diff options
Diffstat (limited to 'lib/Target/Sparc/SparcInstr64Bit.td')
-rw-r--r-- | lib/Target/Sparc/SparcInstr64Bit.td | 333 |
1 files changed, 333 insertions, 0 deletions
diff --git a/lib/Target/Sparc/SparcInstr64Bit.td b/lib/Target/Sparc/SparcInstr64Bit.td new file mode 100644 index 0000000000..91805f9f11 --- /dev/null +++ b/lib/Target/Sparc/SparcInstr64Bit.td @@ -0,0 +1,333 @@ +//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains instruction definitions and patterns needed for 64-bit +// code generation on SPARC v9. +// +// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can +// also be used in 32-bit code running on a SPARC v9 CPU. +// +//===----------------------------------------------------------------------===// + +let Predicates = [Is64Bit] in { +// The same integer registers are used for i32 and i64 values. +// When registers hold i32 values, the high bits are don't care. +// This give us free trunc and anyext. +def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>; +def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>; + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Shift Instructions. +//===----------------------------------------------------------------------===// +// +// The 32-bit shift instructions are still available. The left shift srl +// instructions shift all 64 bits, but it only accepts a 5-bit shift amount. +// +// The srl instructions only shift the low 32 bits and clear the high 32 bits. +// Finally, sra shifts the low 32 bits and sign-extends to 64 bits. + +let Predicates = [Is64Bit] in { + +def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>; +def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>; + +def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>; +def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>; + +defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>; +defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>; +defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>; + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Immediates. +//===----------------------------------------------------------------------===// +// +// All 32-bit immediates can be materialized with sethi+or, but 64-bit +// immediates may require more code. There may be a point where it is +// preferable to use a constant pool load instead, depending on the +// microarchitecture. + +// The %g0 register is constant 0. +// This is useful for stx %g0, [...], for example. +def : Pat<(i64 0), (i64 G0)>, Requires<[Is64Bit]>; + +// Single-instruction patterns. + +// The ALU instructions want their simm13 operands as i32 immediates. +def as_i32imm : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32); +}]>; +def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>; +def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>; + +// Double-instruction patterns. + +// All unsigned i32 immediates can be handled by sethi+or. +def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>; +def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>, + Requires<[Is64Bit]>; + +// All negative i33 immediates can be handled by sethi+xor. +def nimm33 : PatLeaf<(imm), [{ + int64_t Imm = N->getSExtValue(); + return Imm < 0 && isInt<33>(Imm); +}]>; +// Bits 10-31 inverted. Same as assembler's %hix. +def HIX22 : SDNodeXForm<imm, [{ + uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1); + return CurDAG->getTargetConstant(Val, MVT::i32); +}]>; +// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox. +def LOX10 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32); +}]>; +def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>, + Requires<[Is64Bit]>; + +// More possible patterns: +// +// (sllx sethi, n) +// (sllx simm13, n) +// +// 3 instrs: +// +// (xor (sllx sethi), simm13) +// (sllx (xor sethi, simm13)) +// +// 4 instrs: +// +// (or sethi, (sllx sethi)) +// (xnor sethi, (sllx sethi)) +// +// 5 instrs: +// +// (or (sllx sethi), (or sethi, simm13)) +// (xnor (sllx sethi), (or sethi, simm13)) +// (or (sllx sethi), (sllx sethi)) +// (xnor (sllx sethi), (sllx sethi)) +// +// Worst case is 6 instrs: +// +// (or (sllx (or sethi, simmm13)), (or sethi, simm13)) + +// Bits 42-63, same as assembler's %hh. +def HH22 : SDNodeXForm<imm, [{ + uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1); + return CurDAG->getTargetConstant(Val, MVT::i32); +}]>; +// Bits 32-41, same as assembler's %hm. +def HM10 : SDNodeXForm<imm, [{ + uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1); + return CurDAG->getTargetConstant(Val, MVT::i32); +}]>; +def : Pat<(i64 imm:$val), + (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)), + (ORri (SETHIi (HI22 $val)), (LO10 $val)))>, + Requires<[Is64Bit]>; + + +//===----------------------------------------------------------------------===// +// 64-bit Integer Arithmetic and Logic. +//===----------------------------------------------------------------------===// + +let Predicates = [Is64Bit] in { + +// Register-register instructions. + +def : Pat<(and i64:$a, i64:$b), (ANDrr $a, $b)>; +def : Pat<(or i64:$a, i64:$b), (ORrr $a, $b)>; +def : Pat<(xor i64:$a, i64:$b), (XORrr $a, $b)>; + +def : Pat<(and i64:$a, (not i64:$b)), (ANDNrr $a, $b)>; +def : Pat<(or i64:$a, (not i64:$b)), (ORNrr $a, $b)>; +def : Pat<(xor i64:$a, (not i64:$b)), (XNORrr $a, $b)>; + +def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>; +def : Pat<(sub i64:$a, i64:$b), (SUBrr $a, $b)>; + +// Add/sub with carry were renamed to addc/subc in SPARC v9. +def : Pat<(adde i64:$a, i64:$b), (ADDXrr $a, $b)>; +def : Pat<(sube i64:$a, i64:$b), (SUBXrr $a, $b)>; + +def : Pat<(addc i64:$a, i64:$b), (ADDCCrr $a, $b)>; +def : Pat<(subc i64:$a, i64:$b), (SUBCCrr $a, $b)>; + +def : Pat<(SPcmpicc i64:$a, i64:$b), (SUBCCrr $a, $b)>; + +// Register-immediate instructions. + +def : Pat<(and i64:$a, (i64 simm13:$b)), (ANDri $a, (as_i32imm $b))>; +def : Pat<(or i64:$a, (i64 simm13:$b)), (ORri $a, (as_i32imm $b))>; +def : Pat<(xor i64:$a, (i64 simm13:$b)), (XORri $a, (as_i32imm $b))>; + +def : Pat<(add i64:$a, (i64 simm13:$b)), (ADDri $a, (as_i32imm $b))>; +def : Pat<(sub i64:$a, (i64 simm13:$b)), (SUBri $a, (as_i32imm $b))>; + +def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (SUBCCri $a, (as_i32imm $b))>; + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Integer Multiply and Divide. +//===----------------------------------------------------------------------===// + +let Predicates = [Is64Bit] in { + +def MULXrr : F3_1<2, 0b001001, + (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), + "mulx $rs1, $rs2, $rd", + [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>; +def MULXri : F3_2<2, 0b001001, + (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i), + "mulx $rs1, $i, $rd", + [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$i)))]>; + +// Division can trap. +let hasSideEffects = 1 in { +def SDIVXrr : F3_1<2, 0b101101, + (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), + "sdivx $rs1, $rs2, $rd", + [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>; +def SDIVXri : F3_2<2, 0b101101, + (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i), + "sdivx $rs1, $i, $rd", + [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$i)))]>; + +def UDIVXrr : F3_1<2, 0b001101, + (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), + "udivx $rs1, $rs2, $rd", + [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>; +def UDIVXri : F3_2<2, 0b001101, + (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i), + "udivx $rs1, $i, $rd", + [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$i)))]>; +} // hasSideEffects = 1 + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Loads and Stores. +//===----------------------------------------------------------------------===// +// +// All the 32-bit loads and stores are available. The extending loads are sign +// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits +// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned +// Word). +// +// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads. + +let Predicates = [Is64Bit] in { + +// 64-bit loads. +def LDXrr : F3_1<3, 0b001011, + (outs I64Regs:$dst), (ins MEMrr:$addr), + "ldx [$addr], $dst", + [(set i64:$dst, (load ADDRrr:$addr))]>; +def LDXri : F3_2<3, 0b001011, + (outs I64Regs:$dst), (ins MEMri:$addr), + "ldx [$addr], $dst", + [(set i64:$dst, (load ADDRri:$addr))]>; + +// Extending loads to i64. +def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; +def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; +def : Pat<(i64 (extloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; +def : Pat<(i64 (extloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; +def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>; +def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>; + +def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>; +def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>; +def : Pat<(i64 (extloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>; +def : Pat<(i64 (extloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>; +def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>; +def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>; + +def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>; +def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>; +def : Pat<(i64 (extloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>; +def : Pat<(i64 (extloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>; + +// Sign-extending load of i32 into i64 is a new SPARC v9 instruction. +def LDSWrr : F3_1<3, 0b001011, + (outs I64Regs:$dst), (ins MEMrr:$addr), + "ldsw [$addr], $dst", + [(set i64:$dst, (sextloadi32 ADDRrr:$addr))]>; +def LDSWri : F3_2<3, 0b001011, + (outs I64Regs:$dst), (ins MEMri:$addr), + "ldsw [$addr], $dst", + [(set i64:$dst, (sextloadi32 ADDRri:$addr))]>; + +// 64-bit stores. +def STXrr : F3_1<3, 0b001110, + (outs), (ins MEMrr:$addr, I64Regs:$src), + "stx $src, [$addr]", + [(store i64:$src, ADDRrr:$addr)]>; +def STXri : F3_2<3, 0b001110, + (outs), (ins MEMri:$addr, I64Regs:$src), + "stx $src, [$addr]", + [(store i64:$src, ADDRri:$addr)]>; + +// Truncating stores from i64 are identical to the i32 stores. +def : Pat<(truncstorei8 i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>; +def : Pat<(truncstorei8 i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>; +def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>; +def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>; +def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr ADDRrr:$addr, $src)>; +def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri ADDRri:$addr, $src)>; + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Conditionals. +//===----------------------------------------------------------------------===// +// +// Flag-setting instructions like subcc and addcc set both icc and xcc flags. +// The icc flags correspond to the 32-bit result, and the xcc are for the +// full 64-bit result. +// +// We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for +// 64-bit compares. See LowerBR_CC. + +let Predicates = [Is64Bit] in { + +let Uses = [ICC] in +def BPXCC : BranchSP<0, (ins brtarget:$dst, CCOp:$cc), + "bp$cc %xcc, $dst", + [(SPbrxcc bb:$dst, imm:$cc)]>; + +// Conditional moves on %xcc. +let Uses = [ICC], Constraints = "$f = $rd" in { +def MOVXCCrr : Pseudo<(outs IntRegs:$rd), + (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), + "mov$cond %xcc, $rs2, $rd", + [(set i32:$rd, + (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>; +def MOVXCCri : Pseudo<(outs IntRegs:$rd), + (ins i32imm:$i, IntRegs:$f, CCOp:$cond), + "mov$cond %xcc, $i, $rd", + [(set i32:$rd, + (SPselecticc simm11:$i, i32:$f, imm:$cond))]>; +} // Uses, Constraints + +def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond), + (MOVXCCrr $t, $f, imm:$cond)>; +def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond), + (MOVXCCri (as_i32imm $t), $f, imm:$cond)>; + +} // Predicates = [Is64Bit] |