->getAlignment();
GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
- // If we don't have a gep, or that the pointer is loop invariant,
+ // If the pointer is loop invariant or if it is non consecutive,
// scalarize the load.
- if (!Gep || Legal->isUniform(Gep) || !Legal->isConsecutiveGep(Gep)) {
+ bool Con = Legal->isConsecutivePtr(Ptr);
+ if (Legal->isUniform(Ptr) || !Con) {
scalarizeInstruction(Inst);
break;
}
- // The last index does not have to be the induction. It can be
- // consecutive and be a function of the index. For example A[I+1];
- unsigned NumOperands = Gep->getNumOperands();
- Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
- LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
+ if (Gep) {
+ // The last index does not have to be the induction. It can be
+ // consecutive and be a function of the index. For example A[I+1];
+ unsigned NumOperands = Gep->getNumOperands();
+ Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
+ LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(NumOperands - 1, LastIndex);
+ Ptr = Builder.Insert(Gep2);
+ } else {
+ // Use the induction element ptr.
+ assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
+ Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
+ }
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- Gep2->setOperand(NumOperands - 1, LastIndex);
- Ptr = Builder.Insert(Gep2);
Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo());
LI = Builder.CreateLoad(Ptr);
LI->setAlignment(Alignment);
@@ -1098,7 +1271,7 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// Create the 'reduced' values for each of the induction vars.
// The reduced values are the vector values that we scalarize and combine
// after the loop is finished.
- for (PhiVector::iterator it = PHIsToFix.begin(), e = PHIsToFix.end();
+ for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
it != e; ++it) {
PHINode *RdxPhi = *it;
PHINode *VecRdxPhi = dyn_cast<PHINode>(WidenMap[RdxPhi]);
@@ -1130,7 +1303,6 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
Value *VectorStart = Builder.CreateInsertElement(Identity,
RdxDesc.StartValue, Zero);
-
// Fix the vector-loop phi.
// We created the induction variable so we know that the
// preheader is the first entry.
@@ -1236,7 +1408,7 @@ bool LoopVectorizationLegality::canVectorize() {
if (!TheLoop->getLoopPreheader()) {
assert(false && "No preheader!!");
DEBUG(dbgs() << "LV: Loop not normalized." << "\n");
- return false;
+ return false;
}
// We can only vectorize single basic block loops.
@@ -1282,23 +1454,34 @@ bool LoopVectorizationLegality::canVectorize() {
}
bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
+
+ BasicBlock *PreHeader = TheLoop->getLoopPreheader();
+
// Scan the instructions in the block and look for hazards.
for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
Instruction *I = it;
- PHINode *Phi = dyn_cast<PHINode>(I);
- if (Phi) {
+ if (PHINode *Phi = dyn_cast<PHINode>(I)) {
// This should not happen because the loop should be normalized.
if (Phi->getNumIncomingValues() != 2) {
DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
return false;
}
- // We only look at integer phi nodes.
- if (!Phi->getType()->isIntegerTy()) {
- DEBUG(dbgs() << "LV: Found an non-int PHI.\n");
+
+ // This is the value coming from the preheader.
+ Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
+
+ // We only look at integer and pointer phi nodes.
+ if (Phi->getType()->isPointerTy() && isInductionVariable(Phi)) {
+ DEBUG(dbgs() << "LV: Found a pointer induction variable.\n");
+ Inductions[Phi] = StartValue;
+ continue;
+ } else if (!Phi->getType()->isIntegerTy()) {
+ DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
return false;
}
+ // Handle integer PHIs:
if (isInductionVariable(Phi)) {
if (Induction) {
DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
@@ -1306,6 +1489,7 @@ bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
}
DEBUG(dbgs() << "LV: Found the induction PHI."<< *Phi <<"\n");
Induction = Phi;
+ Inductions[Phi] = StartValue;
continue;
}
if (AddReductionVar(Phi, IntegerAdd)) {
@@ -1364,8 +1548,8 @@ bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
} // next instr.
if (!Induction) {
- DEBUG(dbgs() << "LV: Did not find an induction var.\n");
- return false;
+ DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
+ assert(getInductionVars()->size() && "No induction variables");
}
// Don't vectorize if the memory dependencies do not allow vectorization.
@@ -1382,15 +1566,10 @@ bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
while (Worklist.size()) {
Instruction *I = dyn_cast<Instruction>(Worklist.back());
Worklist.pop_back();
- // Look at instructions inside this block.
- if (!I) continue;
- if (I->getParent() != &BB) continue;
- // Stop when reaching PHI nodes.
- if (isa<PHINode>(I)) {
- assert(I == Induction && "Found a uniform PHI that is not the induction");
- break;
- }
+ // Look at instructions inside this block. Stop when reaching PHI nodes.
+ if (!I || I->getParent() != &BB || isa<PHINode>(I))
+ continue;
// This is a known uniform.
Uniforms.insert(I);
@@ -1493,7 +1672,7 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
// If the address of i is unknown (for example A[B[i]]) then we may
// read a few words, modify, and write a few words, and some of the
// words may be written to the same address.
- if (Seen.insert(Ptr) || !isConsecutiveGep(Ptr))
+ if (Seen.insert(Ptr) || !isConsecutivePtr(Ptr))
Reads.push_back(Ptr);
}
@@ -1509,7 +1688,7 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
bool RT = true;
for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
if (hasComputableBounds(*I)) {
- PtrRtCheck.Pointers.push_back(*I);
+ PtrRtCheck.insert(SE, TheLoop, *I);
DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
} else {
RT = false;
@@ -1517,7 +1696,7 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
}
for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
if (hasComputableBounds(*I)) {
- PtrRtCheck.Pointers.push_back(*I);
+ PtrRtCheck.insert(SE, TheLoop, *I);
DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
} else {
RT = false;
@@ -1527,7 +1706,7 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
// Check that we did not collect too many pointers or found a
// unsizeable pointer.
if (!RT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
- PtrRtCheck.Pointers.clear();
+ PtrRtCheck.reset();
RT = false;
}
@@ -1582,8 +1761,7 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
// It is safe to vectorize and we don't need any runtime checks.
DEBUG(dbgs() << "LV: We don't need a runtime memory check.\n");
- PtrRtCheck.Pointers.clear();
- PtrRtCheck.Need = false;
+ PtrRtCheck.reset();
return true;
}
@@ -1677,8 +1855,6 @@ LoopVectorizationLegality::isReductionInstr(Instruction *I,
case Instruction::Sub:
return Kind == IntegerAdd;
case Instruction::Mul:
- case Instruction::UDiv:
- case Instruction::SDiv:
return Kind == IntegerMult;
case Instruction::And:
return Kind == IntegerAnd;
@@ -1690,6 +1866,11 @@ LoopVectorizationLegality::isReductionInstr(Instruction *I,
}
bool LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
+ Type *PhiTy = Phi->getType();
+ // We only handle integer and pointer inductions variables.
+ if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
+ return false;
+
// Check that the PHI is consecutive and starts at zero.
const SCEV *PhiScev = SE->getSCEV(Phi);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
@@ -1699,11 +1880,17 @@ bool LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
}
const SCEV *Step = AR->getStepRecurrence(*SE);
- if (!Step->isOne()) {
- DEBUG(dbgs() << "LV: PHI stride does not equal one.\n");
- return false;
- }
- return true;
+ // Integer inductions need to have a stride of one.
+ if (PhiTy->isIntegerTy())
+ return Step->isOne();
+
+ // Calculate the pointer stride and check if it is consecutive.
+ const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
+ if (!C) return false;
+
+ assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
+ uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
+ return (C->getValue()->equalsInt(Size));
}
bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
@@ -1832,7 +2019,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
SI->getAlignment(), SI->getPointerAddressSpace());
// Scalarized stores.
- if (!Legal->isConsecutiveGep(SI->getPointerOperand())) {
+ if (!Legal->isConsecutivePtr(SI->getPointerOperand())) {
unsigned Cost = 0;
unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
ValTy);
@@ -1859,7 +2046,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
LI->getPointerAddressSpace());
// Scalarized loads.
- if (!Legal->isConsecutiveGep(LI->getPointerOperand())) {
+ if (!Legal->isConsecutivePtr(LI->getPointerOperand())) {
unsigned Cost = 0;
unsigned InCost = VTTI->getInstrCost(Instruction::InsertElement, RetTy);
// The cost of inserting the loaded value into the result vector.