aboutsummaryrefslogtreecommitdiff
path: root/docs/tutorial
diff options
context:
space:
mode:
Diffstat (limited to 'docs/tutorial')
-rw-r--r--docs/tutorial/LangImpl1.html348
-rw-r--r--docs/tutorial/LangImpl1.rst280
-rw-r--r--docs/tutorial/LangImpl2.html1231
-rw-r--r--docs/tutorial/LangImpl2.rst1098
-rw-r--r--docs/tutorial/LangImpl3.html1268
-rw-r--r--docs/tutorial/LangImpl3.rst1162
-rw-r--r--docs/tutorial/LangImpl4.html1152
-rw-r--r--docs/tutorial/LangImpl4.rst1063
-rw-r--r--docs/tutorial/LangImpl5.html1772
-rw-r--r--docs/tutorial/LangImpl5.rst1609
-rw-r--r--docs/tutorial/LangImpl6.html1829
-rw-r--r--docs/tutorial/LangImpl6.rst1728
-rw-r--r--docs/tutorial/LangImpl7.html2164
-rw-r--r--docs/tutorial/LangImpl7.rst2005
-rw-r--r--docs/tutorial/LangImpl8.html359
-rw-r--r--docs/tutorial/LangImpl8.rst269
-rw-r--r--docs/tutorial/OCamlLangImpl1.html365
-rw-r--r--docs/tutorial/OCamlLangImpl1.rst288
-rw-r--r--docs/tutorial/OCamlLangImpl2.html1043
-rw-r--r--docs/tutorial/OCamlLangImpl2.rst899
-rw-r--r--docs/tutorial/OCamlLangImpl3.html1093
-rw-r--r--docs/tutorial/OCamlLangImpl3.rst964
-rw-r--r--docs/tutorial/OCamlLangImpl4.html1026
-rw-r--r--docs/tutorial/OCamlLangImpl4.rst918
-rw-r--r--docs/tutorial/OCamlLangImpl5.html1560
-rw-r--r--docs/tutorial/OCamlLangImpl5.rst1365
-rw-r--r--docs/tutorial/OCamlLangImpl6.html1574
-rw-r--r--docs/tutorial/OCamlLangImpl6.rst1444
-rw-r--r--docs/tutorial/OCamlLangImpl7.html1904
-rw-r--r--docs/tutorial/OCamlLangImpl7.rst1726
-rw-r--r--docs/tutorial/OCamlLangImpl8.html359
-rw-r--r--docs/tutorial/OCamlLangImpl8.rst269
-rw-r--r--docs/tutorial/index.html48
-rw-r--r--docs/tutorial/index.rst30
34 files changed, 17117 insertions, 19095 deletions
diff --git a/docs/tutorial/LangImpl1.html b/docs/tutorial/LangImpl1.html
deleted file mode 100644
index a65646f286..0000000000
--- a/docs/tutorial/LangImpl1.html
+++ /dev/null
@@ -1,348 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
- <title>Kaleidoscope: Tutorial Introduction and the Lexer</title>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <meta name="author" content="Chris Lattner">
- <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Tutorial Introduction and the Lexer</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 1
- <ol>
- <li><a href="#intro">Tutorial Introduction</a></li>
- <li><a href="#language">The Basic Language</a></li>
- <li><a href="#lexer">The Lexer</a></li>
- </ol>
-</li>
-<li><a href="LangImpl2.html">Chapter 2</a>: Implementing a Parser and AST</li>
-</ul>
-
-<div class="doc_author">
- <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Tutorial Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to the "Implementing a language with LLVM" tutorial. This tutorial
-runs through the implementation of a simple language, showing how fun and
-easy it can be. This tutorial will get you up and started as well as help to
-build a framework you can extend to other languages. The code in this tutorial
-can also be used as a playground to hack on other LLVM specific things.
-</p>
-
-<p>
-The goal of this tutorial is to progressively unveil our language, describing
-how it is built up over time. This will let us cover a fairly broad range of
-language design and LLVM-specific usage issues, showing and explaining the code
-for it all along the way, without overwhelming you with tons of details up
-front.</p>
-
-<p>It is useful to point out ahead of time that this tutorial is really about
-teaching compiler techniques and LLVM specifically, <em>not</em> about teaching
-modern and sane software engineering principles. In practice, this means that
-we'll take a number of shortcuts to simplify the exposition. For example, the
-code leaks memory, uses global variables all over the place, doesn't use nice
-design patterns like <a
-href="http://en.wikipedia.org/wiki/Visitor_pattern">visitors</a>, etc... but it
-is very simple. If you dig in and use the code as a basis for future projects,
-fixing these deficiencies shouldn't be hard.</p>
-
-<p>I've tried to put this tutorial together in a way that makes chapters easy to
-skip over if you are already familiar with or are uninterested in the various
-pieces. The structure of the tutorial is:
-</p>
-
-<ul>
-<li><b><a href="#language">Chapter #1</a>: Introduction to the Kaleidoscope
-language, and the definition of its Lexer</b> - This shows where we are going
-and the basic functionality that we want it to do. In order to make this
-tutorial maximally understandable and hackable, we choose to implement
-everything in C++ instead of using lexer and parser generators. LLVM obviously
-works just fine with such tools, feel free to use one if you prefer.</li>
-<li><b><a href="LangImpl2.html">Chapter #2</a>: Implementing a Parser and
-AST</b> - With the lexer in place, we can talk about parsing techniques and
-basic AST construction. This tutorial describes recursive descent parsing and
-operator precedence parsing. Nothing in Chapters 1 or 2 is LLVM-specific,
-the code doesn't even link in LLVM at this point. :)</li>
-<li><b><a href="LangImpl3.html">Chapter #3</a>: Code generation to LLVM IR</b> -
-With the AST ready, we can show off how easy generation of LLVM IR really
-is.</li>
-<li><b><a href="LangImpl4.html">Chapter #4</a>: Adding JIT and Optimizer
-Support</b> - Because a lot of people are interested in using LLVM as a JIT,
-we'll dive right into it and show you the 3 lines it takes to add JIT support.
-LLVM is also useful in many other ways, but this is one simple and "sexy" way
-to shows off its power. :)</li>
-<li><b><a href="LangImpl5.html">Chapter #5</a>: Extending the Language: Control
-Flow</b> - With the language up and running, we show how to extend it with
-control flow operations (if/then/else and a 'for' loop). This gives us a chance
-to talk about simple SSA construction and control flow.</li>
-<li><b><a href="LangImpl6.html">Chapter #6</a>: Extending the Language:
-User-defined Operators</b> - This is a silly but fun chapter that talks about
-extending the language to let the user program define their own arbitrary
-unary and binary operators (with assignable precedence!). This lets us build a
-significant piece of the "language" as library routines.</li>
-<li><b><a href="LangImpl7.html">Chapter #7</a>: Extending the Language: Mutable
-Variables</b> - This chapter talks about adding user-defined local variables
-along with an assignment operator. The interesting part about this is how
-easy and trivial it is to construct SSA form in LLVM: no, LLVM does <em>not</em>
-require your front-end to construct SSA form!</li>
-<li><b><a href="LangImpl8.html">Chapter #8</a>: Conclusion and other useful LLVM
-tidbits</b> - This chapter wraps up the series by talking about potential
-ways to extend the language, but also includes a bunch of pointers to info about
-"special topics" like adding garbage collection support, exceptions, debugging,
-support for "spaghetti stacks", and a bunch of other tips and tricks.</li>
-
-</ul>
-
-<p>By the end of the tutorial, we'll have written a bit less than 700 lines of
-non-comment, non-blank, lines of code. With this small amount of code, we'll
-have built up a very reasonable compiler for a non-trivial language including
-a hand-written lexer, parser, AST, as well as code generation support with a JIT
-compiler. While other systems may have interesting "hello world" tutorials,
-I think the breadth of this tutorial is a great testament to the strengths of
-LLVM and why you should consider it if you're interested in language or compiler
-design.</p>
-
-<p>A note about this tutorial: we expect you to extend the language and play
-with it on your own. Take the code and go crazy hacking away at it, compilers
-don't need to be scary creatures - it can be a lot of fun to play with
-languages!</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="language">The Basic Language</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>This tutorial will be illustrated with a toy language that we'll call
-"<a href="http://en.wikipedia.org/wiki/Kaleidoscope">Kaleidoscope</a>" (derived
-from "meaning beautiful, form, and view").
-Kaleidoscope is a procedural language that allows you to define functions, use
-conditionals, math, etc. Over the course of the tutorial, we'll extend
-Kaleidoscope to support the if/then/else construct, a for loop, user defined
-operators, JIT compilation with a simple command line interface, etc.</p>
-
-<p>Because we want to keep things simple, the only datatype in Kaleidoscope is a
-64-bit floating point type (aka 'double' in C parlance). As such, all values
-are implicitly double precision and the language doesn't require type
-declarations. This gives the language a very nice and simple syntax. For
-example, the following simple example computes <a
-href="http://en.wikipedia.org/wiki/Fibonacci_number">Fibonacci numbers:</a></p>
-
-<div class="doc_code">
-<pre>
-# Compute the x'th fibonacci number.
-def fib(x)
- if x &lt; 3 then
- 1
- else
- fib(x-1)+fib(x-2)
-
-# This expression will compute the 40th number.
-fib(40)
-</pre>
-</div>
-
-<p>We also allow Kaleidoscope to call into standard library functions (the LLVM
-JIT makes this completely trivial). This means that you can use the 'extern'
-keyword to define a function before you use it (this is also useful for mutually
-recursive functions). For example:</p>
-
-<div class="doc_code">
-<pre>
-extern sin(arg);
-extern cos(arg);
-extern atan2(arg1 arg2);
-
-atan2(sin(.4), cos(42))
-</pre>
-</div>
-
-<p>A more interesting example is included in Chapter 6 where we write a little
-Kaleidoscope application that <a href="LangImpl6.html#example">displays
-a Mandelbrot Set</a> at various levels of magnification.</p>
-
-<p>Lets dive into the implementation of this language!</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="lexer">The Lexer</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>When it comes to implementing a language, the first thing needed is
-the ability to process a text file and recognize what it says. The traditional
-way to do this is to use a "<a
-href="http://en.wikipedia.org/wiki/Lexical_analysis">lexer</a>" (aka 'scanner')
-to break the input up into "tokens". Each token returned by the lexer includes
-a token code and potentially some metadata (e.g. the numeric value of a number).
-First, we define the possibilities:
-</p>
-
-<div class="doc_code">
-<pre>
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
- tok_eof = -1,
-
- // commands
- tok_def = -2, tok_extern = -3,
-
- // primary
- tok_identifier = -4, tok_number = -5,
-};
-
-static std::string IdentifierStr; // Filled in if tok_identifier
-static double NumVal; // Filled in if tok_number
-</pre>
-</div>
-
-<p>Each token returned by our lexer will either be one of the Token enum values
-or it will be an 'unknown' character like '+', which is returned as its ASCII
-value. If the current token is an identifier, the <tt>IdentifierStr</tt>
-global variable holds the name of the identifier. If the current token is a
-numeric literal (like 1.0), <tt>NumVal</tt> holds its value. Note that we use
-global variables for simplicity, this is not the best choice for a real language
-implementation :).
-</p>
-
-<p>The actual implementation of the lexer is a single function named
-<tt>gettok</tt>. The <tt>gettok</tt> function is called to return the next token
-from standard input. Its definition starts as:</p>
-
-<div class="doc_code">
-<pre>
-/// gettok - Return the next token from standard input.
-static int gettok() {
- static int LastChar = ' ';
-
- // Skip any whitespace.
- while (isspace(LastChar))
- LastChar = getchar();
-</pre>
-</div>
-
-<p>
-<tt>gettok</tt> works by calling the C <tt>getchar()</tt> function to read
-characters one at a time from standard input. It eats them as it recognizes
-them and stores the last character read, but not processed, in LastChar. The
-first thing that it has to do is ignore whitespace between tokens. This is
-accomplished with the loop above.</p>
-
-<p>The next thing <tt>gettok</tt> needs to do is recognize identifiers and
-specific keywords like "def". Kaleidoscope does this with this simple loop:</p>
-
-<div class="doc_code">
-<pre>
- if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
- IdentifierStr = LastChar;
- while (isalnum((LastChar = getchar())))
- IdentifierStr += LastChar;
-
- if (IdentifierStr == "def") return tok_def;
- if (IdentifierStr == "extern") return tok_extern;
- return tok_identifier;
- }
-</pre>
-</div>
-
-<p>Note that this code sets the '<tt>IdentifierStr</tt>' global whenever it
-lexes an identifier. Also, since language keywords are matched by the same
-loop, we handle them here inline. Numeric values are similar:</p>
-
-<div class="doc_code">
-<pre>
- if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
- std::string NumStr;
- do {
- NumStr += LastChar;
- LastChar = getchar();
- } while (isdigit(LastChar) || LastChar == '.');
-
- NumVal = strtod(NumStr.c_str(), 0);
- return tok_number;
- }
-</pre>
-</div>
-
-<p>This is all pretty straight-forward code for processing input. When reading
-a numeric value from input, we use the C <tt>strtod</tt> function to convert it
-to a numeric value that we store in <tt>NumVal</tt>. Note that this isn't doing
-sufficient error checking: it will incorrectly read "1.23.45.67" and handle it as
-if you typed in "1.23". Feel free to extend it :). Next we handle comments:
-</p>
-
-<div class="doc_code">
-<pre>
- if (LastChar == '#') {
- // Comment until end of line.
- do LastChar = getchar();
- while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
-
- if (LastChar != EOF)
- return gettok();
- }
-</pre>
-</div>
-
-<p>We handle comments by skipping to the end of the line and then return the
-next token. Finally, if the input doesn't match one of the above cases, it is
-either an operator character like '+' or the end of the file. These are handled
-with this code:</p>
-
-<div class="doc_code">
-<pre>
- // Check for end of file. Don't eat the EOF.
- if (LastChar == EOF)
- return tok_eof;
-
- // Otherwise, just return the character as its ascii value.
- int ThisChar = LastChar;
- LastChar = getchar();
- return ThisChar;
-}
-</pre>
-</div>
-
-<p>With this, we have the complete lexer for the basic Kaleidoscope language
-(the <a href="LangImpl2.html#code">full code listing</a> for the Lexer is
-available in the <a href="LangImpl2.html">next chapter</a> of the tutorial).
-Next we'll <a href="LangImpl2.html">build a simple parser that uses this to
-build an Abstract Syntax Tree</a>. When we have that, we'll include a driver
-so that you can use the lexer and parser together.
-</p>
-
-<a href="LangImpl2.html">Next: Implementing a Parser and AST</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
- <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
- src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
- <a href="http://validator.w3.org/check/referer"><img
- src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
- <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
- <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
- Last modified: $Date$
-</address>
-</body>
-</html>
diff --git a/docs/tutorial/LangImpl1.rst b/docs/tutorial/LangImpl1.rst
new file mode 100644
index 0000000000..eb84e4c923
--- /dev/null
+++ b/docs/tutorial/LangImpl1.rst
@@ -0,0 +1,280 @@
+=================================================
+Kaleidoscope: Tutorial Introduction and the Lexer
+=================================================
+
+.. contents::
+ :local:
+
+Written by `Chris Lattner <mailto:sabre@nondot.org>`_
+
+Tutorial Introduction
+=====================
+
+Welcome to the "Implementing a language with LLVM" tutorial. This
+tutorial runs through the implementation of a simple language, showing
+how fun and easy it can be. This tutorial will get you up and started as
+well as help to build a framework you can extend to other languages. The
+code in this tutorial can also be used as a playground to hack on other
+LLVM specific things.
+
+The goal of this tutorial is to progressively unveil our language,
+describing how it is built up over time. This will let us cover a fairly
+broad range of language design and LLVM-specific usage issues, showing
+and explaining the code for it all along the way, without overwhelming
+you with tons of details up front.
+
+It is useful to point out ahead of time that this tutorial is really
+about teaching compiler techniques and LLVM specifically, *not* about
+teaching modern and sane software engineering principles. In practice,
+this means that we'll take a number of shortcuts to simplify the
+exposition. For example, the code leaks memory, uses global variables
+all over the place, doesn't use nice design patterns like
+`visitors <http://en.wikipedia.org/wiki/Visitor_pattern>`_, etc... but
+it is very simple. If you dig in and use the code as a basis for future
+projects, fixing these deficiencies shouldn't be hard.
+
+I've tried to put this tutorial together in a way that makes chapters
+easy to skip over if you are already familiar with or are uninterested
+in the various pieces. The structure of the tutorial is:
+
+- `Chapter #1 <#language>`_: Introduction to the Kaleidoscope
+ language, and the definition of its Lexer - This shows where we are
+ going and the basic functionality that we want it to do. In order to
+ make this tutorial maximally understandable and hackable, we choose
+ to implement everything in C++ instead of using lexer and parser
+ generators. LLVM obviously works just fine with such tools, feel free
+ to use one if you prefer.
+- `Chapter #2 <LangImpl2.html>`_: Implementing a Parser and AST -
+ With the lexer in place, we can talk about parsing techniques and
+ basic AST construction. This tutorial describes recursive descent
+ parsing and operator precedence parsing. Nothing in Chapters 1 or 2
+ is LLVM-specific, the code doesn't even link in LLVM at this point.
+ :)
+- `Chapter #3 <LangImpl3.html>`_: Code generation to LLVM IR - With
+ the AST ready, we can show off how easy generation of LLVM IR really
+ is.
+- `Chapter #4 <LangImpl4.html>`_: Adding JIT and Optimizer Support
+ - Because a lot of people are interested in using LLVM as a JIT,
+ we'll dive right into it and show you the 3 lines it takes to add JIT
+ support. LLVM is also useful in many other ways, but this is one
+ simple and "sexy" way to shows off its power. :)
+- `Chapter #5 <LangImpl5.html>`_: Extending the Language: Control
+ Flow - With the language up and running, we show how to extend it
+ with control flow operations (if/then/else and a 'for' loop). This
+ gives us a chance to talk about simple SSA construction and control
+ flow.
+- `Chapter #6 <LangImpl6.html>`_: Extending the Language:
+ User-defined Operators - This is a silly but fun chapter that talks
+ about extending the language to let the user program define their own
+ arbitrary unary and binary operators (with assignable precedence!).
+ This lets us build a significant piece of the "language" as library
+ routines.
+- `Chapter #7 <LangImpl7.html>`_: Extending the Language: Mutable
+ Variables - This chapter talks about adding user-defined local
+ variables along with an assignment operator. The interesting part
+ about this is how easy and trivial it is to construct SSA form in
+ LLVM: no, LLVM does *not* require your front-end to construct SSA
+ form!
+- `Chapter #8 <LangImpl8.html>`_: Conclusion and other useful LLVM
+ tidbits - This chapter wraps up the series by talking about
+ potential ways to extend the language, but also includes a bunch of
+ pointers to info about "special topics" like adding garbage
+ collection support, exceptions, debugging, support for "spaghetti
+ stacks", and a bunch of other tips and tricks.
+
+By the end of the tutorial, we'll have written a bit less than 700 lines
+of non-comment, non-blank, lines of code. With this small amount of
+code, we'll have built up a very reasonable compiler for a non-trivial
+language including a hand-written lexer, parser, AST, as well as code
+generation support with a JIT compiler. While other systems may have
+interesting "hello world" tutorials, I think the breadth of this
+tutorial is a great testament to the strengths of LLVM and why you
+should consider it if you're interested in language or compiler design.
+
+A note about this tutorial: we expect you to extend the language and
+play with it on your own. Take the code and go crazy hacking away at it,
+compilers don't need to be scary creatures - it can be a lot of fun to
+play with languages!
+
+The Basic Language
+==================
+
+This tutorial will be illustrated with a toy language that we'll call
+"`Kaleidoscope <http://en.wikipedia.org/wiki/Kaleidoscope>`_" (derived
+from "meaning beautiful, form, and view"). Kaleidoscope is a procedural
+language that allows you to define functions, use conditionals, math,
+etc. Over the course of the tutorial, we'll extend Kaleidoscope to
+support the if/then/else construct, a for loop, user defined operators,
+JIT compilation with a simple command line interface, etc.
+
+Because we want to keep things simple, the only datatype in Kaleidoscope
+is a 64-bit floating point type (aka 'double' in C parlance). As such,
+all values are implicitly double precision and the language doesn't
+require type declarations. This gives the language a very nice and
+simple syntax. For example, the following simple example computes
+`Fibonacci numbers: <http://en.wikipedia.org/wiki/Fibonacci_number>`_
+
+::
+
+ # Compute the x'th fibonacci number.
+ def fib(x)
+ if x < 3 then
+ 1
+ else
+ fib(x-1)+fib(x-2)
+
+ # This expression will compute the 40th number.
+ fib(40)
+
+We also allow Kaleidoscope to call into standard library functions (the
+LLVM JIT makes this completely trivial). This means that you can use the
+'extern' keyword to define a function before you use it (this is also
+useful for mutually recursive functions). For example:
+
+::
+
+ extern sin(arg);
+ extern cos(arg);
+ extern atan2(arg1 arg2);
+
+ atan2(sin(.4), cos(42))
+
+A more interesting example is included in Chapter 6 where we write a
+little Kaleidoscope application that `displays a Mandelbrot
+Set <LangImpl6.html#example>`_ at various levels of magnification.
+
+Lets dive into the implementation of this language!
+
+The Lexer
+=========
+
+When it comes to implementing a language, the first thing needed is the
+ability to process a text file and recognize what it says. The
+traditional way to do this is to use a
+"`lexer <http://en.wikipedia.org/wiki/Lexical_analysis>`_" (aka
+'scanner') to break the input up into "tokens". Each token returned by
+the lexer includes a token code and potentially some metadata (e.g. the
+numeric value of a number). First, we define the possibilities:
+
+.. code-block:: c++
+
+ // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+ // of these for known things.
+ enum Token {
+ tok_eof = -1,
+
+ // commands
+ tok_def = -2, tok_extern = -3,
+
+ // primary
+ tok_identifier = -4, tok_number = -5,
+ };
+
+ static std::string IdentifierStr; // Filled in if tok_identifier
+ static double NumVal; // Filled in if tok_number
+
+Each token returned by our lexer will either be one of the Token enum
+values or it will be an 'unknown' character like '+', which is returned
+as its ASCII value. If the current token is an identifier, the
+``IdentifierStr`` global variable holds the name of the identifier. If
+the current token is a numeric literal (like 1.0), ``NumVal`` holds its
+value. Note that we use global variables for simplicity, this is not the
+best choice for a real language implementation :).
+
+The actual implementation of the lexer is a single function named
+``gettok``. The ``gettok`` function is called to return the next token
+from standard input. Its definition starts as:
+
+.. code-block:: c++
+
+ /// gettok - Return the next token from standard input.
+ static int gettok() {
+ static int LastChar = ' ';
+
+ // Skip any whitespace.
+ while (isspace(LastChar))
+ LastChar = getchar();
+
+``gettok`` works by calling the C ``getchar()`` function to read
+characters one at a time from standard input. It eats them as it
+recognizes them and stores the last character read, but not processed,
+in LastChar. The first thing that it has to do is ignore whitespace
+between tokens. This is accomplished with the loop above.
+
+The next thing ``gettok`` needs to do is recognize identifiers and
+specific keywords like "def". Kaleidoscope does this with this simple
+loop:
+
+.. code-block:: c++
+
+ if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+ IdentifierStr = LastChar;
+ while (isalnum((LastChar = getchar())))
+ IdentifierStr += LastChar;
+
+ if (IdentifierStr == "def") return tok_def;
+ if (IdentifierStr == "extern") return tok_extern;
+ return tok_identifier;
+ }
+
+Note that this code sets the '``IdentifierStr``' global whenever it
+lexes an identifier. Also, since language keywords are matched by the
+same loop, we handle them here inline. Numeric values are similar:
+
+.. code-block:: c++
+
+ if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
+ std::string NumStr;
+ do {
+ NumStr += LastChar;
+ LastChar = getchar();
+ } while (isdigit(LastChar) || LastChar == '.');
+
+ NumVal = strtod(NumStr.c_str(), 0);
+ return tok_number;
+ }
+
+This is all pretty straight-forward code for processing input. When
+reading a numeric value from input, we use the C ``strtod`` function to
+convert it to a numeric value that we store in ``NumVal``. Note that
+this isn't doing sufficient error checking: it will incorrectly read
+"1.23.45.67" and handle it as if you typed in "1.23". Feel free to
+extend it :). Next we handle comments:
+
+.. code-block:: c++
+
+ if (LastChar == '#') {
+ // Comment until end of line.
+ do LastChar = getchar();
+ while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+ if (LastChar != EOF)
+ return gettok();
+ }
+
+We handle comments by skipping to the end of the line and then return
+the next token. Finally, if the input doesn't match one of the above
+cases, it is either an operator character like '+' or the end of the
+file. These are handled with this code:
+
+.. code-block:: c++
+
+ // Check for end of file. Don't eat the EOF.
+ if (LastChar == EOF)
+ return tok_eof;
+
+ // Otherwise, just return the character as its ascii value.
+ int ThisChar = LastChar;
+ LastChar = getchar();
+ return ThisChar;
+ }
+
+With this, we have the complete lexer for the basic Kaleidoscope
+language (the `full code listing <LangImpl2.html#code>`_ for the Lexer
+is available in the `next chapter <LangImpl2.html>`_ of the tutorial).
+Next we'll `build a simple parser that uses this to build an Abstract
+Syntax Tree <LangImpl2.html>`_. When we have that, we'll include a
+driver so that you can use the lexer and parser together.
+
+`Next: Implementing a Parser and AST <LangImpl2.html>`_
+
diff --git a/docs/tutorial/LangImpl2.html b/docs/tutorial/LangImpl2.html
deleted file mode 100644
index 292dd4e516..0000000000
--- a/docs/tutorial/LangImpl2.html
+++ /dev/null
@@ -1,1231 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
- <title>Kaleidoscope: Implementing a Parser and AST</title>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <meta name="author" content="Chris Lattner">
- <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Implementing a Parser and AST</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 2
- <ol>
- <li><a href="#intro">Chapter 2 Introduction</a></li>
- <li><a href="#ast">The Abstract Syntax Tree (AST)</a></li>
- <li><a href="#parserbasics">Parser Basics</a></li>
- <li><a href="#parserprimexprs">Basic Expression Parsing</a></li>
- <li><a href="#parserbinops">Binary Expression Parsing</a></li>
- <li><a href="#parsertop">Parsing the Rest</a></li>
- <li><a href="#driver">The Driver</a></li>
- <li><a href="#conclusions">Conclusions</a></li>
- <li><a href="#code">Full Code Listing</a></li>
- </ol>
-</li>
-<li><a href="LangImpl3.html">Chapter 3</a>: Code generation to LLVM IR</li>
-</ul>
-
-<div class="doc_author">
- <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
-</div>
-
-<!-- *********************************************************************