diff options
Diffstat (limited to 'lib/Bitcode/NaCl/Writer/NaClBitcodeWriter.cpp')
-rw-r--r-- | lib/Bitcode/NaCl/Writer/NaClBitcodeWriter.cpp | 1790 |
1 files changed, 1790 insertions, 0 deletions
diff --git a/lib/Bitcode/NaCl/Writer/NaClBitcodeWriter.cpp b/lib/Bitcode/NaCl/Writer/NaClBitcodeWriter.cpp new file mode 100644 index 0000000000..33d0d84cb5 --- /dev/null +++ b/lib/Bitcode/NaCl/Writer/NaClBitcodeWriter.cpp @@ -0,0 +1,1790 @@ +//===--- Bitcode/NaCl/Writer/NaClBitcodeWriter.cpp - Bitcode Writer -------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Bitcode writer implementation. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "NaClBitcodeWriter" + +#include "llvm/Bitcode/NaCl/NaClBitcodeHeader.h" +#include "llvm/Bitcode/NaCl/NaClReaderWriter.h" +#include "NaClValueEnumerator.h" +#include "llvm/Bitcode/NaCl/NaClBitstreamWriter.h" +#include "llvm/Bitcode/NaCl/NaClLLVMBitCodes.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/Program.h" +#include "llvm/Support/raw_ostream.h" +#include <cctype> +#include <map> +using namespace llvm; + +/// These are manifest constants used by the bitcode writer. They do +/// not need to be kept in sync with the reader, but need to be +/// consistent within this file. +/// +/// Note that for each block type GROUP, the last entry should be of +/// the form: +/// +/// GROUP_MAX_ABBREV = GROUP_LAST_ABBREV, +/// +/// where GROUP_LAST_ABBREV is the last defined abbreviation. See +/// include file "llvm/Bitcode/NaCl/NaClBitCodes.h" for more +/// information on how groups should be defined. +enum { + // VALUE_SYMTAB_BLOCK abbrev id's. + VST_ENTRY_8_ABBREV = naclbitc::FIRST_APPLICATION_ABBREV, + VST_ENTRY_7_ABBREV, + VST_ENTRY_6_ABBREV, + VST_BBENTRY_6_ABBREV, + VST_MAX_ABBREV = VST_BBENTRY_6_ABBREV, + + // CONSTANTS_BLOCK abbrev id's. + CONSTANTS_SETTYPE_ABBREV = naclbitc::FIRST_APPLICATION_ABBREV, + CONSTANTS_INTEGER_ABBREV, + CONSTANTS_CE_CAST_Abbrev, + CONSTANTS_NULL_Abbrev, + CONSTANTS_MAX_ABBREV = CONSTANTS_NULL_Abbrev, + + // CONSTANTS_BLOCK abbrev id's when global (extends list above). + CST_CONSTANTS_AGGREGATE_ABBREV = CONSTANTS_MAX_ABBREV+1, + CST_CONSTANTS_STRING_ABBREV, + CST_CONSTANTS_CSTRING_7_ABBREV, + CST_CONSTANTS_CSTRING_6_ABBREV, + CST_CONSTANTS_MAX_ABBREV = CST_CONSTANTS_CSTRING_6_ABBREV, + + // GLOBALVAR BLOCK abbrev id's. + GLOBALVAR_VAR_ABBREV = naclbitc::FIRST_APPLICATION_ABBREV, + GLOBALVAR_COMPOUND_ABBREV, + GLOBALVAR_ZEROFILL_ABBREV, + GLOBALVAR_DATA_ABBREV, + GLOBALVAR_RELOC_ABBREV, + GLOBALVAR_RELOC_WITH_ADDEND_ABBREV, + GLOBALVAR_MAX_ABBREV = GLOBALVAR_RELOC_WITH_ADDEND_ABBREV, + + // FUNCTION_BLOCK abbrev id's. + FUNCTION_INST_LOAD_ABBREV = naclbitc::FIRST_APPLICATION_ABBREV, + FUNCTION_INST_BINOP_ABBREV, + FUNCTION_INST_BINOP_FLAGS_ABBREV, + FUNCTION_INST_CAST_ABBREV, + FUNCTION_INST_RET_VOID_ABBREV, + FUNCTION_INST_RET_VAL_ABBREV, + FUNCTION_INST_UNREACHABLE_ABBREV, + FUNCTION_INST_FORWARDTYPEREF_ABBREV, + FUNCTION_INST_MAX_ABBREV = FUNCTION_INST_FORWARDTYPEREF_ABBREV, + + // TYPE_BLOCK_ID_NEW abbrev id's. + TYPE_POINTER_ABBREV = naclbitc::FIRST_APPLICATION_ABBREV, + TYPE_FUNCTION_ABBREV, + TYPE_STRUCT_ANON_ABBREV, + TYPE_STRUCT_NAME_ABBREV, + TYPE_STRUCT_NAMED_ABBREV, + TYPE_ARRAY_ABBREV, + TYPE_MAX_ABBREV = TYPE_ARRAY_ABBREV, + + // SwitchInst Magic + SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex +}; + +static unsigned GetEncodedCastOpcode(unsigned Opcode) { + switch (Opcode) { + default: report_fatal_error("Unknown cast instruction!"); + case Instruction::Trunc : return naclbitc::CAST_TRUNC; + case Instruction::ZExt : return naclbitc::CAST_ZEXT; + case Instruction::SExt : return naclbitc::CAST_SEXT; + case Instruction::FPToUI : return naclbitc::CAST_FPTOUI; + case Instruction::FPToSI : return naclbitc::CAST_FPTOSI; + case Instruction::UIToFP : return naclbitc::CAST_UITOFP; + case Instruction::SIToFP : return naclbitc::CAST_SITOFP; + case Instruction::FPTrunc : return naclbitc::CAST_FPTRUNC; + case Instruction::FPExt : return naclbitc::CAST_FPEXT; + case Instruction::PtrToInt: return naclbitc::CAST_PTRTOINT; + case Instruction::IntToPtr: return naclbitc::CAST_INTTOPTR; + case Instruction::BitCast : return naclbitc::CAST_BITCAST; + } +} + +static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { + switch (Opcode) { + default: report_fatal_error("Unknown binary instruction!"); + case Instruction::Add: + case Instruction::FAdd: return naclbitc::BINOP_ADD; + case Instruction::Sub: + case Instruction::FSub: return naclbitc::BINOP_SUB; + case Instruction::Mul: + case Instruction::FMul: return naclbitc::BINOP_MUL; + case Instruction::UDiv: return naclbitc::BINOP_UDIV; + case Instruction::FDiv: + case Instruction::SDiv: return naclbitc::BINOP_SDIV; + case Instruction::URem: return naclbitc::BINOP_UREM; + case Instruction::FRem: + case Instruction::SRem: return naclbitc::BINOP_SREM; + case Instruction::Shl: return naclbitc::BINOP_SHL; + case Instruction::LShr: return naclbitc::BINOP_LSHR; + case Instruction::AShr: return naclbitc::BINOP_ASHR; + case Instruction::And: return naclbitc::BINOP_AND; + case Instruction::Or: return naclbitc::BINOP_OR; + case Instruction::Xor: return naclbitc::BINOP_XOR; + } +} + +static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { + switch (Op) { + default: report_fatal_error("Unknown RMW operation!"); + case AtomicRMWInst::Xchg: return naclbitc::RMW_XCHG; + case AtomicRMWInst::Add: return naclbitc::RMW_ADD; + case AtomicRMWInst::Sub: return naclbitc::RMW_SUB; + case AtomicRMWInst::And: return naclbitc::RMW_AND; + case AtomicRMWInst::Nand: return naclbitc::RMW_NAND; + case AtomicRMWInst::Or: return naclbitc::RMW_OR; + case AtomicRMWInst::Xor: return naclbitc::RMW_XOR; + case AtomicRMWInst::Max: return naclbitc::RMW_MAX; + case AtomicRMWInst::Min: return naclbitc::RMW_MIN; + case AtomicRMWInst::UMax: return naclbitc::RMW_UMAX; + case AtomicRMWInst::UMin: return naclbitc::RMW_UMIN; + } +} + +static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { + switch (Ordering) { + default: report_fatal_error("Invalid ordering"); + case NotAtomic: return naclbitc::ORDERING_NOTATOMIC; + case Unordered: return naclbitc::ORDERING_UNORDERED; + case Monotonic: return naclbitc::ORDERING_MONOTONIC; + case Acquire: return naclbitc::ORDERING_ACQUIRE; + case Release: return naclbitc::ORDERING_RELEASE; + case AcquireRelease: return naclbitc::ORDERING_ACQREL; + case SequentiallyConsistent: return naclbitc::ORDERING_SEQCST; + } +} + +static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { + switch (SynchScope) { + default: report_fatal_error("Invalid synch scope"); + case SingleThread: return naclbitc::SYNCHSCOPE_SINGLETHREAD; + case CrossThread: return naclbitc::SYNCHSCOPE_CROSSTHREAD; + } +} + +static unsigned GetEncodedCallingConv(CallingConv::ID conv) { + switch (conv) { + default: report_fatal_error( + "Calling convention not supported by PNaCL bitcode"); + case CallingConv::C: return naclbitc::C_CallingConv; + } +} + +static void WriteStringRecord(unsigned Code, StringRef Str, + unsigned AbbrevToUse, + NaClBitstreamWriter &Stream) { + SmallVector<unsigned, 64> Vals; + + // Code: [strchar x N] + for (unsigned i = 0, e = Str.size(); i != e; ++i) { + if (AbbrevToUse && !NaClBitCodeAbbrevOp::isChar6(Str[i])) + AbbrevToUse = 0; + Vals.push_back(Str[i]); + } + + // Emit the finished record. + Stream.EmitRecord(Code, Vals, AbbrevToUse); +} + +/// WriteTypeTable - Write out the type table for a module. +static void WriteTypeTable(const NaClValueEnumerator &VE, + NaClBitstreamWriter &Stream) { + DEBUG(dbgs() << "-> WriteTypeTable\n"); + const NaClValueEnumerator::TypeList &TypeList = VE.getTypes(); + + Stream.EnterSubblock(naclbitc::TYPE_BLOCK_ID_NEW, TYPE_MAX_ABBREV); + + SmallVector<uint64_t, 64> TypeVals; + + + // Note: modify to use maximum number of bits if under cutoff. Otherwise, + // use VBR to take advantage that frequently referenced types have + // small IDs. + // + // Note: Cutoff chosen based on experiments on pnacl-translate.pexe. + uint64_t NumBits = NaClBitsNeededForValue(VE.getTypes().size()); + static const uint64_t TypeVBRCutoff = 6; + uint64_t TypeIdNumBits = (NumBits <= TypeVBRCutoff ? NumBits : TypeVBRCutoff); + NaClBitCodeAbbrevOp::Encoding TypeIdEncoding = + (NumBits <= TypeVBRCutoff + ? NaClBitCodeAbbrevOp::Fixed : NaClBitCodeAbbrevOp::VBR); + + // Abbrev for TYPE_CODE_POINTER. + NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev(); + Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::TYPE_CODE_POINTER)); + Abbv->Add(NaClBitCodeAbbrevOp(TypeIdEncoding, TypeIdNumBits)); + Abbv->Add(NaClBitCodeAbbrevOp(0)); // Addrspace = 0 + if (TYPE_POINTER_ABBREV != Stream.EmitAbbrev(Abbv)) + llvm_unreachable("Unexpected abbrev ordering!"); + + // Abbrev for TYPE_CODE_FUNCTION. + Abbv = new NaClBitCodeAbbrev(); + Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::TYPE_CODE_FUNCTION)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, 1)); // isvararg + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, NumBits)); + if (TYPE_FUNCTION_ABBREV != Stream.EmitAbbrev(Abbv)) + llvm_unreachable("Unexpected abbrev ordering!"); + + // Abbrev for TYPE_CODE_STRUCT_ANON. + Abbv = new NaClBitCodeAbbrev(); + Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::TYPE_CODE_STRUCT_ANON)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, 1)); // ispacked + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, NumBits)); + if (TYPE_STRUCT_ANON_ABBREV != Stream.EmitAbbrev(Abbv)) + llvm_unreachable("Unexpected abbrev ordering!"); + + // Abbrev for TYPE_CODE_STRUCT_NAME. + Abbv = new NaClBitCodeAbbrev(); + Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::TYPE_CODE_STRUCT_NAME)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Char6)); + if (TYPE_STRUCT_NAME_ABBREV != Stream.EmitAbbrev(Abbv)) + llvm_unreachable("Unexpected abbrev ordering!"); + + // Abbrev for TYPE_CODE_STRUCT_NAMED. + Abbv = new NaClBitCodeAbbrev(); + Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::TYPE_CODE_STRUCT_NAMED)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, 1)); // ispacked + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, NumBits)); + if (TYPE_STRUCT_NAMED_ABBREV != Stream.EmitAbbrev(Abbv)) + llvm_unreachable("Unexpected abbrev ordering!"); + + // Abbrev for TYPE_CODE_ARRAY. + Abbv = new NaClBitCodeAbbrev(); + Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::TYPE_CODE_ARRAY)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 8)); // size + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, NumBits)); + if (TYPE_ARRAY_ABBREV != Stream.EmitAbbrev(Abbv)) + llvm_unreachable("Unexpected abbrev ordering!"); + + // Emit an entry count so the reader can reserve space. + TypeVals.push_back(TypeList.size()); + Stream.EmitRecord(naclbitc::TYPE_CODE_NUMENTRY, TypeVals); + TypeVals.clear(); + + // Loop over all of the types, emitting each in turn. + for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { + Type *T = TypeList[i]; + int AbbrevToUse = 0; + unsigned Code = 0; + + switch (T->getTypeID()) { + default: llvm_unreachable("Unknown type!"); + case Type::VoidTyID: Code = naclbitc::TYPE_CODE_VOID; break; + case Type::HalfTyID: Code = naclbitc::TYPE_CODE_HALF; break; + case Type::FloatTyID: Code = naclbitc::TYPE_CODE_FLOAT; break; + case Type::DoubleTyID: Code = naclbitc::TYPE_CODE_DOUBLE; break; + case Type::X86_FP80TyID: Code = naclbitc::TYPE_CODE_X86_FP80; break; + case Type::FP128TyID: Code = naclbitc::TYPE_CODE_FP128; break; + case Type::PPC_FP128TyID: Code = naclbitc::TYPE_CODE_PPC_FP128; break; + case Type::LabelTyID: Code = naclbitc::TYPE_CODE_LABEL; break; + case Type::X86_MMXTyID: Code = naclbitc::TYPE_CODE_X86_MMX; break; + case Type::IntegerTyID: + // INTEGER: [width] + Code = naclbitc::TYPE_CODE_INTEGER; + TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); + break; + case Type::PointerTyID: { + PointerType *PTy = cast<PointerType>(T); + // POINTER: [pointee type, address space] + Code = naclbitc::TYPE_CODE_POINTER; + TypeVals.push_back(VE.getTypeID(PTy->getElementType())); + unsigned AddressSpace = PTy->getAddressSpace(); + TypeVals.push_back(AddressSpace); + if (AddressSpace == 0) AbbrevToUse = TYPE_POINTER_ABBREV; + break; + } + case Type::FunctionTyID: { + FunctionType *FT = cast<FunctionType>(T); + // FUNCTION: [isvararg, retty, paramty x N] + Code = naclbitc::TYPE_CODE_FUNCTION; + TypeVals.push_back(FT->isVarArg()); + TypeVals.push_back(VE.getTypeID(FT->getReturnType())); + for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) + TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); + AbbrevToUse = TYPE_FUNCTION_ABBREV; + break; + } + case Type::StructTyID: { + StructType *ST = cast<StructType>(T); + // STRUCT: [ispacked, eltty x N] + TypeVals.push_back(ST->isPacked()); + // Output all of the element types. + for (StructType::element_iterator I = ST->element_begin(), + E = ST->element_end(); I != E; ++I) + TypeVals.push_back(VE.getTypeID(*I)); + + if (ST->isLiteral()) { + Code = naclbitc::TYPE_CODE_STRUCT_ANON; + AbbrevToUse = TYPE_STRUCT_ANON_ABBREV; + } else { + if (ST->isOpaque()) { + Code = naclbitc::TYPE_CODE_OPAQUE; + } else { + Code = naclbitc::TYPE_CODE_STRUCT_NAMED; + AbbrevToUse = TYPE_STRUCT_NAMED_ABBREV; + } + + // Emit the name if it is present. + if (!ST->getName().empty()) + WriteStringRecord(naclbitc::TYPE_CODE_STRUCT_NAME, ST->getName(), + TYPE_STRUCT_NAME_ABBREV, Stream); + } + break; + } + case Type::ArrayTyID: { + ArrayType *AT = cast<ArrayType>(T); + // ARRAY: [numelts, eltty] + Code = naclbitc::TYPE_CODE_ARRAY; + TypeVals.push_back(AT->getNumElements()); + TypeVals.push_back(VE.getTypeID(AT->getElementType())); + AbbrevToUse = TYPE_ARRAY_ABBREV; + break; + } + case Type::VectorTyID: { + VectorType *VT = cast<VectorType>(T); + // VECTOR [numelts, eltty] + Code = naclbitc::TYPE_CODE_VECTOR; + TypeVals.push_back(VT->getNumElements()); + TypeVals.push_back(VE.getTypeID(VT->getElementType())); + break; + } + } + + // Emit the finished record. + Stream.EmitRecord(Code, TypeVals, AbbrevToUse); + TypeVals.clear(); + } + + Stream.ExitBlock(); + DEBUG(dbgs() << "<- WriteTypeTable\n"); +} + +static unsigned getEncodedLinkage(const GlobalValue *GV) { + switch (GV->getLinkage()) { + case GlobalValue::ExternalLinkage: return 0; + case GlobalValue::WeakAnyLinkage: return 1; + case GlobalValue::AppendingLinkage: return 2; + case GlobalValue::InternalLinkage: return 3; + case GlobalValue::LinkOnceAnyLinkage: return 4; + case GlobalValue::DLLImportLinkage: return 5; + case GlobalValue::DLLExportLinkage: return 6; + case GlobalValue::ExternalWeakLinkage: return 7; + case GlobalValue::CommonLinkage: return 8; + case GlobalValue::PrivateLinkage: return 9; + case GlobalValue::WeakODRLinkage: return 10; + case GlobalValue::LinkOnceODRLinkage: return 11; + case GlobalValue::AvailableExternallyLinkage: return 12; + case GlobalValue::LinkerPrivateLinkage: return 13; + case GlobalValue::LinkerPrivateWeakLinkage: return 14; + case GlobalValue::LinkOnceODRAutoHideLinkage: return 15; + } + llvm_unreachable("Invalid linkage"); +} + +static unsigned getEncodedVisibility(const GlobalValue *GV) { + switch (GV->getVisibility()) { + case GlobalValue::DefaultVisibility: return 0; + case GlobalValue::HiddenVisibility: return 1; + case GlobalValue::ProtectedVisibility: return 2; + } + llvm_unreachable("Invalid visibility"); +} + +/// \brief Function to convert constant initializers for global +/// variables into corresponding bitcode. Takes advantage that these +/// global variable initializations are normalized (see +/// lib/Transforms/NaCl/FlattenGlobals.cpp). +void WriteGlobalInit(const Constant *C, unsigned GlobalVarID, + SmallVectorImpl<uint32_t> &Vals, + const NaClValueEnumerator &VE, + NaClBitstreamWriter &Stream) { + if (ArrayType *Ty = dyn_cast<ArrayType>(C->getType())) { + if (!Ty->getElementType()->isIntegerTy(8)) + report_fatal_error("Global array initializer not i8"); + uint32_t Size = Ty->getNumElements(); + if (isa<ConstantAggregateZero>(C)) { + Vals.push_back(Size); + Stream.EmitRecord(naclbitc::GLOBALVAR_ZEROFILL, Vals, + GLOBALVAR_ZEROFILL_ABBREV); + Vals.clear(); + } else { + const ConstantDataSequential *CD = cast<ConstantDataSequential>(C); + StringRef Data = CD->getRawDataValues(); + for (size_t i = 0; i < Size; ++i) { + Vals.push_back(Data[i] & 0xFF); + } + Stream.EmitRecord(naclbitc::GLOBALVAR_DATA, Vals, + GLOBALVAR_DATA_ABBREV); + Vals.clear(); + } + return; + } + if (C->getType()->isIntegerTy(32)) { + // This constant defines a relocation. Start by verifying the + // relocation is of the right form. + const ConstantExpr *CE = dyn_cast<ConstantExpr>(C); + if (CE == 0) + report_fatal_error("Global i32 initializer not constant"); + assert(CE); + int32_t Addend = 0; + if (CE->getOpcode() == Instruction::Add) { + const ConstantInt *AddendConst = dyn_cast<ConstantInt>(CE->getOperand(1)); + if (AddendConst == 0) + report_fatal_error("Malformed addend in global relocation initializer"); + Addend = AddendConst->getSExtValue(); + CE = dyn_cast<ConstantExpr>(CE->getOperand(0)); + if (CE == 0) + report_fatal_error( + "Base of global relocation initializer not constant"); + } + if (CE->getOpcode() != Instruction::PtrToInt) + report_fatal_error("Global relocation base doesn't contain ptrtoint"); + GlobalValue *GV = dyn_cast<GlobalValue>(CE->getOperand(0)); + if (GV == 0) + report_fatal_error( + "Argument of ptrtoint in global relocation no global value"); + + // Now generate the corresponding relocation record. + unsigned RelocID = VE.getValueID(GV); + // This is a value index. + unsigned AbbrevToUse = GLOBALVAR_RELOC_ABBREV; + Vals.push_back(RelocID); + if (Addend) { + Vals.push_back(Addend); + AbbrevToUse = GLOBALVAR_RELOC_WITH_ADDEND_ABBREV; + } + Stream.EmitRecord(naclbitc::GLOBALVAR_RELOC, Vals, AbbrevToUse); + Vals.clear(); + return; + } + report_fatal_error("Global initializer is not a SimpleElement"); +} + +// Emit global variables. +static void WriteGlobalVars(const Module *M, + const NaClValueEnumerator &VE, + NaClBitstreamWriter &Stream) { + Stream.EnterSubblock(naclbitc::GLOBALVAR_BLOCK_ID); + SmallVector<uint32_t, 32> Vals; + unsigned GlobalVarID = VE.getFirstGlobalVarID(); + + // Emit the number of global variables. + + Vals.push_back(M->getGlobalList().size()); + Stream.EmitRecord(naclbitc::GLOBALVAR_COUNT, Vals); + Vals.clear(); + + // Now emit each global variable. + for (Module::const_global_iterator + GV = M->global_begin(), E = M->global_end(); + GV != E; ++GV, ++GlobalVarID) { + // Define the global variable. + Vals.push_back(Log2_32(GV->getAlignment()) + 1); + Vals.push_back(GV->isConstant()); + Stream.EmitRecord(naclbitc::GLOBALVAR_VAR, Vals, GLOBALVAR_VAR_ABBREV); + Vals.clear(); + + // Add the field(s). + const Constant *C = GV->getInitializer(); + if (C == 0) + report_fatal_error("Global variable initializer not a constant"); + if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) { + if (!CS->getType()->isPacked()) + report_fatal_error("Global variable type not packed"); + if (CS->getType()->hasName()) + report_fatal_error("Global variable type is named"); + Vals.push_back(CS->getNumOperands()); + Stream.EmitRecord(naclbitc::GLOBALVAR_COMPOUND, Vals, + GLOBALVAR_COMPOUND_ABBREV); + Vals.clear(); + for (unsigned I = 0; I < CS->getNumOperands(); ++I) { + WriteGlobalInit(dyn_cast<Constant>(CS->getOperand(I)), GlobalVarID, + Vals, VE, Stream); + } + } else { + WriteGlobalInit(C, GlobalVarID, Vals, VE, Stream); + } + } + + assert(GlobalVarID == VE.getFirstGlobalVarID() + VE.getNumGlobalVarIDs()); + Stream.ExitBlock(); +} + +// Emit top-level description of module, including inline asm, +// descriptors for global variables, and function prototype info. +static void WriteModuleInfo(const Module *M, const NaClValueEnumerator &VE, + NaClBitstreamWriter &Stream) { + DEBUG(dbgs() << "-> WriteModuleInfo\n"); + // Emit various pieces of data attached to a module. + if (!M->getModuleInlineAsm().empty()) + WriteStringRecord(naclbitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), + 0/*TODO*/, Stream); + + // Emit information about sections and GC, computing how many there are. Also + // compute the maximum alignment value. + // TODO(kschimpf): Remove code for SectionMap and GCMap. + std::map<std::string, unsigned> SectionMap; + std::map<std::string, unsigned> GCMap; + for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); + GV != E; ++GV) { + if (GV->hasSection()) { + // Give section names unique ID's. + unsigned &Entry = SectionMap[GV->getSection()]; + if (!Entry) { + WriteStringRecord(naclbitc::MODULE_CODE_SECTIONNAME, GV->getSection(), + 0/*TODO*/, Stream); + Entry = SectionMap.size(); + } + } + } + for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { + if (F->hasSection()) { + // Give section names unique ID's. + unsigned &Entry = SectionMap[F->getSection()]; + if (!Entry) { + WriteStringRecord(naclbitc::MODULE_CODE_SECTIONNAME, F->getSection(), + 0/*TODO*/, Stream); + Entry = SectionMap.size(); + } + } + if (F->hasGC()) { + // Same for GC names. + unsigned &Entry = GCMap[F->getGC()]; + if (!Entry) { + WriteStringRecord(naclbitc::MODULE_CODE_GCNAME, F->getGC(), + 0/*TODO*/, Stream); + Entry = GCMap.size(); + } + } + } + + // Emit the function proto information. Note: We do this before + // global variables, so that global variable initializations can + // refer to the functions without a forward reference. + SmallVector<unsigned, 64> Vals; + for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { + // FUNCTION: [type, callingconv, isproto, linkage] + Vals.push_back(VE.getTypeID(F->getType())); + Vals.push_back(GetEncodedCallingConv(F->getCallingConv())); + Vals.push_back(F->isDeclaration()); + Vals.push_back(getEncodedLinkage(F)); + + unsigned AbbrevToUse = 0; + Stream.EmitRecord(naclbitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); + Vals.clear(); + } + + // Emit the global variable information. + WriteGlobalVars(M, VE, Stream); + + // Emit the alias information. + for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); + AI != E; ++AI) { + // ALIAS: [alias type, aliasee val#, linkage, visibility] + Vals.push_back(VE.getTypeID(AI->getType())); + Vals.push_back(VE.getValueID(AI->getAliasee())); + Vals.push_back(getEncodedLinkage(AI)); + Vals.push_back(getEncodedVisibility(AI)); + unsigned AbbrevToUse = 0; + Stream.EmitRecord(naclbitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); + Vals.clear(); + } + DEBUG(dbgs() << "<- WriteModuleInfo\n"); +} + +static uint64_t GetOptimizationFlags(const Value *V) { + uint64_t Flags = 0; + + if (const OverflowingBinaryOperator *OBO = + dyn_cast<OverflowingBinaryOperator>(V)) { + if (OBO->hasNoSignedWrap()) + Flags |= 1 << naclbitc::OBO_NO_SIGNED_WRAP; + if (OBO->hasNoUnsignedWrap()) + Flags |= 1 << naclbitc::OBO_NO_UNSIGNED_WRAP; + } else if (const PossiblyExactOperator *PEO = + dyn_cast<PossiblyExactOperator>(V)) { + if (PEO->isExact()) + Flags |= 1 << naclbitc::PEO_EXACT; + } else if (const FPMathOperator *FPMO = + dyn_cast<const FPMathOperator>(V)) { + if (FPMO->hasUnsafeAlgebra()) + Flags |= 1 << naclbitc::FPO_UNSAFE_ALGEBRA; + if (FPMO->hasNoNaNs()) + Flags |= 1 << naclbitc::FPO_NO_NANS; + if (FPMO->hasNoInfs()) + Flags |= 1 << naclbitc::FPO_NO_INFS; + if (FPMO->hasNoSignedZeros()) + Flags |= 1 << naclbitc::FPO_NO_SIGNED_ZEROS; + if (FPMO->hasAllowReciprocal()) + Flags |= 1 << naclbitc::FPO_ALLOW_RECIPROCAL; + } + + return Flags; +} + +static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { + Vals.push_back(NaClEncodeSignRotatedValue((int64_t)V)); +} + +static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals, + unsigned &Code, unsigned &AbbrevToUse, const APInt &Val, + bool EmitSizeForWideNumbers = false + ) { + if (Val.getBitWidth() <= 64) { + uint64_t V = Val.getSExtValue(); + emitSignedInt64(Vals, V); + Code = naclbitc::CST_CODE_INTEGER; + AbbrevToUse = CONSTANTS_INTEGER_ABBREV; + } else { + // Wide integers, > 64 bits in size. + // We have an arbitrary precision integer value to write whose + // bit width is > 64. However, in canonical unsigned integer + // format it is likely that the high bits are going to be zero. + // So, we only write the number of active words. + unsigned NWords = Val.getActiveWords(); + + if (EmitSizeForWideNumbers) + Vals.push_back(NWords); + + const uint64_t *RawWords = Val.getRawData(); + for (unsigned i = 0; i != NWords; ++i) { + emitSignedInt64(Vals, RawWords[i]); + } + Code = naclbitc::CST_CODE_WIDE_INTEGER; + } +} + +static void WriteConstants(unsigned FirstVal, unsigned LastVal, + const NaClValueEnumerator &VE, + NaClBitstreamWriter &Stream, bool isGlobal) { + if (FirstVal == LastVal) return; + + Stream.EnterSubblock(naclbitc::CONSTANTS_BLOCK_ID, + (isGlobal + ? CST_CONSTANTS_MAX_ABBREV + : CONSTANTS_MAX_ABBREV)); + + unsigned AggregateAbbrev = 0; + unsigned String8Abbrev = 0; + unsigned CString7Abbrev = 0; + unsigned CString6Abbrev = 0; + // If this is a constant pool for the module, emit module-specific abbrevs. + // Note: These abbreviations are size specific (to LastVal), and hence, + // can be more efficient if LastVal is known (rather then generating + // up-front for all constant sections). + if (isGlobal) { + // Abbrev for CST_CODE_AGGREGATE. + NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev(); + Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::CST_CODE_AGGREGATE)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, + NaClBitsNeededForValue(LastVal))); + AggregateAbbrev = Stream.EmitAbbrev(Abbv); + if (CST_CONSTANTS_AGGREGATE_ABBREV != AggregateAbbrev) + llvm_unreachable("Unexpected abbrev ordering!"); + + // Abbrev for CST_CODE_STRING. + Abbv = new NaClBitCodeAbbrev(); + Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::CST_CODE_STRING)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, 8)); + String8Abbrev = Stream.EmitAbbrev(Abbv); + if (CST_CONSTANTS_STRING_ABBREV != String8Abbrev) + llvm_unreachable("Unexpected abbrev ordering!"); + + // Abbrev for CST_CODE_CSTRING. + Abbv = new NaClBitCodeAbbrev(); + Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::CST_CODE_CSTRING)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, 7)); + CString7Abbrev = Stream.EmitAbbrev(Abbv); + if (CST_CONSTANTS_CSTRING_7_ABBREV != CString7Abbrev) + llvm_unreachable("Unexpected abbrev ordering!"); + + // Abbrev for CST_CODE_CSTRING. + Abbv = new NaClBitCodeAbbrev(); + Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::CST_CODE_CSTRING)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array)); + Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Char6)); + CString6Abbrev = Stream.EmitAbbrev(Abbv); + if (CST_CONSTANTS_CSTRING_6_ABBREV != CString6Abbrev) + llvm_unreachable("Unexpected abbrev ordering!"); + + DEBUG(dbgs() << "-- emitted abbreviations\n"); + } + + + SmallVector<uint64_t, 64> Record; + + const NaClValueEnumerator::ValueList &Vals = VE.getValues(); + Type *LastTy = 0; + for (unsigned i = FirstVal; i != LastVal; ++i) { + const Value *V = Vals[i].first; + // If we need to switch types, do so now. + if (V->getType() != LastTy) { + LastTy = V->getType(); + Record.push_back(VE.getTypeID(LastTy)); + Stream.EmitRecord(naclbitc::CST_CODE_SETTYPE, Record, + CONSTANTS_SETTYPE_ABBREV); + Record.clear(); + } + + if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { + Record.push_back(unsigned(IA->hasSideEffects()) | + unsigned(IA->isAlignStack()) << 1 | + unsigned(IA->getDialect()&1) << 2); + + // Add the asm string. + const std::string &AsmStr = IA->getAsmString(); + Record.push_back(AsmStr.size()); + for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) + Record.push_back(AsmStr[i]); + + // Add the constraint string. + const std::string &ConstraintStr = IA->getConstraintString(); + Record.push_back(ConstraintStr.size()); + for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) + Record.push_back(ConstraintStr[i]); + Stream.EmitRecord(naclbitc::CST_CODE_INLINEASM, Record); + Record.clear(); + continue; + } + const Constant *C = cast<Constant>(V); + unsigned Code = -1U; + unsigned AbbrevToUse = 0; + if (C->isNullValue()) { + Code = naclbitc::CST_CODE_NULL; + } else if (isa<UndefValue>(C)) { + Code = naclbitc::CST_CODE_UNDEF; + } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { + EmitAPInt(Record, Code, AbbrevToUse, IV->getValue()); + } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { + Code = naclbitc::CST_CODE_FLOAT; + Type *Ty = CFP->getType(); + if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { + Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); + } else if (Ty->isX86_FP80Ty()) { + // api needed to prevent premature destruction + // bits are not in the same order as a normal i80 APInt, compensate. + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t *p = api.getRawData(); + Record.push_back((p[1] << 48) | (p[0] >> 16)); + Record.push_back(p[0] & 0xffffLL); + } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t *p = api.getRawData(); + Record.push_back(p[0]); + Record.push_back(p[1]); + } else { + assert (0 && "Unknown FP type!"); + } + } else if (isa<ConstantDataSequential>(C) && + cast<ConstantDataSequential>(C)->isString()) { + const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); + // Emit constant strings specially. + unsigned NumElts = Str->getNumElements(); + // If this is a null-terminated string, use the denser CSTRING encoding. + if (Str->isCString()) { + Code = naclbitc::CST_CODE_CSTRING; + --NumElts; // Don't encode the null, which isn't allowed by char6. + } else { + Code = naclbitc::CST_CODE_STRING; + AbbrevToUse = String8Abbrev; + } + bool isCStr7 = Code == naclbitc::CST_CODE_CSTRING; + bool isCStrChar6 = Code == naclbitc::CST_CODE_CSTRING; + for (unsigned i = 0; i != NumElts; ++i) { + unsigned char V = Str->getElementAsInteger(i); + Record.push_back(V); + isCStr7 &= (V & 128) == 0; + if (isCStrChar6) + isCStrChar6 = NaClBitCodeAbbrevOp::isChar6(V); + } + + if (isCStrChar6) + AbbrevToUse = CString6Abbrev; + else if (isCStr7) + AbbrevToUse = CString7Abbrev; + } else if (const ConstantDataSequential *CDS = + dyn_cast<ConstantDataSequential>(C)) { + Code = naclbitc::CST_CODE_DATA; + Type *EltTy = CDS->getType()->getElementType(); + if (isa<IntegerType>(EltTy)) { + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) + Record.push_back(CDS->getElementAsInteger(i)); + } else if (EltTy->isFloatTy()) { + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { + union { float F; uint32_t I; }; + F = CDS->getElementAsFloat(i); + Record.push_back(I); + } + } else { + assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { + union { double F; uint64_t I; }; + F = CDS->getElementAsDouble(i); + Record.push_back(I); + } + } + } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || + isa<ConstantVector>(C)) { + Code = naclbitc::CST_CODE_AGGREGATE; + for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) + Record.push_back(VE.getValueID(C->getOperand(i))); + AbbrevToUse = AggregateAbbrev; + } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + switch (CE->getOpcode()) { + default: + if (Instruction::isCast(CE->getOpcode())) { + Code = naclbitc::CST_CODE_CE_CAST; + Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); + Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); + Record.push_back(VE.getValueID(C->getOperand(0))); + AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; + } else { + assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); + Code = naclbitc::CST_CODE_CE_BINOP; + Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + uint64_t Flags = GetOptimizationFlags(CE); + if (Flags != 0) + Record.push_back(Flags); + } + break; + case Instruction::GetElementPtr: + Code = naclbitc::CST_CODE_CE_GEP; + if (cast<GEPOperator>(C)->isInBounds()) + Code = naclbitc::CST_CODE_CE_INBOUNDS_GEP; + for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { + Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); + Record.push_back(VE.getValueID(C->getOperand(i))); + } + break; + case Instruction::Select: + Code = naclbitc::CST_CODE_CE_SELECT; + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(VE.getValueID(C->getOperand(2))); + break; + case Instruction::ExtractElement: + Code = naclbitc::CST_CODE_CE_EXTRACTELT; + Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + break; + case Instruction::InsertElement: + Code = naclbitc::CST_CODE_CE_INSERTELT; + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(VE.getValueID(C->getOperand(2))); + break; + case Instruction::ShuffleVector: + // If the return type and argument types are the same, this is a + // standard shufflevector instruction. If the types are different, + // then the shuffle is widening or truncating the input vectors, and + // the argument type must also be encoded. + if (C->getType() == C->getOperand(0)->getType()) { + Code = naclbitc::CST_CODE_CE_SHUFFLEVEC; + } else { + |