aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp')
-rw-r--r--lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp1967
1 files changed, 0 insertions, 1967 deletions
diff --git a/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp b/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp
deleted file mode 100644
index ffb3404ff8..0000000000
--- a/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp
+++ /dev/null
@@ -1,1967 +0,0 @@
-//===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This ModuloScheduling pass is based on the Swing Modulo Scheduling
-// algorithm.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "ModuloSched"
-
-#include "ModuloScheduling.h"
-#include "llvm/Instructions.h"
-#include "llvm/Function.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Target/TargetSchedInfo.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/GraphWriter.h"
-#include "llvm/ADT/StringExtras.h"
-#include <cmath>
-#include <algorithm>
-#include <fstream>
-#include <sstream>
-#include <utility>
-#include <vector>
-#include "../../Target/SparcV9/MachineCodeForInstruction.h"
-#include "../../Target/SparcV9/SparcV9TmpInstr.h"
-#include "../../Target/SparcV9/SparcV9Internals.h"
-#include "../../Target/SparcV9/SparcV9RegisterInfo.h"
-using namespace llvm;
-
-/// Create ModuloSchedulingPass
-///
-FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) {
- DEBUG(std::cerr << "Created ModuloSchedulingPass\n");
- return new ModuloSchedulingPass(targ);
-}
-
-
-//Graph Traits for printing out the dependence graph
-template<typename GraphType>
-static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
- const GraphType &GT) {
- std::string Filename = GraphName + ".dot";
- O << "Writing '" << Filename << "'...";
- std::ofstream F(Filename.c_str());
-
- if (F.good())
- WriteGraph(F, GT);
- else
- O << " error opening file for writing!";
- O << "\n";
-};
-
-//Graph Traits for printing out the dependence graph
-namespace llvm {
-
- template<>
- struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits {
- static std::string getGraphName(MSchedGraph *F) {
- return "Dependence Graph";
- }
-
- static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) {
- if (Node->getInst()) {
- std::stringstream ss;
- ss << *(Node->getInst());
- return ss.str(); //((MachineInstr*)Node->getInst());
- }
- else
- return "No Inst";
- }
- static std::string getEdgeSourceLabel(MSchedGraphNode *Node,
- MSchedGraphNode::succ_iterator I) {
- //Label each edge with the type of dependence
- std::string edgelabel = "";
- switch (I.getEdge().getDepOrderType()) {
-
- case MSchedGraphEdge::TrueDep:
- edgelabel = "True";
- break;
-
- case MSchedGraphEdge::AntiDep:
- edgelabel = "Anti";
- break;
-
- case MSchedGraphEdge::OutputDep:
- edgelabel = "Output";
- break;
-
- default:
- edgelabel = "Unknown";
- break;
- }
-
- //FIXME
- int iteDiff = I.getEdge().getIteDiff();
- std::string intStr = "(IteDiff: ";
- intStr += itostr(iteDiff);
-
- intStr += ")";
- edgelabel += intStr;
-
- return edgelabel;
- }
- };
-}
-
-/// ModuloScheduling::runOnFunction - main transformation entry point
-/// The Swing Modulo Schedule algorithm has three basic steps:
-/// 1) Computation and Analysis of the dependence graph
-/// 2) Ordering of the nodes
-/// 3) Scheduling
-///
-bool ModuloSchedulingPass::runOnFunction(Function &F) {
-
- bool Changed = false;
-
- DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in " + F.getName() + "\n");
-
- //Get MachineFunction
- MachineFunction &MF = MachineFunction::get(&F);
-
- //Worklist
- std::vector<MachineBasicBlock*> Worklist;
-
- //Iterate over BasicBlocks and put them into our worklist if they are valid
- for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI)
- if(MachineBBisValid(BI))
- Worklist.push_back(&*BI);
-
- DEBUG(if(Worklist.size() == 0) std::cerr << "No single basic block loops in function to ModuloSchedule\n");
-
- //Iterate over the worklist and perform scheduling
- for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(),
- BE = Worklist.end(); BI != BE; ++BI) {
-
- MSchedGraph *MSG = new MSchedGraph(*BI, target);
-
- //Write Graph out to file
- DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
-
- //Print out BB for debugging
- DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr));
-
- //Calculate Resource II
- int ResMII = calculateResMII(*BI);
-
- //Calculate Recurrence II
- int RecMII = calculateRecMII(MSG, ResMII);
-
- //Our starting initiation interval is the maximum of RecMII and ResMII
- II = std::max(RecMII, ResMII);
-
- //Print out II, RecMII, and ResMII
- DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << "and ResMII=" << ResMII << "\n");
-
- //Calculate Node Properties
- calculateNodeAttributes(MSG, ResMII);
-
- //Dump node properties if in debug mode
- DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
- E = nodeToAttributesMap.end(); I !=E; ++I) {
- std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
- << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
- << " Height: " << I->second.height << "\n";
- });
-
- //Put nodes in order to schedule them
- computePartialOrder();
-
- //Dump out partial order
- DEBUG(for(std::vector<std::vector<MSchedGraphNode*> >::iterator I = partialOrder.begin(),
- E = partialOrder.end(); I !=E; ++I) {
- std::cerr << "Start set in PO\n";
- for(std::vector<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
- std::cerr << "PO:" << **J << "\n";
- });
-
- //Place nodes in final order
- orderNodes();
-
- //Dump out order of nodes
- DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) {
- std::cerr << "FO:" << **I << "\n";
- });
-
- //Finally schedule nodes
- computeSchedule();
-
- //Print out final schedule
- DEBUG(schedule.print(std::cerr));
-
-
- //Final scheduling step is to reconstruct the loop
- reconstructLoop(*BI);
-
- //Print out new loop
-
-
- //Clear out our maps for the next basic block that is processed
- nodeToAttributesMap.clear();
- partialOrder.clear();
- recurrenceList.clear();
- FinalNodeOrder.clear();
- schedule.clear();
-
- //Clean up. Nuke old MachineBB and llvmBB
- //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock();
- //Function *parent = (Function*) llvmBB->getParent();
- //Should't std::find work??
- //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB));
- //parent->getBasicBlockList().erase(llvmBB);
-
- //delete(llvmBB);
- //delete(*BI);
- }
-
-
- return Changed;
-}
-
-
-/// This function checks if a Machine Basic Block is valid for modulo
-/// scheduling. This means that it has no control flow (if/else or
-/// calls) in the block. Currently ModuloScheduling only works on
-/// single basic block loops.
-bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
-
- bool isLoop = false;
-
- //Check first if its a valid loop
- for(succ_const_iterator I = succ_begin(BI->getBasicBlock()),
- E = succ_end(BI->getBasicBlock()); I != E; ++I) {
- if (*I == BI->getBasicBlock()) // has single block loop
- isLoop = true;
- }
-
- if(!isLoop)
- return false;
-
- //Get Target machine instruction info
- const TargetInstrInfo *TMI = target.getInstrInfo();
-
- //Check each instruction and look for calls
- for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
- //Get opcode to check instruction type
- MachineOpCode OC = I->getOpcode();
- if(TMI->isCall(OC))
- return false;
-
- }
- return true;
-}
-
-//ResMII is calculated by determining the usage count for each resource
-//and using the maximum.
-//FIXME: In future there should be a way to get alternative resources
-//for each instruction
-int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
-
- const TargetInstrInfo *mii = target.getInstrInfo();
- const TargetSchedInfo *msi = target.getSchedInfo();
-
- int ResMII = 0;
-
- //Map to keep track of usage count of each resource
- std::map<unsigned, unsigned> resourceUsageCount;
-
- for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
-
- //Get resource usage for this instruction
- InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode());
- std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
-
- //Loop over resources in each cycle and increments their usage count
- for(unsigned i=0; i < resources.size(); ++i)
- for(unsigned j=0; j < resources[i].size(); ++j) {
- if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) {
- resourceUsageCount[resources[i][j]] = 1;
- }
- else {
- resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1;
- }
- }
- }
-
- //Find maximum usage count
-
- //Get max number of instructions that can be issued at once. (FIXME)
- int issueSlots = msi->maxNumIssueTotal;
-
- for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
-
- //Get the total number of the resources in our cpu
- int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
-
- //Get total usage count for this resources
- unsigned usageCount = RB->second;
-
- //Divide the usage count by either the max number we can issue or the number of
- //resources (whichever is its upper bound)
- double finalUsageCount;
- if( resourceNum <= issueSlots)
- finalUsageCount = ceil(1.0 * usageCount / resourceNum);
- else
- finalUsageCount = ceil(1.0 * usageCount / issueSlots);
-
-
- //Only keep track of the max
- ResMII = std::max( (int) finalUsageCount, ResMII);
-
- }
-
- return ResMII;
-
-}
-
-/// calculateRecMII - Calculates the value of the highest recurrence
-/// By value we mean the total latency
-int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) {
- std::vector<MSchedGraphNode*> vNodes;
- //Loop over all nodes in the graph
- for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
- findAllReccurrences(I->second, vNodes, MII);
- vNodes.clear();
- }
-
- int RecMII = 0;
-
- for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
- DEBUG(for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
- std::cerr << **N << "\n";
- });
- RecMII = std::max(RecMII, I->first);
- }
-
- return MII;
-}
-
-/// calculateNodeAttributes - The following properties are calculated for
-/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and
-/// MOB.
-void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) {
-
- //Loop over the nodes and add them to the map
- for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
- //Assert if its already in the map
- assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map");
-
- //Put into the map with default attribute values
- nodeToAttributesMap[I->second] = MSNodeAttributes();
- }
-
- //Create set to deal with reccurrences
- std::set<MSchedGraphNode*> visitedNodes;
-
- //Now Loop over map and calculate the node attributes
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
- calculateASAP(I->first, MII, (MSchedGraphNode*) 0);
- visitedNodes.clear();
- }
-
- int maxASAP = findMaxASAP();
- //Calculate ALAP which depends on ASAP being totally calculated
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
- calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0);
- visitedNodes.clear();
- }
-
- //Calculate MOB which depends on ASAP being totally calculated, also do depth and height
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
- (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
-
- DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
- calculateDepth(I->first, (MSchedGraphNode*) 0);
- calculateHeight(I->first, (MSchedGraphNode*) 0);
- }
-
-
-}
-
-/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not
-bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) {
- if(destNode == 0 || srcNode ==0)
- return false;
-
- bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
-
- return findEdge;
-}
-
-
-/// calculateASAP - Calculates the
-int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) {
-
- DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
-
- //Get current node attributes
- MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
-
- if(attributes.ASAP != -1)
- return attributes.ASAP;
-
- int maxPredValue = 0;
-
- //Iterate over all of the predecessors and find max
- for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
-
- //Only process if we are not ignoring the edge
- if(!ignoreEdge(*P, node)) {
- int predASAP = -1;
- predASAP = calculateASAP(*P, MII, node);
-
- assert(predASAP != -1 && "ASAP has not been calculated");
- int iteDiff = node->getInEdge(*P).getIteDiff();
-
- int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
- DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
- maxPredValue = std::max(maxPredValue, currentPredValue);
- }
- }
-
- attributes.ASAP = maxPredValue;
-
- DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
-
- return maxPredValue;
-}
-
-
-int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII,
- int maxASAP, MSchedGraphNode *srcNode) {
-
- DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
-
- MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
-
- if(attributes.ALAP != -1)
- return attributes.ALAP;
-
- if(node->hasSuccessors()) {
-
- //Trying to deal with the issue where the node has successors, but
- //we are ignoring all of the edges to them. So this is my hack for
- //now.. there is probably a more elegant way of doing this (FIXME)
- bool processedOneEdge = false;
-
- //FIXME, set to something high to start
- int minSuccValue = 9999999;
-
- //Iterate over all of the predecessors and fine max
- for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
- E = node->succ_end(); P != E; ++P) {
-
- //Only process if we are not ignoring the edge
- if(!ignoreEdge(node, *P)) {
- processedOneEdge = true;
- int succALAP = -1;
- succALAP = calculateALAP(*P, MII, maxASAP, node);
-
- assert(succALAP != -1 && "Successors ALAP should have been caclulated");
-
- int iteDiff = P.getEdge().getIteDiff();
-
- int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII;
-
- DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n");
-
- minSuccValue = std::min(minSuccValue, currentSuccValue);
- }
- }
-
- if(processedOneEdge)
- attributes.ALAP = minSuccValue;
-
- else
- attributes.ALAP = maxASAP;
- }
- else
- attributes.ALAP = maxASAP;
-
- DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");
-
- if(attributes.ALAP < 0)
- attributes.ALAP = 0;
-
- return attributes.ALAP;
-}
-
-int ModuloSchedulingPass::findMaxASAP() {
- int maxASAP = 0;
-
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
- E = nodeToAttributesMap.end(); I != E; ++I)
- maxASAP = std::max(maxASAP, I->second.ASAP);
- return maxASAP;
-}
-
-
-int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) {
-
- MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
-
- if(attributes.height != -1)
- return attributes.height;
-
- int maxHeight = 0;
-
- //Iterate over all of the predecessors and find max
- for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
- E = node->succ_end(); P != E; ++P) {
-
-
- if(!ignoreEdge(node, *P)) {
- int succHeight = calculateHeight(*P, node);
-
- assert(succHeight != -1 && "Successors Height should have been caclulated");
-
- int currentHeight = succHeight + node->getLatency();
- maxHeight = std::max(maxHeight, currentHeight);
- }
- }
- attributes.height = maxHeight;
- DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
- return maxHeight;
-}
-
-
-int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node,
- MSchedGraphNode *destNode) {
-
- MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
-
- if(attributes.depth != -1)
- return attributes.depth;
-
- int maxDepth = 0;
-
- //Iterate over all of the predecessors and fine max
- for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
-
- if(!ignoreEdge(*P, node)) {
- int predDepth = -1;
- predDepth = calculateDepth(*P, node);
-
- assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");
-
- int currentDepth = predDepth + (*P)->getLatency();
- maxDepth = std::max(maxDepth, currentDepth);
- }
- }
- attributes.depth = maxDepth;
-
- DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
- return maxDepth;
-}
-
-
-
-void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) {
- //Check to make sure that this recurrence is unique
- bool same = false;
-
-
- //Loop over all recurrences already in our list
- for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) {
-
- bool all_same = true;
- //First compare size
- if(R->second.size() == recurrence.size()) {
-
- for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) {
- if(std::find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) {
- all_same = all_same && false;
- break;
- }
- else
- all_same = all_same && true;
- }
- if(all_same) {
- same = true;
- break;
- }
- }
- }
-
- if(!same) {
- srcBENode = recurrence.back();
- destBENode = recurrence.front();
-
- //FIXME
- if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) {
- //DEBUG(std::cerr << "NOT A BACKEDGE\n");
- //find actual backedge HACK HACK
- for(unsigned i=0; i< recurrence.size()-1; ++i) {
- if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) {
- srcBENode = recurrence[i];
- destBENode = recurrence[i+1];
- break;
- }
-
- }
-
- }
- DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n");
- edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode)));
- recurrenceList.insert(std::make_pair(II, recurrence));
- }
-
-}
-
-void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node,
- std::vector<MSchedGraphNode*> &visitedNodes,
- int II) {
-
- if(std::find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) {
- std::vector<MSchedGraphNode*> recurrence;
- bool first = true;
- int delay = 0;
- int distance = 0;
- int RecMII = II; //Starting value
- MSchedGraphNode *last = node;
- MSchedGraphNode *srcBackEdge = 0;
- MSchedGraphNode *destBackEdge = 0;
-
-
-
- for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end();
- I !=E; ++I) {
-
- if(*I == node)
- first = false;
- if(first)
- continue;
-
- delay = delay + (*I)->getLatency();
-
- if(*I != node) {
- int diff = (*I)->getInEdge(last).getIteDiff();
- distance += diff;
- if(diff > 0) {
- srcBackEdge = last;
- destBackEdge = *I;
- }
- }
-
- recurrence.push_back(*I);
- last = *I;
- }
-
-
-
- //Get final distance calc
- distance += node->getInEdge(last).getIteDiff();
-
-
- //Adjust II until we get close to the inequality delay - II*distance <= 0
-
- int value = delay-(RecMII * distance);
- int lastII = II;
- while(value <= 0) {
-
- lastII = RecMII;
- RecMII--;
- value = delay-(RecMII * distance);
- }
-
-
- DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n");
- addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge);
- assert(distance != 0 && "Recurrence distance should not be zero");
- return;
- }
-
- for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) {
- visitedNodes.push_back(node);
- findAllReccurrences(*I, visitedNodes, II);
- visitedNodes.pop_back();
- }
-}
-
-
-
-
-
-void ModuloSchedulingPass::computePartialOrder() {
-
-
- //Loop over all recurrences and add to our partial order
- //be sure to remove nodes that are already in the partial order in
- //a different recurrence and don't add empty recurrences.
- for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
-
- //Add nodes that connect this recurrence to the previous recurrence
-
- //If this is the first recurrence in the partial order, add all predecessors
- for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
-
- }
-
-
- std::vector<MSchedGraphNode*> new_recurrence;
- //Loop through recurrence and remove any nodes already in the partial order
- for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
- bool found = false;
- for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
- if(std::find(PO->begin(), PO->end(), *N) != PO->end())
- found = true;
- }
- if(!found) {
- new_recurrence.push_back(*N);
-
- if(partialOrder.size() == 0)
- //For each predecessors, add it to this recurrence ONLY if it is not already in it
- for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(),
- PE = (*N)->pred_end(); P != PE; ++P) {
-
- //Check if we are supposed to ignore this edge or not
- if(!ignoreEdge(*P, *N))
- //Check if already in this recurrence
- if(std::find(I->second.begin(), I->second.end(), *P) == I->second.end()) {
- //Also need to check if in partial order
- bool predFound = false;
- for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) {
- if(std::find(PO->begin(), PO->end(), *P) != PO->end())
- predFound = true;
- }
-
- if(!predFound)
- if(std::find(new_recurrence.begin(), new_recurrence.end(), *P) == new_recurrence.end())
- new_recurrence.push_back(*P);
-
- }
- }
- }
- }
-
-
- if(new_recurrence.size() > 0)
- partialOrder.push_back(new_recurrence);
- }
-
- //Add any nodes that are not already in the partial order
- std::vector<MSchedGraphNode*> lastNodes;
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
- bool found = false;
- //Check if its already in our partial order, if not add it to the final vector
- for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
- if(std::find(PO->begin(), PO->end(), I->first) != PO->end())
- found = true;
- }
- if(!found)
- lastNodes.push_back(I->first);
- }
-
- if(lastNodes.size() > 0)
- partialOrder.push_back(lastNodes);
-
-}
-
-
-void ModuloSchedulingPass::predIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {
-
- //Sort CurrentSet so we can use lowerbound
- std::sort(CurrentSet.begin(), CurrentSet.end());
-
- for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
- for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(),
- E = FinalNodeOrder[j]->pred_end(); P != E; ++P) {
-
- //Check if we are supposed to ignore this edge or not
- if(ignoreEdge(*P,FinalNodeOrder[j]))
- continue;
-
- if(std::find(CurrentSet.begin(),
- CurrentSet.end(), *P) != CurrentSet.end())
- if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
- IntersectResult.push_back(*P);
- }
- }
-}
-
-void ModuloSchedulingPass::succIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {
-
- //Sort CurrentSet so we can use lowerbound
- std::sort(CurrentSet.begin(), CurrentSet.end());
-
- for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
- for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(),
- E = FinalNodeOrder[j]->succ_end(); P != E; ++P) {
-
- //Check if we are supposed to ignore this edge or not
- if(ignoreEdge(FinalNodeOrder[j],*P))
- continue;
-
- if(std::find(CurrentSet.begin(),
- CurrentSet.end(), *P) != CurrentSet.end())
- if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
- IntersectResult.push_back(*P);
- }
- }
-}
-
-void dumpIntersection(std::vector<MSchedGraphNode*> &IntersectCurrent) {
- std::cerr << "Intersection (";
- for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I)
- std::cerr << **I << ", ";
- std::cerr << ")\n";
-}
-
-
-
-void ModuloSchedulingPass::orderNodes() {
-
- int BOTTOM_UP = 0;
- int TOP_DOWN = 1;
-
- //Set default order
- int order = BOTTOM_UP;
-
-
- //Loop over all the sets and place them in the final node order
- for(std::vector<std::vector<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
-
- DEBUG(std::cerr << "Processing set in S\n");
- DEBUG(dumpIntersection(*CurrentSet));
-
- //Result of intersection
- std::vector<MSchedGraphNode*> IntersectCurrent;
-
- predIntersect(*CurrentSet, IntersectCurrent);
-
- //If the intersection of predecessor and current set is not empty
- //sort nodes bottom up
- if(IntersectCurrent.size() != 0) {
- DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n");
- order = BOTTOM_UP;
- }
- //If empty, use successors
- else {
- DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n");
-
- succIntersect(*CurrentSet, IntersectCurrent);
-
- //sort top-down
- if(IntersectCurrent.size() != 0) {
- DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n");
- order = TOP_DOWN;
- }
- else {
- DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n");
- //Find node with max ASAP in current Set
- MSchedGraphNode *node;
- int maxASAP = 0;
- DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n");
- for(unsigned j=0; j < CurrentSet->size(); ++j) {
- //Get node attributes
- MSNodeAttributes nodeAttr= nodeToAttributesMap.find((*CurrentSet)[j])->second;
- //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
- DEBUG(std::cerr << "CurrentSet index " << j << "has ASAP: " << nodeAttr.ASAP << "\n");
- if(maxASAP < nodeAttr.ASAP) {
- maxASAP = nodeAttr.ASAP;
- node = (*CurrentSet)[j];
- }
- }
- assert(node != 0 && "In node ordering node should not be null");
- IntersectCurrent.push_back(node);
- order = BOTTOM_UP;
- }
- }
-
- //Repeat until all nodes are put into the final order from current set
- while(IntersectCurrent.size() > 0) {
-
- if(order == TOP_DOWN) {
- DEBUG(std::cerr << "Order is TOP DOWN\n");
-
- while(IntersectCurrent.size() > 0) {
- DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n");
-
- int MOB = 0;
- int height = 0;
- MSchedGraphNode *highestHeightNode = IntersectCurrent[0];
-
- //Find node in intersection with highest heigh and lowest MOB
- for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(),
- E = IntersectCurrent.end(); I != E; ++I) {
-
- //Get current nodes properties
- MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
-
- if(height < nodeAttr.height) {
- highestHeightNode = *I;
- height = nodeAttr.height;
- MOB = nodeAttr.MOB;
- }
- else if(height == nodeAttr.height) {
- if(MOB > nodeAttr.height) {
- highestHeightNode = *I;
- height = nodeAttr.height;
- MOB = nodeAttr.MOB;
- }
- }
- }
-
- //Append our node with greatest height to the NodeOrder
- if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) {
- DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n");
- FinalNodeOrder.push_back(highestHeightNode);
- }
-
- //Remove V from IntersectOrder
- IntersectCurrent.erase(std::find(IntersectCurrent.begin(),
- IntersectCurrent.end(), highestHeightNode));
-
-
- //Intersect V's successors with CurrentSet
- for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(),
- E = highestHeightNode->succ_end(); P != E; ++P) {
- //if(lower_bound(CurrentSet->begin(),
- // CurrentSet->end(), *P) != CurrentSet->end()) {
- if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
- if(ignoreEdge(highestHeightNode, *P))
- continue;
- //If not already in Intersect, add
- if(std::find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end())
- IntersectCurrent.push_back(*P);
- }
- }
- } //End while loop over Intersect Size
-
- //Change direction
- order = BOTTOM_UP;
-
- //Reset Intersect to reflect changes in OrderNodes
- IntersectCurrent.clear();
- predIntersect(*CurrentSet, IntersectCurrent);
-
- } //End If TOP_DOWN
-
- //Begin if BOTTOM_UP
- else {
- DEBUG(std::cerr << "Order is BOTTOM UP\n");
- while(IntersectCurrent.size() > 0) {
- DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n");
-
- //dump intersection
- DEBUG(dumpIntersection(IntersectCurrent));
- //Get node with highest depth, if a tie, use one with lowest
- //MOB
- int MOB = 0;
- int depth = 0;
- MSchedGraphNode *highestDepthNode = IntersectCurrent[0];
-
- for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(),
- E = IntersectCurrent.end(); I != E; ++I) {
- //Find node attribute in graph
- MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
-
- if(depth < nodeAttr.depth) {
- highestDepthNode = *I;
- depth = nodeAttr.depth;
- MOB = nodeAttr.MOB;
- }
- else if(depth == nodeAttr.depth) {
- if(MOB > nodeAttr.MOB) {
- highestDepthNode = *I;
- depth = nodeAttr.depth;
- MOB = nodeAttr.MOB;
- }
- }
- }
-
-
-
- //Append highest depth node to the NodeOrder
- if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) {
- DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n");
- FinalNodeOrder.push_back(highestDepthNode);
- }
- //Remove heightestDepthNode from IntersectOrder
- IntersectCurrent.erase(std::find(IntersectCurrent.begin(),
- IntersectCurrent.end(),highestDepthNode));
-
-
- //Intersect heightDepthNode's pred with CurrentSet
- for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(),
- E = highestDepthNode->pred_end(); P != E; ++P) {
- //if(lower_bound(CurrentSet->begin(),
- // CurrentSet->end(), *P) != CurrentSet->end()) {
- if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
-
- if(ignoreEdge(*P, highestDepthNode))
- continue;
-
- //If not already in Intersect, add
- if(std::find(IntersectCurrent.begin(),
- IntersectCurrent.end(), *P) == IntersectCurrent.end())
- IntersectCurrent.push_back(*P);
- }
- }
-
- } //End while loop over Intersect Size
-
- //Change order
- order = TOP_DOWN;
-
- //Reset IntersectCurrent to reflect changes in OrderNodes
- IntersectCurrent.clear();
- succIntersect(*CurrentSet, IntersectCurrent);
- } //End if BOTTOM_DOWN
-
- DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n");
- }
- //End Wrapping while loop
- DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n");
- }//End for over all sets of nodes