aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Utils/PromoteMemoryToRegister.cpp')
-rw-r--r--lib/Transforms/Utils/PromoteMemoryToRegister.cpp133
1 files changed, 109 insertions, 24 deletions
diff --git a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
index ce964fc43f..1692745efe 100644
--- a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
+++ b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
@@ -4,7 +4,8 @@
// alloca instructions which only have loads and stores as uses. An alloca is
// transformed by using dominator frontiers to place PHI nodes, then traversing
// the function in depth-first order to rewrite loads and stores as appropriate.
-// This is just the standard SSA construction algorithm.
+// This is just the standard SSA construction algorithm to construct "pruned"
+// SSA form.
//
//===----------------------------------------------------------------------===//
@@ -42,6 +43,7 @@ namespace {
struct PromoteMem2Reg {
// Allocas - The alloca instructions being promoted
std::vector<AllocaInst*> Allocas;
+ DominatorTree &DT;
DominanceFrontier &DF;
const TargetData &TD;
@@ -55,29 +57,33 @@ namespace {
std::set<BasicBlock*> Visited;
public:
- PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominanceFrontier &df,
- const TargetData &td) : Allocas(A), DF(df), TD(td) {}
+ PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
+ DominanceFrontier &df, const TargetData &td)
+ : Allocas(A), DT(dt), DF(df), TD(td) {}
void run();
private:
+ void MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
+ std::set<PHINode*> &DeadPHINodes);
void PromoteLocallyUsedAlloca(AllocaInst *AI);
void RenamePass(BasicBlock *BB, BasicBlock *Pred,
std::vector<Value*> &IncVals);
- bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
+ bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
+ std::set<PHINode*> &InsertedPHINodes);
};
} // end of anonymous namespace
void PromoteMem2Reg::run() {
Function &F = *DF.getRoot()->getParent();
- for (unsigned i = 0; i != Allocas.size(); ++i) {
- AllocaInst *AI = Allocas[i];
+ for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
+ AllocaInst *AI = Allocas[AllocaNum];
assert(isAllocaPromotable(AI, TD) &&
"Cannot promote non-promotable alloca!");
- assert(Allocas[i]->getParent()->getParent() == &F &&
+ assert(AI->getParent()->getParent() == &F &&
"All allocas should be in the same function, which is same as DF!");
if (AI->use_empty()) {
@@ -85,15 +91,17 @@ void PromoteMem2Reg::run() {
AI->getParent()->getInstList().erase(AI);
// Remove the alloca from the Allocas list, since it has been processed
- Allocas[i] = Allocas.back();
+ Allocas[AllocaNum] = Allocas.back();
Allocas.pop_back();
- --i;
+ --AllocaNum;
continue;
}
- // Calculate the set of write-locations for each alloca. This is analogous
- // to counting the number of 'redefinitions' of each variable.
+ // Calculate the set of read and write-locations for each alloca. This is
+ // analogous to counting the number of 'uses' and 'definitions' of each
+ // variable.
std::vector<BasicBlock*> DefiningBlocks;
+ std::vector<BasicBlock*> UsingBlocks;
BasicBlock *OnlyBlock = 0;
bool OnlyUsedInOneBlock = true;
@@ -106,6 +114,9 @@ void PromoteMem2Reg::run() {
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
// Remember the basic blocks which define new values for the alloca
DefiningBlocks.push_back(SI->getParent());
+ } else {
+ // Otherwise it must be a load instruction, keep track of variable reads
+ UsingBlocks.push_back(cast<LoadInst>(User)->getParent());
}
if (OnlyUsedInOneBlock) {
@@ -122,22 +133,17 @@ void PromoteMem2Reg::run() {
PromoteLocallyUsedAlloca(AI);
// Remove the alloca from the Allocas list, since it has been processed
- Allocas[i] = Allocas.back();
+ Allocas[AllocaNum] = Allocas.back();
Allocas.pop_back();
- --i;
+ --AllocaNum;
continue;
}
- AllocaLookup[Allocas[i]] = i;
-
- // PhiNodeBlocks - A list of blocks that phi nodes have been inserted for
- // this alloca.
- std::vector<BasicBlock*> PhiNodeBlocks;
-
// Compute the locations where PhiNodes need to be inserted. Look at the
// dominance frontier of EACH basic-block we have a write in.
//
unsigned CurrentVersion = 0;
+ std::set<PHINode*> InsertedPHINodes;
while (!DefiningBlocks.empty()) {
BasicBlock *BB = DefiningBlocks.back();
DefiningBlocks.pop_back();
@@ -148,10 +154,45 @@ void PromoteMem2Reg::run() {
const DominanceFrontier::DomSetType &S = it->second;
for (DominanceFrontier::DomSetType::iterator P = S.begin(),PE = S.end();
P != PE; ++P)
- if (QueuePhiNode(*P, i, CurrentVersion))
+ if (QueuePhiNode(*P, AllocaNum, CurrentVersion, InsertedPHINodes))
DefiningBlocks.push_back(*P);
}
}
+
+ // Now that we have inserted PHI nodes along the Iterated Dominance Frontier
+ // of the writes to the variable, scan through the reads of the variable,
+ // marking PHI nodes which are actually necessary as alive (by removing them
+ // from the InsertedPHINodes set). This is not perfect: there may PHI
+ // marked alive because of loads which are dominated by stores, but there
+ // will be no unmarked PHI nodes which are actually used.
+ //
+ for (unsigned i = 0, e = UsingBlocks.size(); i != e; ++i)
+ MarkDominatingPHILive(UsingBlocks[i], AllocaNum, InsertedPHINodes);
+ UsingBlocks.clear();
+
+ // If there are any PHI nodes which are now known to be dead, remove them!
+ for (std::set<PHINode*>::iterator I = InsertedPHINodes.begin(),
+ E = InsertedPHINodes.end(); I != E; ++I) {
+ PHINode *PN = *I;
+ std::vector<PHINode*> &BBPNs = NewPhiNodes[PN->getParent()];
+ BBPNs[AllocaNum] = 0;
+
+ // Check to see if we just removed the last inserted PHI node from this
+ // basic block. If so, remove the entry for the basic block.
+ bool HasOtherPHIs = false;
+ for (unsigned i = 0, e = BBPNs.size(); i != e; ++i)
+ if (BBPNs[i]) {
+ HasOtherPHIs = true;
+ break;
+ }
+ if (!HasOtherPHIs)
+ NewPhiNodes.erase(PN->getParent());
+
+ PN->getParent()->getInstList().erase(PN);
+ }
+
+ // Keep the reverse mapping of the 'Allocas' array.
+ AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
}
if (Allocas.empty())
@@ -215,7 +256,7 @@ void PromoteMem2Reg::run() {
// Now we loop through all BB's which have entries in FirstPHI and remove
// them from the Preds list.
for (unsigned i = 0, e = FirstPHI->getNumIncomingValues(); i != e; ++i) {
- // Do a log(n) search of teh Preds list for the entry we want.
+ // Do a log(n) search of the Preds list for the entry we want.
std::vector<BasicBlock*>::iterator EntIt =
std::lower_bound(Preds.begin(), Preds.end(),
FirstPHI->getIncomingBlock(i));
@@ -238,6 +279,43 @@ void PromoteMem2Reg::run() {
}
}
+// MarkDominatingPHILive - Mem2Reg wants to construct "pruned" SSA form, not
+// "minimal" SSA form. To do this, it inserts all of the PHI nodes on the IDF
+// as usual (inserting the PHI nodes in the DeadPHINodes set), then processes
+// each read of the variable. For each block that reads the variable, this
+// function is called, which removes used PHI nodes from the DeadPHINodes set.
+// After all of the reads have been processed, any PHI nodes left in the
+// DeadPHINodes set are removed.
+//
+void PromoteMem2Reg::MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
+ std::set<PHINode*> &DeadPHINodes) {
+ // Scan the immediate dominators of this block looking for a block which has a
+ // PHI node for Alloca num. If we find it, mark the PHI node as being alive!
+ for (DominatorTree::Node *N = DT[BB]; N; N = N->getIDom()) {
+ BasicBlock *DomBB = N->getBlock();
+ std::map<BasicBlock*, std::vector<PHINode*> >::iterator
+ I = NewPhiNodes.find(DomBB);
+ if (I != NewPhiNodes.end() && I->second[AllocaNum]) {
+ // Ok, we found an inserted PHI node which dominates this value.
+ PHINode *DominatingPHI = I->second[AllocaNum];
+
+ // Find out if we previously thought it was dead.
+ std::set<PHINode*>::iterator DPNI = DeadPHINodes.find(DominatingPHI);
+ if (DPNI != DeadPHINodes.end()) {
+ // Ok, until now, we thought this PHI node was dead. Mark it as being
+ // alive/needed.
+ DeadPHINodes.erase(DPNI);
+
+ // Now that we have marked the PHI node alive, also mark any PHI nodes
+ // which it might use as being alive as well.
+ for (pred_iterator PI = pred_begin(DomBB), PE = pred_end(DomBB);
+ PI != PE; ++PI)
+ MarkDominatingPHILive(*PI, AllocaNum, DeadPHINodes);
+ }
+ }
+ }
+}
+
// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic
// block. If this is the case, avoid traversing the CFG and inserting a lot of
// potentially useless PHI nodes by just performing a single linear pass over
@@ -278,7 +356,8 @@ void PromoteMem2Reg::PromoteLocallyUsedAlloca(AllocaInst *AI) {
// Alloca returns true if there wasn't already a phi-node for that variable
//
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
- unsigned &Version) {
+ unsigned &Version,
+ std::set<PHINode*> &InsertedPHINodes) {
// Look up the basic-block in question
std::vector<PHINode*> &BBPNs = NewPhiNodes[BB];
if (BBPNs.empty()) BBPNs.resize(Allocas.size());
@@ -291,9 +370,15 @@ bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
BBPNs[AllocaNo] = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
Allocas[AllocaNo]->getName() + "." +
utostr(Version++), BB->begin());
+ InsertedPHINodes.insert(BBPNs[AllocaNo]);
return true;
}
+
+// RenamePass - Recursively traverse the CFG of the function, renaming loads and
+// stores to the allocas which we are promoting. IncomingVals indicates what
+// value each Alloca contains on exit from the predecessor block Pred.
+//
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
std::vector<Value*> &IncomingVals) {
@@ -347,7 +432,7 @@ void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
}
}
- // Recurse to our successors
+ // Recurse to our successors.
TerminatorInst *TI = BB->getTerminator();
for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
std::vector<Value*> OutgoingVals(IncomingVals);
@@ -365,5 +450,5 @@ void PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
const TargetData &TD) {
// If there is nothing to do, bail out...
if (Allocas.empty()) return;
- PromoteMem2Reg(Allocas, DF, TD).run();
+ PromoteMem2Reg(Allocas, DT, DF, TD).run();
}