diff options
Diffstat (limited to 'lib/IR/Constants.cpp')
-rw-r--r-- | lib/IR/Constants.cpp | 79 |
1 files changed, 43 insertions, 36 deletions
diff --git a/lib/IR/Constants.cpp b/lib/IR/Constants.cpp index 027946efd1..2d67c0c943 100644 --- a/lib/IR/Constants.cpp +++ b/lib/IR/Constants.cpp @@ -47,6 +47,16 @@ bool Constant::isNegativeZeroValue() const { if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) return CFP->isZero() && CFP->isNegative(); + // Equivalent for a vector of -0.0's. + if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) + if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) + if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) + return true; + + // We've already handled true FP case; any other FP vectors can't represent -0.0. + if (getType()->isFPOrFPVectorTy()) + return false; + // Otherwise, just use +0.0. return isNullValue(); } @@ -227,18 +237,21 @@ void Constant::destroyConstantImpl() { delete this; } -/// canTrap - Return true if evaluation of this constant could trap. This is -/// true for things like constant expressions that could divide by zero. -bool Constant::canTrap() const { - assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); +static bool canTrapImpl(const Constant *C, + SmallPtrSet<const ConstantExpr *, 4> &NonTrappingOps) { + assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); // The only thing that could possibly trap are constant exprs. - const ConstantExpr *CE = dyn_cast<ConstantExpr>(this); - if (!CE) return false; + const ConstantExpr *CE = dyn_cast<ConstantExpr>(C); + if (!CE) + return false; // ConstantExpr traps if any operands can trap. - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - if (CE->getOperand(i)->canTrap()) - return true; + for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { + if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) { + if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps)) + return true; + } + } // Otherwise, only specific operations can trap. switch (CE->getOpcode()) { @@ -257,6 +270,13 @@ bool Constant::canTrap() const { } } +/// canTrap - Return true if evaluation of this constant could trap. This is +/// true for things like constant expressions that could divide by zero. +bool Constant::canTrap() const { + SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps; + return canTrapImpl(this, NonTrappingOps); +} + /// isThreadDependent - Return true if the value can vary between threads. bool Constant::isThreadDependent() const { SmallPtrSet<const Constant*, 64> Visited; @@ -1416,9 +1436,8 @@ static inline Constant *getFoldedCast( LLVMContextImpl *pImpl = Ty->getContext().pImpl; - // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> argVec(1, C); - ExprMapKeyType Key(opc, argVec); + // Look up the constant in the table first to ensure uniqueness. + ExprMapKeyType Key(opc, C); return pImpl->ExprConstants.getOrCreate(Ty, Key); } @@ -1715,9 +1734,8 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) return FC; // Fold a few common cases. - std::vector<Constant*> argVec(1, C1); - argVec.push_back(C2); - ExprMapKeyType Key(Opcode, argVec, 0, Flags); + Constant *ArgVec[] = { C1, C2 }; + ExprMapKeyType Key(Opcode, ArgVec, 0, Flags); LLVMContextImpl *pImpl = C1->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); @@ -1793,10 +1811,8 @@ Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) { if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) return SC; // Fold common cases - std::vector<Constant*> argVec(3, C); - argVec[1] = V1; - argVec[2] = V2; - ExprMapKeyType Key(Instruction::Select, argVec); + Constant *ArgVec[] = { C, V1, V2 }; + ExprMapKeyType Key(Instruction::Select, ArgVec); LLVMContextImpl *pImpl = C->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); @@ -1848,9 +1864,7 @@ ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> ArgVec; - ArgVec.push_back(LHS); - ArgVec.push_back(RHS); + Constant *ArgVec[] = { LHS, RHS }; // Get the key type with both the opcode and predicate const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); @@ -1871,9 +1885,7 @@ ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) { return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> ArgVec; - ArgVec.push_back(LHS); - ArgVec.push_back(RHS); + Constant *ArgVec[] = { LHS, RHS }; // Get the key type with both the opcode and predicate const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); @@ -1895,9 +1907,8 @@ Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { return FC; // Fold a few common cases. // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> ArgVec(1, Val); - ArgVec.push_back(Idx); - const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); + Constant *ArgVec[] = { Val, Idx }; + const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec); LLVMContextImpl *pImpl = Val->getContext().pImpl; Type *ReqTy = Val->getType()->getVectorElementType(); @@ -1916,10 +1927,8 @@ Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) return FC; // Fold a few common cases. // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> ArgVec(1, Val); - ArgVec.push_back(Elt); - ArgVec.push_back(Idx); - const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); + Constant *ArgVec[] = { Val, Elt, Idx }; + const ExprMapKeyType Key(Instruction::InsertElement, ArgVec); LLVMContextImpl *pImpl = Val->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); @@ -1938,10 +1947,8 @@ Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, Type *ShufTy = VectorType::get(EltTy, NElts); // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> ArgVec(1, V1); - ArgVec.push_back(V2); - ArgVec.push_back(Mask); - const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); + Constant *ArgVec[] = { V1, V2, Mask }; + const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec); LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ShufTy, Key); |