aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Sparc/SparcInstr64Bit.td
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/Sparc/SparcInstr64Bit.td')
-rw-r--r--lib/Target/Sparc/SparcInstr64Bit.td333
1 files changed, 333 insertions, 0 deletions
diff --git a/lib/Target/Sparc/SparcInstr64Bit.td b/lib/Target/Sparc/SparcInstr64Bit.td
new file mode 100644
index 0000000000..91805f9f11
--- /dev/null
+++ b/lib/Target/Sparc/SparcInstr64Bit.td
@@ -0,0 +1,333 @@
+//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains instruction definitions and patterns needed for 64-bit
+// code generation on SPARC v9.
+//
+// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
+// also be used in 32-bit code running on a SPARC v9 CPU.
+//
+//===----------------------------------------------------------------------===//
+
+let Predicates = [Is64Bit] in {
+// The same integer registers are used for i32 and i64 values.
+// When registers hold i32 values, the high bits are don't care.
+// This give us free trunc and anyext.
+def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
+def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
+
+} // Predicates = [Is64Bit]
+
+
+//===----------------------------------------------------------------------===//
+// 64-bit Shift Instructions.
+//===----------------------------------------------------------------------===//
+//
+// The 32-bit shift instructions are still available. The left shift srl
+// instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
+//
+// The srl instructions only shift the low 32 bits and clear the high 32 bits.
+// Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
+
+let Predicates = [Is64Bit] in {
+
+def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
+def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
+
+def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
+def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
+
+defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
+defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
+defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
+
+} // Predicates = [Is64Bit]
+
+
+//===----------------------------------------------------------------------===//
+// 64-bit Immediates.
+//===----------------------------------------------------------------------===//
+//
+// All 32-bit immediates can be materialized with sethi+or, but 64-bit
+// immediates may require more code. There may be a point where it is
+// preferable to use a constant pool load instead, depending on the
+// microarchitecture.
+
+// The %g0 register is constant 0.
+// This is useful for stx %g0, [...], for example.
+def : Pat<(i64 0), (i64 G0)>, Requires<[Is64Bit]>;
+
+// Single-instruction patterns.
+
+// The ALU instructions want their simm13 operands as i32 immediates.
+def as_i32imm : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
+}]>;
+def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
+def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
+
+// Double-instruction patterns.
+
+// All unsigned i32 immediates can be handled by sethi+or.
+def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
+def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
+ Requires<[Is64Bit]>;
+
+// All negative i33 immediates can be handled by sethi+xor.
+def nimm33 : PatLeaf<(imm), [{
+ int64_t Imm = N->getSExtValue();
+ return Imm < 0 && isInt<33>(Imm);
+}]>;
+// Bits 10-31 inverted. Same as assembler's %hix.
+def HIX22 : SDNodeXForm<imm, [{
+ uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
+ return CurDAG->getTargetConstant(Val, MVT::i32);
+}]>;
+// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
+def LOX10 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32);
+}]>;
+def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
+ Requires<[Is64Bit]>;
+
+// More possible patterns:
+//
+// (sllx sethi, n)
+// (sllx simm13, n)
+//
+// 3 instrs:
+//
+// (xor (sllx sethi), simm13)
+// (sllx (xor sethi, simm13))
+//
+// 4 instrs:
+//
+// (or sethi, (sllx sethi))
+// (xnor sethi, (sllx sethi))
+//
+// 5 instrs:
+//
+// (or (sllx sethi), (or sethi, simm13))
+// (xnor (sllx sethi), (or sethi, simm13))
+// (or (sllx sethi), (sllx sethi))
+// (xnor (sllx sethi), (sllx sethi))
+//
+// Worst case is 6 instrs:
+//
+// (or (sllx (or sethi, simmm13)), (or sethi, simm13))
+
+// Bits 42-63, same as assembler's %hh.
+def HH22 : SDNodeXForm<imm, [{
+ uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
+ return CurDAG->getTargetConstant(Val, MVT::i32);
+}]>;
+// Bits 32-41, same as assembler's %hm.
+def HM10 : SDNodeXForm<imm, [{
+ uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
+ return CurDAG->getTargetConstant(Val, MVT::i32);
+}]>;
+def : Pat<(i64 imm:$val),
+ (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
+ (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
+ Requires<[Is64Bit]>;
+
+
+//===----------------------------------------------------------------------===//
+// 64-bit Integer Arithmetic and Logic.
+//===----------------------------------------------------------------------===//
+
+let Predicates = [Is64Bit] in {
+
+// Register-register instructions.
+
+def : Pat<(and i64:$a, i64:$b), (ANDrr $a, $b)>;
+def : Pat<(or i64:$a, i64:$b), (ORrr $a, $b)>;
+def : Pat<(xor i64:$a, i64:$b), (XORrr $a, $b)>;
+
+def : Pat<(and i64:$a, (not i64:$b)), (ANDNrr $a, $b)>;
+def : Pat<(or i64:$a, (not i64:$b)), (ORNrr $a, $b)>;
+def : Pat<(xor i64:$a, (not i64:$b)), (XNORrr $a, $b)>;
+
+def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>;
+def : Pat<(sub i64:$a, i64:$b), (SUBrr $a, $b)>;
+
+// Add/sub with carry were renamed to addc/subc in SPARC v9.
+def : Pat<(adde i64:$a, i64:$b), (ADDXrr $a, $b)>;
+def : Pat<(sube i64:$a, i64:$b), (SUBXrr $a, $b)>;
+
+def : Pat<(addc i64:$a, i64:$b), (ADDCCrr $a, $b)>;
+def : Pat<(subc i64:$a, i64:$b), (SUBCCrr $a, $b)>;
+
+def : Pat<(SPcmpicc i64:$a, i64:$b), (SUBCCrr $a, $b)>;
+
+// Register-immediate instructions.
+
+def : Pat<(and i64:$a, (i64 simm13:$b)), (ANDri $a, (as_i32imm $b))>;
+def : Pat<(or i64:$a, (i64 simm13:$b)), (ORri $a, (as_i32imm $b))>;
+def : Pat<(xor i64:$a, (i64 simm13:$b)), (XORri $a, (as_i32imm $b))>;
+
+def : Pat<(add i64:$a, (i64 simm13:$b)), (ADDri $a, (as_i32imm $b))>;
+def : Pat<(sub i64:$a, (i64 simm13:$b)), (SUBri $a, (as_i32imm $b))>;
+
+def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (SUBCCri $a, (as_i32imm $b))>;
+
+} // Predicates = [Is64Bit]
+
+
+//===----------------------------------------------------------------------===//
+// 64-bit Integer Multiply and Divide.
+//===----------------------------------------------------------------------===//
+
+let Predicates = [Is64Bit] in {
+
+def MULXrr : F3_1<2, 0b001001,
+ (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
+ "mulx $rs1, $rs2, $rd",
+ [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
+def MULXri : F3_2<2, 0b001001,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
+ "mulx $rs1, $i, $rd",
+ [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$i)))]>;
+
+// Division can trap.
+let hasSideEffects = 1 in {
+def SDIVXrr : F3_1<2, 0b101101,
+ (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
+ "sdivx $rs1, $rs2, $rd",
+ [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
+def SDIVXri : F3_2<2, 0b101101,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
+ "sdivx $rs1, $i, $rd",
+ [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$i)))]>;
+
+def UDIVXrr : F3_1<2, 0b001101,
+ (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
+ "udivx $rs1, $rs2, $rd",
+ [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
+def UDIVXri : F3_2<2, 0b001101,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
+ "udivx $rs1, $i, $rd",
+ [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$i)))]>;
+} // hasSideEffects = 1
+
+} // Predicates = [Is64Bit]
+
+
+//===----------------------------------------------------------------------===//
+// 64-bit Loads and Stores.
+//===----------------------------------------------------------------------===//
+//
+// All the 32-bit loads and stores are available. The extending loads are sign
+// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
+// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
+// Word).
+//
+// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
+
+let Predicates = [Is64Bit] in {
+
+// 64-bit loads.
+def LDXrr : F3_1<3, 0b001011,
+ (outs I64Regs:$dst), (ins MEMrr:$addr),
+ "ldx [$addr], $dst",
+ [(set i64:$dst, (load ADDRrr:$addr))]>;
+def LDXri : F3_2<3, 0b001011,
+ (outs I64Regs:$dst), (ins MEMri:$addr),
+ "ldx [$addr], $dst",
+ [(set i64:$dst, (load ADDRri:$addr))]>;
+
+// Extending loads to i64.
+def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
+def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
+def : Pat<(i64 (extloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
+def : Pat<(i64 (extloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
+def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
+def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
+
+def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
+def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
+def : Pat<(i64 (extloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
+def : Pat<(i64 (extloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
+def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
+def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
+
+def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
+def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
+def : Pat<(i64 (extloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
+def : Pat<(i64 (extloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
+
+// Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
+def LDSWrr : F3_1<3, 0b001011,
+ (outs I64Regs:$dst), (ins MEMrr:$addr),
+ "ldsw [$addr], $dst",
+ [(set i64:$dst, (sextloadi32 ADDRrr:$addr))]>;
+def LDSWri : F3_2<3, 0b001011,
+ (outs I64Regs:$dst), (ins MEMri:$addr),
+ "ldsw [$addr], $dst",
+ [(set i64:$dst, (sextloadi32 ADDRri:$addr))]>;
+
+// 64-bit stores.
+def STXrr : F3_1<3, 0b001110,
+ (outs), (ins MEMrr:$addr, I64Regs:$src),
+ "stx $src, [$addr]",
+ [(store i64:$src, ADDRrr:$addr)]>;
+def STXri : F3_2<3, 0b001110,
+ (outs), (ins MEMri:$addr, I64Regs:$src),
+ "stx $src, [$addr]",
+ [(store i64:$src, ADDRri:$addr)]>;
+
+// Truncating stores from i64 are identical to the i32 stores.
+def : Pat<(truncstorei8 i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
+def : Pat<(truncstorei8 i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
+def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
+def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
+def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr ADDRrr:$addr, $src)>;
+def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri ADDRri:$addr, $src)>;
+
+} // Predicates = [Is64Bit]
+
+
+//===----------------------------------------------------------------------===//
+// 64-bit Conditionals.
+//===----------------------------------------------------------------------===//
+//
+// Flag-setting instructions like subcc and addcc set both icc and xcc flags.
+// The icc flags correspond to the 32-bit result, and the xcc are for the
+// full 64-bit result.
+//
+// We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
+// 64-bit compares. See LowerBR_CC.
+
+let Predicates = [Is64Bit] in {
+
+let Uses = [ICC] in
+def BPXCC : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
+ "bp$cc %xcc, $dst",
+ [(SPbrxcc bb:$dst, imm:$cc)]>;
+
+// Conditional moves on %xcc.
+let Uses = [ICC], Constraints = "$f = $rd" in {
+def MOVXCCrr : Pseudo<(outs IntRegs:$rd),
+ (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
+ "mov$cond %xcc, $rs2, $rd",
+ [(set i32:$rd,
+ (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
+def MOVXCCri : Pseudo<(outs IntRegs:$rd),
+ (ins i32imm:$i, IntRegs:$f, CCOp:$cond),
+ "mov$cond %xcc, $i, $rd",
+ [(set i32:$rd,
+ (SPselecticc simm11:$i, i32:$f, imm:$cond))]>;
+} // Uses, Constraints
+
+def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
+ (MOVXCCrr $t, $f, imm:$cond)>;
+def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
+ (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
+
+} // Predicates = [Is64Bit]