diff options
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineMulDivRem.cpp')
-rw-r--r-- | lib/Transforms/InstCombine/InstCombineMulDivRem.cpp | 226 |
1 files changed, 187 insertions, 39 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp index d0f43928c3..8e4267f898 100644 --- a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp +++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp @@ -377,6 +377,8 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD)) return ReplaceInstUsesWith(I, V); + bool AllowReassociate = I.hasUnsafeAlgebra(); + // Simplify mul instructions with a constant RHS. if (isa<Constant>(Op1)) { // Try to fold constant mul into select arguments. @@ -389,7 +391,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { return NV; ConstantFP *C = dyn_cast<ConstantFP>(Op1); - if (C && I.hasUnsafeAlgebra() && C->getValueAPF().isNormal()) { + if (C && AllowReassociate && C->getValueAPF().isNormal()) { // Let MDC denote an expression in one of these forms: // X * C, C/X, X/C, where C is a constant. // @@ -430,7 +432,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { BinaryOperator::CreateFAdd(M0, M1) : BinaryOperator::CreateFSub(M0, M1); Instruction *RI = cast<Instruction>(R); - RI->setHasUnsafeAlgebra(true); + RI->copyFastMathFlags(&I); return RI; } } @@ -438,9 +440,6 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { } } - if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y - if (Value *Op1v = dyn_castFNegVal(Op1)) - return BinaryOperator::CreateFMul(Op0v, Op1v); // Under unsafe algebra do: // X * log2(0.5*Y) = X*log2(Y) - X @@ -469,36 +468,66 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { } } - // X * cond ? 1.0 : 0.0 => cond ? X : 0.0 - if (I.hasNoNaNs() && I.hasNoSignedZeros()) { - Value *V0 = I.getOperand(0); - Value *V1 = I.getOperand(1); - Value *Cond, *SLHS, *SRHS; - bool Match = false; - - if (match(V0, m_Select(m_Value(Cond), m_Value(SLHS), m_Value(SRHS)))) { - Match = true; - } else if (match(V1, m_Select(m_Value(Cond), m_Value(SLHS), - m_Value(SRHS)))) { - Match = true; - std::swap(V0, V1); + // Handle symmetric situation in a 2-iteration loop + Value *Opnd0 = Op0; + Value *Opnd1 = Op1; + for (int i = 0; i < 2; i++) { + bool IgnoreZeroSign = I.hasNoSignedZeros(); + if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) { + Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign); + Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign); + + // -X * -Y => X*Y + if (N1) + return BinaryOperator::CreateFMul(N0, N1); + + if (Opnd0->hasOneUse()) { + // -X * Y => -(X*Y) (Promote negation as high as possible) + Value *T = Builder->CreateFMul(N0, Opnd1); + cast<Instruction>(T)->setDebugLoc(I.getDebugLoc()); + Instruction *Neg = BinaryOperator::CreateFNeg(T); + if (I.getFastMathFlags().any()) { + cast<Instruction>(T)->copyFastMathFlags(&I); + Neg->copyFastMathFlags(&I); + } + return Neg; + } } - if (Match) { - ConstantFP *C0 = dyn_cast<ConstantFP>(SLHS); - ConstantFP *C1 = dyn_cast<ConstantFP>(SRHS); - - if (C0 && C1 && - ((C0->isZero() && C1->isExactlyValue(1.0)) || - (C1->isZero() && C0->isExactlyValue(1.0)))) { - Value *T; - if (C0->isZero()) - T = Builder->CreateSelect(Cond, SLHS, V1); - else - T = Builder->CreateSelect(Cond, V1, SRHS); - return ReplaceInstUsesWith(I, T); + // (X*Y) * X => (X*X) * Y where Y != X + // The purpose is two-fold: + // 1) to form a power expression (of X). + // 2) potentially shorten the critical path: After transformation, the + // latency of the instruction Y is amortized by the expression of X*X, + // and therefore Y is in a "less critical" position compared to what it + // was before the transformation. + // + if (AllowReassociate) { + Value *Opnd0_0, *Opnd0_1; + if (Opnd0->hasOneUse() && + match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) { + Value *Y = 0; + if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1) + Y = Opnd0_1; + else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1) + Y = Opnd0_0; + + if (Y) { + Instruction *T = cast<Instruction>(Builder->CreateFMul(Opnd1, Opnd1)); + T->copyFastMathFlags(&I); + T->setDebugLoc(I.getDebugLoc()); + + Instruction *R = BinaryOperator::CreateFMul(T, Y); + R->copyFastMathFlags(&I); + return R; + } } } + + if (!isa<Constant>(Op1)) + std::swap(Opnd0, Opnd1); + else + break; } return Changed ? &I : 0; @@ -784,21 +813,140 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { return 0; } +/// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special +/// FP value and: +/// 1) 1/C is exact, or +/// 2) reciprocal is allowed. +/// If the convertion was successful, the simplified expression "X * 1/C" is +/// returned; otherwise, NULL is returned. +/// +static Instruction *CvtFDivConstToReciprocal(Value *Dividend, + ConstantFP *Divisor, + bool AllowReciprocal) { + const APFloat &FpVal = Divisor->getValueAPF(); + APFloat Reciprocal(FpVal.getSemantics()); + bool Cvt = FpVal.getExactInverse(&Reciprocal); + + if (!Cvt && AllowReciprocal && FpVal.isNormal()) { + Reciprocal = APFloat(FpVal.getSemantics(), 1.0f); + (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven); + Cvt = !Reciprocal.isDenormal(); + } + + if (!Cvt) + return 0; + + ConstantFP *R; + R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal); + return BinaryOperator::CreateFMul(Dividend, R); +} + Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Value *V = SimplifyFDivInst(Op0, Op1, TD)) return ReplaceInstUsesWith(I, V); + bool AllowReassociate = I.hasUnsafeAlgebra(); + bool AllowReciprocal = I.hasAllowReciprocal(); + if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { - const APFloat &Op1F = Op1C->getValueAPF(); - - // If the divisor has an exact multiplicative inverse we can turn the fdiv - // into a cheaper fmul. - APFloat Reciprocal(Op1F.getSemantics()); - if (Op1F.getExactInverse(&Reciprocal)) { - ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal); - return BinaryOperator::CreateFMul(Op0, RFP); + if (AllowReassociate) { + ConstantFP *C1 = 0; + ConstantFP *C2 = Op1C; + Value *X; + Instruction *Res = 0; + + if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) { + // (X*C1)/C2 => X * (C1/C2) + // + Constant *C = ConstantExpr::getFDiv(C1, C2); + const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); + if (F.isNormal() && !F.isDenormal()) + Res = BinaryOperator::CreateFMul(X, C); + } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) { + // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed] + // + Constant *C = ConstantExpr::getFMul(C1, C2); + const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); + if (F.isNormal() && !F.isDenormal()) { + Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C), + AllowReciprocal); + if (!Res) + Res = BinaryOperator::CreateFDiv(X, C); + } + } + + if (Res) { + Res->setFastMathFlags(I.getFastMathFlags()); + return Res; + } + } + + // X / C => X * 1/C + if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) + return T; + + return 0; + } + + if (AllowReassociate && isa<ConstantFP>(Op0)) { + ConstantFP *C1 = cast<ConstantFP>(Op0), *C2; + Constant *Fold = 0; + Value *X; + bool CreateDiv = true; + + // C1 / (X*C2) => (C1/C2) / X + if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2)))) + Fold = ConstantExpr::getFDiv(C1, C2); + else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) { + // C1 / (X/C2) => (C1*C2) / X + Fold = ConstantExpr::getFMul(C1, C2); + } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) { + // C1 / (C2/X) => (C1/C2) * X + Fold = ConstantExpr::getFDiv(C1, C2); + CreateDiv = false; + } + + if (Fold) { + const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF(); + if (FoldC.isNormal() && !FoldC.isDenormal()) { + Instruction *R = CreateDiv ? + BinaryOperator::CreateFDiv(Fold, X) : + BinaryOperator::CreateFMul(X, Fold); + R->setFastMathFlags(I.getFastMathFlags()); + return R; + } + } + return 0; + } + + if (AllowReassociate) { + Value *X, *Y; + Value *NewInst = 0; + Instruction *SimpR = 0; + + if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) { + // (X/Y) / Z => X / (Y*Z) + // + if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) { + NewInst = Builder->CreateFMul(Y, Op1); + SimpR = BinaryOperator::CreateFDiv(X, NewInst); + } + } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) { + // Z / (X/Y) => Z*Y / X + // + if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) { + NewInst = Builder->CreateFMul(Op0, Y); + SimpR = BinaryOperator::CreateFDiv(NewInst, X); + } + } + + if (NewInst) { + if (Instruction *T = dyn_cast<Instruction>(NewInst)) + T->setDebugLoc(I.getDebugLoc()); + SimpR->setFastMathFlags(I.getFastMathFlags()); + return SimpR; } } |